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A B S T R A C T

This study examines the impact of a recent regional artificial intelligence pilot zone (AIPZ) policy in China on 
firms' carbon performance using a quasi-natural experiment. Using the Difference-in-Differences (DID) meth
odology, the findings reveal that the AIPZ policy significantly reduces firms' carbon emissions. This effect is most 
pronounced for firms with high talent levels, positive media sentiment, and strong internal control, while heavily 
polluting firms experience a relatively minor effect. A variable importance analysis using the generalized random 
forest approach identifies return on assets (ROA) and Tobin's Q as significant contributors to the variation in 
firms' responses. Specifically, when ROA is negative, the treatment effect is relatively large and increases slowly. 
In contrast, when ROA is positive, the treatment effect decreases rapidly, showing a zero-boundary effect. 
Additionally, Tobin's Q exhibits an inverted U-shaped relationship with the treatment effect. The findings of this 
study offer valuable insights for policymakers in China and beyond, highlighting the importance of considering 
firm-specific characteristics to achieve effective and sustainable environmental management alongside economic 
development.

1. Introduction

With climate change as a major global concern, the contemporary 
world faces the daunting challenge of reducing carbon emissions. Large- 
scale carbon emissions are a leading cause of global warming, resulting 
in increased extreme weather events, rising sea levels, and loss of 
biodiversity (Chishti et al., 2024). According to the International Energy 
Agency (IEA), global energy–related carbon dioxide emissions have 
continued to rise over the past few decades, with significant carbon 
emissions growth in developing countries and emerging economies (Guo 
and Zhang, 2024). This trend places immense pressure on the global 
climate system and exacerbates environmental issues on a global scale.

With the rapid growth of the Chinese economy and accelerated 
industrialization, China's carbon emissions have increased exponentially 
over the past few decades (Zhu and Rao, 2024). China has been the 
world's largest carbon emitter since 2006 (He and Chen, 2023). Ac
cording to the IEA's CO2 Emissions in 2023 report, China's carbon 
emissions increased by approximately 565 million tons, marking the 

largest increase globally and contributing to about one-third of the 
global increase in carbon dioxide emissions in 2023. Considering China's 
unique status as the world's largest developing country and its re
sponsibility as a major carbon emitter, in-depth studies of China's 
associated policy measures can provide crucial insights for governments 
worldwide. Moreover, such efforts can aid countries in better under
standing how to strike a balance between economic development and 
environmental protection to collectively advance the global sustainable 
development agenda.

Despite a series of policies implemented by the Chinese government 
to address carbon emissions that have achieved some success (Zhou 
et al., 2024), previous research has found that such policies may lead to 
a decline in productivity (Deng and Li, 2020; Shi et al., 2022). This 
suggests that firms might be pressured to adopt production reduction 
strategies to meet emissions targets, resulting in economic performance 
losses. This approach, which sacrifices economic development for 
environmental improvement, clearly contradicts the core concept of 
sustainable development. Therefore, this study shifts the focus to a more 
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comprehensive carbon performance evaluation metric, measuring firm 
revenue per unit of carbon emissions. Compared with a single carbon 
emissions metric, the advantage of the carbon performance metric is its 
ability to reflect a firm's capacity to balance environmental re
sponsibility with economic benefits, effectively avoiding the scenario in 
which firms pursue emissions reductions at the expense of economic 
efficiency, known as the “robbing Peter to pay Paul” phenomenon.

To improve firms' carbon performance, relevant regulations typically 
set stringent environmental standards and emissions targets, compelling 
firms to seek innovative solutions to reduce carbon emissions. For 
instance, the Paris Agreement set common goals for global carbon 
reduction, prompting governments and firms worldwide to take 
concerted action (Chishti et al., 2024). As a powerful technological tool, 
artificial intelligence (AI) has a crucial role in this process (Srivastava 
et al., 2023). AI has been employed in many countries for various tasks 
such as forecasting, monitoring, and big data analysis (Stef et al., 2023). 
Such applications not only help firms monitor and manage carbon 
emissions more accurately but also optimize production processes and 
enhance energy efficiency, achieving emissions reduction targets while 
maximizing economic performance (Ding et al., 2023). For instance, 
Google reduced management costs by 40 % using deep learning AI 
technology; an accomplishment that would have been difficult to ach
ieve with traditional methods (Henderson et al., 2020). A study by 
McKinsey Global Institute determined AI could potentially increase 
global GDP growth by 1.2 % annually by 2030 (Bughin et al., 2018), 
surpassing the annual growth effects generated by the spread of steam 
engines and information technology (IT), which were 0.3 % and 0.6 %, 
respectively. Therefore, AI technology integration is expected to provide 
new ideas and solutions for enhancing carbon performance and 
achieving a mutually beneficial outcome for environmental and eco
nomic benefits. In recent years, the Chinese government has been 
committed to promoting AI technology, establishing the National New 
Generation AI Innovation Development Pilot Zones (AIPZ) with 18 cities 
in batches in 2019, 2020, and 2021. This policy aims to significantly 
advance the development and promotion of AI technology, enabling 
firms to use emerging AI technologies to improve energy efficiency and 
enhance economic performance while reducing carbon emissions. 
Therefore, investigating the impact of AIPZ policy implementation on 
firms' carbon performance is of great significance.

This study employs AIPZ implementation as a quasi-natural experi
ment using firm-level data to examine the policy's impact on firms' 
carbon performance. A multi-period difference-in-differences model is 
constructed to evaluate the policy's treatment effect, supported by 
robustness tests. The mechanism analysis reveals that talent, media 
tone, internal control, and pollution level influence policy outcomes. To 
explore heterogeneity, the study uses the generalized random forest 
(GRF) method, which offers more granular insights than traditional 
grouped regression. The findings show that AIPZ positively impacts 
carbon performance, particularly for firms with higher talent, more 
positive media sentiment, and better internal control, while heavily 
polluting firms weaken the effect. GRF results highlight return on assets 
(ROA) and Tobin's Q as key drivers of heterogeneity: a negative ROA 
enhances the treatment effect, while a positive ROA decreases it; Tobin's 
Q exhibits an inverted U-shaped relationship with the treatment effect.

This study makes several contributions to the literature. First, it pi
oneers the examination of the AIPZ program's impact on firms' carbon 
performance, exploring both potential mechanisms and heterogeneity, 
thereby advancing research in AI and energy. Second, unlike prior 
studies focusing solely on carbon emissions (Papp et al., 2023; Zhao 
et al., 2024), this study incorporates carbon performance indicators, 
comprehensively considering carbon emissions and firm revenue. Doğan 
et al. (2020) and Nasir et al. (2019) argued that economic growth should 
be considered when assessing carbon emissions, while Cao et al. (2021)
and Shi et al. (2022) suggested that emissions reductions may result 
from passive factors like reduced production rather than technological 
improvements. While such measures can meet carbon reduction goals, 

they may harm economic development. Thus, focusing on carbon per
formance allows for a more comprehensive evaluation of policies, 
ensuring emissions reduction while promoting economic benefits. 
Finally, this study introduces machine learning, using the GRF method 
for causal identification and heterogeneity analysis, offering a novel 
perspective. Compared with traditional methods, GRF has two key ad
vantages: it identifies the variables contributing most to heterogeneity, 
enabling more targeted analysis, and estimates treatment effects for 
individual firms, providing deeper insights into the relationship between 
heterogeneity factors and treatment effects to guide more precise policy 
recommendations.

The remaining sections of this paper are structured as follows. Sec
tion 2 provides a literature review and research hypotheses, Section 3
outlines the research design, Section 4 presents the empirical results and 
analysis, Section 5 delves into the mechanism analysis, Section 6 con
ducts heterogeneity analysis, and Section 7 presents the conclusion and 
policy implications.

2. Literature review and research hypotheses

2.1. Literature review

2.1.1. Carbon emissions reduction and environmental policies
Under increasing environmental pressures, the issue of carbon 

emissions reduction has become a popular research topic. Numerous 
studies have explored the impact of environmental policies or events on 
carbon emissions such as the establishment of the EU Emissions Trading 
System (Bel and Joseph, 2015), China's carbon emissions trading pilots 
(Xuan et al., 2020), green credit policies (Sun and Zeng, 2023), and low- 
carbon city pilots (Hou et al., 2023). Most studies have indicated that the 
implementation of these policies can indeed reduce firms' carbon 
emissions through positive measures such as promoting investment in 
research and development (R&D), green innovation, and improving 
energy efficiency (Hou et al., 2023; Zhang et al., 2020). However, some 
scholars have introduced opposing views, arguing that environmental 
regulations can impair firms' productivity, with the resulting carbon 
reduction effects primarily arising from negative factors like production 
cuts and emissions reduction (Cao et al., 2021; Shi et al., 2022). 
Therefore, a comprehensive evaluation of firms' environmental and 
economic performance is an urgent concern that helps assess the actual 
effects of policies and provides a scientific basis for firms' sustainable 
development.

2.1.2. Mixed effects of AI on economic and environmental performance
As environmental regulations become increasingly stringent, firms 

begin to seek new technologies to enhance environmental performance 
and economic efficiency. As a rapidly developing emerging technology, 
AI has been applied in various fields such as production, forecasting, and 
monitoring (Chen et al., 2022; Jha et al., 2017), attracting considerable 
interest from firms and scholars. Czarnitzki et al. (2023) used data from 
the German Innovation Survey and found that firms using at least one AI 
technology significantly improve productivity. Lee et al. (2022) adopted 
a similar approach, using survey data on respondents' ratings of AI 
adoption to measure AI adoption rates and verified a positive correlation 
between AI adoption and firm performance. Yang (2022) also corrobo
rated this finding, using the number of AI patents to measure AI rates, 
and determined that AI development could promote firm performance 
improvement. Additionally, Mishra et al. (2022) used text analysis of 
firms' annual reports to measure AI focus, showing that firms with 
greater AI focus performed better.

As noted above, while most studies have indicated that AI develop
ment can enhance firms' economic performance, the impact of AI on 
firms' environmental performance has two sides. Some scholars have 
argued that AI can promote technological innovation, which improves 
energy efficiency and enhances firms' environmental performance. For 
example, Wang et al. (2024) used text analysis to measure firms' AI 
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adoption rates and found that high AI usage rates promoted green 
innovation efficiency. Zhang and Zeng (2024) measured AI using in
dustrial robot adoption and demonstrated that AI significantly reduced 
firms' energy intensity. Therefore, it has been convincingly demon
strated that AI can be an effective tool in addressing carbon emissions, 
but its potentially negative impacts should not be overlooked. Dhar 
(2020) noted that AI itself is also a significant source of carbon emis
sions, with processes like training models consuming substantial 
amounts of energy. Gaur et al. (2023) also showed that the training 
processes of AI models generate considerable carbon emissions. The 
authors calculated the carbon emissions of various machine learning and 
deep learning models in detail and encouraged the practice of sustain
able AI. Therefore, the influence of AI on carbon emissions still requires 
further exploration.

2.1.3. Research gaps and study contributions
Summarizing the above literature analysis, first, previous research 

has predominantly focused on carbon emissions, while neglecting the 
development aspect of sustainable development. Second, the majority of 
studies have used methods such as text analysis and industrial robot 
usage to measure AI levels; however, these methods do not fully capture 
the overall concept of AI. Therefore, this study uses the carbon perfor
mance indicator as the research object, comprehensively considering 
firms' environmental and economic performance. The study also takes 
the impact of an AI-related policy as the starting point. AI policy 
implementation covers various aspects of AI development, providing a 
more comprehensive measure of firms' AI levels.

2.2. Policy background

As a burgeoning field of next-generation IT, AI has permeated many 
aspects of production and daily life, quietly transforming the operational 
modes of economic and social organizations. To promote the develop
ment of AI technology, China released the Guideline for the Construction 
of National New Generation AI Innovation Development Pilot Zones in 
2019, officially launching pilot zones in batches at the prefecture level, 
with 18 pilot zone cities selected from 2019 to 2021. The first batch of 
pilots began in 2019, encompassing Beijing, Shanghai, Tianjin, Shenz
hen, Hangzhou, Hefei, and Huzhou. The second batch started in 2020, 
specifying Chongqing, Chengdu, Xi'an, Jinan, Guangzhou, and Wuhan. 
The third batch commenced in 2021, covering Suzhou, Changsha, 
Zhengzhou, Shenyang, and Harbin. Although each city's positioning and 
development focus varied, such as Beijing being the first pilot city with 
the highest number of AI firms and aiming to become a hub for original 
AI innovation, and Hangzhou focusing on empowering urban gover
nance with AI, which led to AI innovations like smart transportation and 
smart business districts, the overall objectives of the three batches are 
largely consistent. The primary goal is to build a favorable ecosystem for 
AI development and promote AI advancement. By collaborating with 
firms on AI innovation platform projects, these cities endeavor to ach
ieve deep collaboration in AI, seek new paths for the coordinated 
development of AI and associated firms, explore new models of gover
nance in the AI era, and propel AI to become a significant engine for 
economic development and social governance.

2.3. Research hypotheses

2.3.1. AI and firm carbon performance
Referencing the assertion by Borges et al. (2021) that AI may be the 

most disruptive force in technology today, and considering its profound 
impact on firms' sustainable development (Nishant et al., 2020), it is 
evident that China's AIPZ policy has significant implications for 
advancing regional and corporate AI proficiency as a significant initia
tive to promote AI innovation and enhance its capabilities. Through AI- 
enabled intelligent optimization and precision management, firms can 
effectively control energy consumption and material allocation in 

production processes (Dubey et al., 2020), thereby reducing energy and 
material waste (Shu et al., 2023; Yang, 2022) and subsequently lowering 
carbon emissions. Additionally, the data analysis and predictive capa
bilities of AI technology can help firms accurately assess current energy 
use circumstances (Ferrero Bermejo et al., 2019; González Ordiano 
et al., 2018) to formulate more effective carbon reduction strategies. By 
accurately analyzing and mining big data, AI can help firms gain insights 
into the sources and distribution patterns of carbon emissions, identify 
potential opportunities for emissions reduction and optimization, and 
provide precise evidence and decision support for firms (Sellak et al., 
2017). Moreover, as societal awareness of environmental protection 
expands and demand for eco-friendly products grows, firms can leverage 
AI technology to develop more energy-efficient and environmentally 
friendly products and services, meeting market demands while reducing 
carbon emissions. Based on these considerations, this study proposes 
Hypothesis 1. 

Hypothesis 1. The AI pilot zone policy significantly enhances firms' 
carbon performance.

2.3.2. The talent effect
Under the influence of the AIPZ policy, the talent effect may have a 

significant impact on firm carbon performance. First, high-level human 
resources typically possess stronger capabilities in technological inno
vation and application, with specialized knowledge and skills in the field 
of AI, which accelerates the development and application of new tech
nologies (Awaworyi Churchill et al., 2019), enhancing firm carbon 
performance. Second, Goetz et al. (1998) and Graff Zivin and Neidell 
(2013) asserted that education contributes to changing people's behav
iors toward nature, enabling the public to contribute to environmental 
improvement. Desha et al. (2015) also noted that education influences 
individuals' preferences for compliance with environmental regulations. 
Therefore, the advantage of high-level talent in management and 
decision-making can enable firms to plan and execute carbon reduction 
strategies more effectively (Blackman and Kildegaard, 2010; Zafar et al., 
2019), adopt environmentally friendly technologies and management 
methods, and improve carbon performance. Additionally, high-level 
individuals have a strong sense of teamwork and knowledge sharing 
(Prada et al., 2022), which can promote technical exchange and coop
eration within firms, accelerate the application of AI technology and 
innovations in carbon reduction technologies, and ultimately improving 
carbon performance. Therefore, high-level talent is expected to have a 
significant impact on the treatment effect of the policy. Therefore, this 
study proposes Hypothesis 2. 

Hypothesis 2. The higher a firm's talent level is, the more significant 
the impact of the AI pilot zone policy will be on the firm's carbon 
performance.

2.3.3. Media sentiment
Firms' media coverage is a crucial channel for the public to obtain 

information (Hur et al., 2017) and is also a key factor in shaping 
corporate image. Previous research has predominantly focused on 
metrics of media attention such as the quantity of media coverage 
(Bissoondoyal-Bheenick et al., 2023), with limited exploration of the 
influence of media tone or attitude. The positivity or negativity of media 
coverage directly impacts a firm's reputation and image (Barreda et al., 
2015), profoundly affecting its operations and development. Positive 
media coverage can enhance a firm's image and credibility in the public 
consciousness (Khalifa et al., 2024) as socially responsible and envi
ronmentally aware. Under the guidance of national policy, this positive 
image may further incentivize firms to increase investments and inno
vation to advance carbon reduction efforts. Moreover, positive media 
coverage also attracts more attention from investors and potential 
partners (Kim and Park, 2013; Nisar and Whitehead, 2016), providing 
firms with additional resources and support (Bushman et al., 2017). 
These investment and collaborative opportunities may provide firms 
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with more technological and financial support, accelerating the 
advancement of AI-related projects and further improving carbon 
performance.

Conversely, negative media coverage may have various adverse ef
fects on firms. First, negative coverage may damage a firm's public 
image and reputation (Dyck et al., 2008), leading to consumer distrust 
and affecting the firm's market position and competitiveness. Second, 
negative coverage may also increase firms' legal and policy risks (An 
et al., 2020), with local governments and regulatory agencies potentially 
intensifying oversight and restricting innovation and practices (Dai 
et al., 2021), which can reduce the policy's treatment effect. Therefore, 
this study proposes Hypothesis 3. 

Hypothesis 3. The more positive a firm's media coverage is, the more 
significant the impact of the AI pilot zone policy will be on the firm's 
carbon performance.

2.3.4. Firm internal control
Due to the novelty and complexity of AI technology, not all firms are 

able to effectively integrate it into their operations. Brock and von 
Wangenheim (2019) noted that some firms may introduce AI technology 
into their operations without possessing the necessary internal capa
bilities. The quality of internal control reflects a firm's management level 
and risk management capabilities (Harasheh and Provasi, 2023), which 
may have significant implications for the magnitude of policy treatment 
effects. First, effective internal control enable firms to better comply 
with the requirements of AI policy and introduce AI technology and 
applications more quickly, which can optimize production processes 
(Boulhaga et al., 2023), improve efficiency (Morris, 2011), and even 
advance the development of intelligent technologies related to envi
ronmental protection to further reduce carbon emissions and enhance 
carbon performance. Second, effective internal control can ensure that 
firms consciously assume the social responsibility to protect the natural 
environment and resources (Al-Shaer and Zaman, 2018), which can 
enhance carbon performance. Additionally, efficient internal control can 
strengthen firms' supervision of internal and external information 
reception (Zhao et al., 2023) to manage risks related to AI more effec
tively. In the process of applying AI technology, risks related to data 
privacy protection, information security, and other concerns may arise 
(Habbal et al., 2024). Firms with good internal control can better 
manage these risks, ensuring data security and the smooth progress of 
technological applications, advancing firms' development under AI 
policy. Therefore, this study proposes Hypothesis 4. 

Hypothesis 4. The better a firm's internal control is, the more signif
icant the impact of the AI pilot zone policy will be on the firm's carbon 
performance.

2.3.5. Firm pollution level
Firms in heavily polluting industries are major sources of greenhouse 

gas (GHG) and crucial participants in environmental responsibility (Lin 
et al., 2021). Therefore, the firms' pollution level may also have a sig
nificant impact on AIPZ policy treatment effects. Xu and Li (2020) found 
that heavily polluting firms face greater financing pressure. Conse
quently, non-heavily polluting firms may find it easier to obtain external 
funding support, which can enable them to implement the policy more 
successfully to improve carbon performance. Furthermore, heavily 
polluting firms may face more intense social pressure and higher in
vestment, environmental litigation, and reputational risks (Liu et al., 
2019), which affect firms' ability and willingness to implement policy 
requirements. Additionally, heavily polluting firms often have a large 
number of fixed assets and production lines that require more funds to 
renovate and upgrade. These high costs can reduce the benefits that 
heavily polluting firms could receive from following policy mandates 
(Zhang and Vigne, 2021). Based on these considerations, this study 
proposes Hypothesis 5. 

Hypothesis 5. The impact of the AI pilot zone policy on the carbon 
performance of non-heavily polluting firms is more significant than that 
on heavily polluting firms.

3. Research design

3.1. Methodology

3.1.1. Benchmark model
To evaluate the impact of the AIPZ policy on firms' carbon perfor

mance, this study treats the policy's implementation as a quasi-natural 
experiment, considering listed companies in the 18 cities that partici
pated in the AIPZ program in 2019, 2020, and 2021 as the treatment 
group, and those in non-pilot areas as the control group, constructing the 
following multi-period DID model: 

Carbonit = α+ βAIPZit + γControlit + μi + λt + εit (1) 

where i represents the firm, and t represents the year. Carbonit denotes 
the carbon performance of firm i in year t. AIPZit indicates whether firm i 
was subject to the AI pilot treatment in year t, where 1 signifies treat
ment and 0 otherwise. β measures the policy's treatment effect, Controlit 
represents a series of control variables that may affect firm carbon 
performance, μi and λt are respective individual and year fixed effects, 
capturing firm-specific characteristics and time factors inherent to each 
firm respectively, and εit is the error term, which is assumed to be 
independently and identically distributed.

3.1.2. Mechanism model
To investigate how the AIPZ influences firm carbon performance, 

this study constructs the following model: 

Carbonit = α+ β0AIPZit + β1Mit + β2AIPZit
*Mit + γControlit + μi + λt + εit

(2) 

where Mit represents the moderating variable, and AIPZit*Mit denotes 
the interaction term between the treatment indicator and the moder
ating variable. A significant β2 coefficient indicates that the moderating 
variable indeed influences the treatment effect.

3.1.3. GRF
According to the potential outcome framework of Robins et al. 

(1994), Nie and Wager (2021) proposed the R-learner function. This 
function is intended to remove the influence of confounding factors and 
convert the estimation of treatment effects into an optimization problem 
of a loss function, allowing the incorporation of machine learning 
methods into causal inference. The functional expression is shown in Eq. 
(3). 

τ̂(⋅) = argminτ

{
1
n
∑n

i=1

( (
Yi − m̂(− i)

(Xi)
)
−
(
Wi − ê(− i)

(Xi)
)
τ(Xi)

)2
}

(3) 

where τ represents the treatment effect, and Xi denotes the character
istics of firm i; Yi is the outcome variable of firm i, which is carbon 
performance in this study; and Wi indicates whether firm i is in the 
treatment group. e(Xi) = P[Wi|Xi = x] represents the propensity score, 
which indicates the probability that firm i receives treatment given the 
covariate Xi, and ( − i) represents the out-of-bag estimate. m(− i)(Xi) =

E [Yi|x = Xi] denotes the predicted value of Yi when the covariate is Xi. 
The treatment effect can be estimated for each training sample using Eq. 
(3). Subsequently, referencing Athey et al. (2019), this study constructs 
a GRF to estimate the treatment effect with the following steps: 

1) Randomly sample subsets of both samples and features from the 
sample set.

2) Randomly split the sample subset into training and estimation sets at 
a 50 % ratio.
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3) Use the training set to build causal trees, with the splitting rule 
maximizing the difference between nodes, as follows:

Δ(C1,C2) =
nC1 nC2

n2
P

(θ̂C1 − θ̂C2 )
2 (4) 

where P is the parent node of the tree, C1 and C2 are the split subnodes, ̂θ 
is the average treatment effect of the two subnodes, and n is the sample 
size. The criterion for splitting is to maximize Δ(C1,C2), which means 
maximizing the heterogeneity between subnodes while balancing the 
difference in sample sizes between the two subnodes. Compared with 
traditional random forest models, the splitting rule of causal trees fo
cuses on maximizing differences between nodes rather than minimizing 
prediction errors within nodes, which essentially highlights the het
erogeneity of treatment effects. 

4) Match the estimation set samples with the causal tree leaf nodes 
based on the feature X.

5) For each test sample (x), assign the same weights (abi(x)) to training 
samples that fall into the same leaf node as x, which is expressed as 
follows:

αbi(x) =
1({Xi ∈ Lb(X) } )

|Lb(X) |
(5) 

where Lb(X) is the set of training samples that fall into the same leaf node 
as x, and the denominator represents the number of samples in this 
training sample set. Therefore, in the entire GRF, the frequency αi(x) of 
training sample i and test sample x falling into the same node can be 
calculated using Eq. (6). This represents the similarity between sample i 
and x and 

∑n
i=1αi(x) = 1. 

αi(x) =
1
B
∑B

b=1

αbi(x) (6) 

6) This study obtains the treatment effect estimate for x by weighting 
each sample.

The above steps are implemented using the grf package in the R 
programming language (Athey et al., 2019). We estimate the treatment 
effects for each individual firm using the GRF approach, which enables a 
more detailed and precise exploration of the relationship between 
covariates and treatment effects in heterogeneity analysis.

3.2. Variables definitions and data

3.2.1. Firm carbon performance
We divide the sample into two categories, according to firms' 

disclosure. The first category includes firms that directly disclose annual 
direct carbon emissions, indirect carbon emissions, or total carbon 
emissions. For these firms, we use the data that are directly disclosed in 
annual reports and standardize them into the same unit. The second 
category includes firms that do not directly disclose annual carbon 
emissions but provide data on different types of fossil energy con
sumption, electricity usage, heat usage, and other carbon-emitting 
forms. We calculate the carbon emissions for these firms by refer
encing the Guideline for Greenhouse Gas Emission Accounting and 
Reporting for Enterprises issued by China's National Development and 
Reform Commission.

After obtaining each firm's total carbon emissions, this study further 
uses the natural logarithm of revenue per unit of carbon emissions as a 
proxy variable for firm carbon performance (Perera et al., 2023). A 
higher value of this indicator implies better firm carbon performance. 
The specific calculation method is as follows: 

Carbon performance = Ln
Operating revenue

Total carbon emissions
(7) 

3.2.2. Core independent variable
The core independent variable of this study is the AIPZ policy 

dummy variable. If a city implements an AIPZ project, the value of this 
variable for firms within that city is 1 in the pilot year and subsequent 
years, and 0 otherwise. If a city is not included in the list of AIPZ pro
jects, the value remains 0 throughout the study period.

3.2.3. Control variables
Referencing Hou et al. (2023), Shang et al. (2023), and Zhang and 

Wang (2021), this study introduces a series of firm-level control vari
ables. These include Size, representing the logarithm of total assets; 
FirmAge, which denotes the natural logarithm of the firm's age plus one; 
leverage (Lev), indicating the ratio of total liabilities to total assets; re
turn on assets (ROA), which is calculated as the firm's net profit divided 
by its total assets; Tobin's Q (TobinQ), representing the market value of 
the firm relative to its asset replacement value; Fixed, denoting the ratio 
of net fixed assets to total assets; Board, which is measured by the natural 
logarithm of the number of board members; and Ownership Concen
tration (Top), indicating the proportion of total equity held by the largest 
shareholder. These variables collectively aim to capture various di
mensions of firm characteristics and governance structures that could 
potentially influence the relationship between the AIPZ policy and firm 
carbon performance. Table 1 presents the variables' definitions.

3.3. Data source

The initial sample for this study includes A-share listed companies on 
the Shanghai and Shenzhen stock exchanges from 2013 to 2022. Carbon 
emissions data are obtained from annual corporate social responsibility, 
sustainable development, and environmental reports disclosed by 
companies. Other data are sourced from the China Stock Market and 
Accounting Research database. This study excludes firms in the financial 
industry due to their unique regulatory and accounting standards. 
Additionally, ST and *ST firms are excluded because their operating 
conditions are abnormal, and they are flagged as high-risk by stock 
exchanges. Excluding these special samples enhances the credibility of 
this study's conclusions. Moreover, samples with missing key data are 
also excluded.

4. Empirical results and analysis

4.1. Descriptive statistics

Table 2 presents descriptive statistics of the main variables. Carbon 
performance ranges from a minimum of 3.883 to a maximum of 12.126, 
indicating significant variation in firms' carbon performance. The 
analysis of variables' correlation is presented in the Appendix.

Table 1 
Variable definitions.

Variables Definition Description or calculation method

Carbon Firm carbon 
performance

Natural logarithm of revenue per unit of carbon 
emissions.

AIPZ
Policy dummy 

variable
Equals 1 if a city implemented an AI pilot zone in 
the pilot year and subsequent years, otherwise 0

Size Firm size Natural logarithm of total assets
FirmAge Firm age Natural logarithm of firm age plus one year

Lev Leverage ratio Ratio of total liabilities to total assets
ROA Return on assets Net profit divided by total assets

TobinQ Tobin's Q Firms' market value divided by asset 
replacement value

Fixed Fixed asset ratio Net fixed assets divided by total assets

Board Board size
Natural logarithm of the number of board 

members

Top
Ownership 

concentration
Proportion of shares held by the largest 

shareholder
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4.2. Benchmark regression results

Based on the model design and variable selection previously out
lined, this section investigates the impact of AIPZ projects on firms' 
carbon performance. Table 3 presents the results of the baseline 
regression. In column (1), without incorporating fixed effects or control 
variables, the estimated coefficient is 0.3417, which is significant at the 
1 % level. In column (2), introducing control variables, the coefficient of 
the AIPZ policy decreases but remains significantly positive. In column 
(3), further controlling for firm and year fixed effects, the coefficient of 
the AIPZ policy decreases to 0.0208, indicating that AIPZ implementa
tion results in an average 2.08 % increase in firms' carbon performance. 
Incorporating control variables and fixed effects into the model captures 
the various factors that influence the dependent variable more 
comprehensively, which reduces the impact of potential omitted vari
able bias. Specifically, adding control variables and fixed effects isolates 
the net effect of the AIPZ policy on the dependent variable. Integrating 
these model improvements reveals a significant reduction in the AIPZ 
coefficient, indicating that uncontrolled factors were indeed present in 
the initial model. This also suggests that the chosen control variables and 
fixed effects effectively absorb the influence of unobservable factors on 
firms' carbon performance. Additionally, the adjusted R-squared value 
gradually rises as control variables and fixed effects are included, 

demonstrating that the added variables enhance the explanatory power 
of the model.

The results indicate that the AIPZ policy can significantly improve 
firms' carbon performance. This improvement may be attributable to the 
introduction of AI technologies, which can help firms optimize pro
duction processes, increase energy efficiency, and reduce resource 
waste. Additionally, when firms introduce AI technologies, they typi
cally engage in internal process optimization, such as adjusting opera
tional strategies and investing in green technologies, which further 
enhances carbon performance. We discuss these mechanisms in more 
detail in the mechanism analysis section.

4.3. Robustness tests

4.3.1. Parallel trend test
The prerequisite for using DID is the requirement that control and 

treatment groups satisfy the parallel trend assumption, confirming that 
both groups exhibit parallel development trends prior to AIPZ imple
mentation. If the trends are not consistent, the regression results may be 
biased. Referencing Beck et al. (2010), we employ the event study 
method to test dynamic processing effects and construct the following 
model: 

Carbonit = α+
∑3

n=− 6
βnAIPZn

it + γControlit + μi + λt + εit (8) 

where n represents the time interval before and after the policy's pilot 
year. AIPZn

it is the relative year policy variable generated with the 
reference year being the pilot project implementation year. βn is the 
regression coefficient for the relative base year. Controlit represents the 
control variables that may affect the firm's carbon performance. μi and λt 
are individual and year fixed effects, respectively. εit denotes the error 
term. If the coefficient of AIPZ before policy implementation is signifi
cant, this indicates a significant difference in control and treatment 
groups' carbon performance before policy implementation, violating the 
prerequisite of the DID method. This model can also examine the lagged 
effects of the policy.

This study selects the period immediately before policy imple
mentation as the baseline, presenting the results in Fig. 1. The figure 
illustrates no significant difference in carbon performance between 
control and treatment groups prior to policy implementation. In the first 
year after policy implementation, the estimated coefficient does not 

Table 2 
Descriptive statistics.

Variables Observations Mean Std.Dev Min Max

Carbon 22,632 8.249 0.564 3.883 12.126
AIPZ 22,632 0.193 0.395 0.000 1.000
Size 22,632 22.376 1.328 19.59 26.452

FirmAge 22,632 2.965 0.303 1.792 3.611
Lev 22,632 0.424 0.199 0.046 0.908

ROA 22,632 0.042 0.064 − 0.373 0.247
TobinQ 22,632 2.027 1.336 0.802 15.607
Fixed 22,632 0.226 0.154 0.002 0.719
Board 22,632 2.117 0.195 1.609 2.708
Top 22,632 34.232 14.586 8.020 75.525

Table 3 
Benchmark regression results.

(1) (2) (3)

Carbon Carbon Carbon

AIPZ 0.3417*** 0.3076*** 0.0208***
(0.0056) (0.0064) (0.0057)

Size 0.0127*** 0.0426***
(0.0028) (0.0089)

FirmAge 0.2610*** 0.0461
(0.0092) (0.0387)

Lev − 0.0854*** 0.0596***
(0.0206) (0.0217)

ROA − 0.0811 0.1506***
(0.0617) (0.0345)

TobinQ − 0.0199*** 0.0001
(0.0023) (0.0018)

Fixed − 0.0046 0.0335
(0.0195) (0.0317)

Board − 0.1502*** 0.0058
(0.0157) (0.0175)

Top − 0.0018*** 0.0010**
(0.0002) (0.0004)

Constant 8.1832*** 7.5926*** 7.0682***
(0.0024) (0.0642) (0.2351)

Observations 22,632 22,632 22,632
Adjusted R-squared 0.057 0.083 0.888

Firm FE NO NO YES
Year FE NO NO YES

Note: *, **, and *** indicate statistical significance at 10 %, 5 %, and 1 % levels, 
respectively. Firm and Year FE stand for firm and year fixed effects, respectively. 
Standard errors, clustered at the firm level, are reported in parentheses.

Fig. 1. Parallel trend graph at a 95 % confidence level. 
Note: The horizontal axis represents relative years, ranging from − 6 to − 2 for 
the 5 years prior to policy implementation, 0 for the year of policy imple
mentation, and 1 to 3 for the first to third years following policy 
implementation.
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significantly differ from 0; however, from the second year onward, the 
policy effect becomes increasingly evident. This indicates that the AIPZ 
policy indeed promotes firms' carbon performance improvement, albeit 
with a lag effect. The rationale for this outcome might be that while AI 
encourages firms to adopt new technologies or change production 
methods to reduce carbon emissions, these changes may require some 
time for investment, construction, and implementation. For instance, 
firms may need to purchase new equipment, train employees, or rede
sign production processes. These investments and processes may result 
in the policy's effect on improving carbon performance lagging behind 
its implementation.

4.3.2. Sensitivity testing of parallel trend
Roth et al. (2023) argued that pre-trend tests alone are insufficient as 

effective empirical evidence for confirming the validity of the parallel 
trend assumption, as they do not guarantee that the treatment and 
control groups will still exhibit parallel trends in the actual post-policy 
years when no policy occurs. Building upon this, Rambachan and Roth 
(2023) proposed a method for sensitivity analysis when the parallel 
trend assumption might be violated, introducing two approaches based 
on pre-trend estimates of differences between the treatment and control 
groups.

The first approach is Bounds on Relative Magnitude, which esti
mates the extent to which post-treatment violations of parallel trends 
deviate relative to the maximum pretreatment parallel trend violation 
observed to test whether effects persist in the presence of post-treatment 
deviations from parallel trends. The second approach is Smoothness 
Restriction, which assesses how sensitive the estimated treatment effect 
is to deviations from pretreatment parallel trends.

This study tests significant post-treatment periods (post_2 and 
post_3) using bounds on relative magnitude and smoothness restriction. 
Based on bounds on relative magnitude, Fig. 2 and Fig. 3 respectively 
present the test results for post_2 and post_3, revealing that even when 
post-treatment parallel trends deviate by 50 %, the coefficients remain 
significant. Fig. 4 and Fig. 5 present the test results based on smoothness 
restriction, revealing that even with a pre-treatment trend deviation of 
20 %, the effect persists. In summary, the two sensitivity analysis 
methods indicate that even when we allow for large deviations in par
allel trends, our results remain significant and robust.

4.3.3. Heterogeneous treatment effect test
Many econometric studies have revealed heterogeneous treatment 

effects in the context of staggered DID with two-way fixed effects, which 
may affect the credibility of our estimation results (Goodman-Bacon, 
2021). de Chaisemartin and D'Haultfœuille (2020) proposed a solution. 
The general approach is to first estimate the weights for each sample 
using a two-way fixed effects regression, where samples with negative 
weights may introduce bias. Second, we obtain an unbiased estimate of 
the policy effect through weighted averaging.

This study examines potential heterogeneous treatment effects in the 
baseline regression using heterogeneous robust estimators proposed by 
de Chaisemartin and D'Haultfœuille (2020). Fig. 6 presents the event 
study graph based on the heterogeneous robust estimators. The policy 
effect is not significantly evident prior to the AIPZ policy implementa
tion; however, after policy implementation, the policy effect gradually 
emerges and reaches a relatively high level in the third year. These re
sults are largely consistent with the sign, magnitude, and trend of 
treatment effects shown in the baseline regression, demonstrating the 
robustness of our conclusions.

Fig. 2. Bounds on relative magnitude test for post_2. 
Note: The horizontal axis represents the degree of deviation of parallel trends 
after processing. The red vertical lines represent the confidence intervals of the 
ordinary least squares regression, and the blue vertical lines represent the 
confidence intervals that vary with the degree of deviation.

Fig. 3. Bounds on relative magnitude test for post_3. 
Note: The horizontal axis represents the degree of deviation of parallel trends 
after processing. The red vertical lines represent the confidence intervals of the 
ordinary least squares regression, and the blue vertical lines represent the 
confidence intervals that vary with the degree of deviation.

Fig. 4. Smoothness restriction test for post_2. 
Note: Referencing Biasi and Sarsons (2022), M is set to 1 standard deviation. 
The red vertical lines represent the confidence intervals of the ordinary least 
squares regression, and the blue vertical lines represent the confidence intervals 
that vary with the degree of deviation.
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4.3.4. Placebo test
This study also conducts a placebo test to further mitigate the impact 

of unobservable factors on the empirical results (Cai et al., 2016). Rather 
than assigning the firms located in the pilot cities as the treatment group, 
we randomly allocate firms. We then randomly select pilot timing within 
the sample period. We repeat this sampling process 1000 times, and use 
the baseline model for regressions. Since the virtual variables are con
structed through random sampling, they should be unrelated to our 
dependent variable (firm carbon performance), indicating that the dif
ference in estimation coefficients from 0 is not significant.

Fig. 7 illustrates the distribution of regression coefficients obtained 
from 1000 random samplings. The regression coefficients of the fabri
cated policy dummy variables predominantly cluster around 0 and 
exhibit a normal distribution. In contrast, the regression coefficient of 
the actual policy dummy variable is a clear outlier, consistent with the 
expectations of the placebo test.

4.3.5. PSM-DID
Sample selection bias may be evident due to differences in firms' 

development levels across different regions, which could affect the 

accurate assessment of policy effects. Therefore, this study employs the 
propensity score matching-DID (PSM-DID) method to enhance the 
comparability between firms in pilot and non-pilot regions. We employ 
four matching methods to ensure the robustness of the matching results, 
encompassing nearest neighbor matching, radius matching, kernel 
matching, and local linear matching. Specifically, the control variables 
used in the baseline regression are employed as covariates, and a logit 
regression is conducted to predict the probability of each firm becoming 
a pilot firm. Subsequently, various matching methods are employed to 
match treatment and control group samples to reduce the endogeneity 
issues caused by self-selection bias during the establishment of the AIPZ 
policy. Finally, regressions are performed based on the matched 
samples.

Table 4 reports the PSM-DID regression results. Columns (1)–(4) 
respectively present the results after nearest neighbor matching, radius 
matching, kernel matching, and local linear matching. The regression 
coefficients of AIPZ are significantly positive under all four matching 
methods, further confirming the robustness of the study's baseline con
clusions that the AIPZ policy can significantly promote firms' carbon 
performance improvement.

4.3.6. Excludes interference from other policies
To rule out the interference of other policies that might affect firms' 

carbon performance and misidentify the policy effect, we reference Yang 

Fig. 5. Smoothness restriction test for post_3. 
Note: Referencing Biasi and Sarsons (2022), M is set to 1 standard deviation. 
The red vertical lines represent the confidence intervals of the ordinary least 
squares regression, and the blue vertical lines represent the confidence intervals 
that vary with the degree of deviation.

Fig. 6. Heterogeneous event study. 
Note: The horizontal axis represents relative years, and the shaded area denotes 
the confidence interval.

Fig. 7. Placebo test. 
Note: The horizontal axis represents the estimated coefficients of pseudo-policy 
dummy variables. The solid red horizontal line indicates p = 0.1, and the 
vertical dashed red line represents the estimated coefficient of the true policy 
dummy variable (AIPZ).

Table 4 
PSM-DID.

(1) (2) (3) (4)

Nearest neighbor Radius Kernel Local linear

Carbon Carbon Carbon Carbon

AIPZ 0.0224** 0.0208*** 0.0208*** 0.0239**
(0.0102) (0.0057) (0.0057) (0.0117)

Constant 6.9224*** 7.0356*** 7.0682*** 6.7404***
(0.5021) (0.2451) (0.2351) (0.5507)

Observations 8234 22,566 22,632 7379
Adjusted R-squared 0.904 0.888 0.888 0.903
Control variables YES YES YES YES

Firm FE YES YES YES YES
Year FE YES YES YES YES

Note: *, **, and *** indicate statistical significance at 10 %, 5 %, and 1 % levels, 
respectively. Firm and Year FE stand for firm and year fixed effects, respectively. 
Standard errors, clustered at the firm level, are reported in parentheses.
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et al. (2023), introducing dummy variables that represent the imple
mentation of other policies in the regression to control for their impact. 
If the dummy variable representing the AIPZ remains significant after 
including these control variables, this will further confirm the robust
ness of our conclusions. The specific steps are described below.

In 2013, the Chinese State Council issued and implemented the Ac
tion Plan for the Prevention and Control of Air Pollution to address 
China's increasingly severe air pollution problems. This action plan is a 
significant measure of the Chinese government in the field of environ
mental protection and a comprehensive plan for air pollution control, 
which may have an impact on firms' carbon performance. To control for 
its influence, this study constructs a dummy variable representing this 
policy to identify firms affected by the action plan, which takes the value 
of 1 for the year of implementation and each subsequent year, and 
0 otherwise. After adding the virtual variable representing this policy 
(policy_1) to the regression, column (1) of Table 5 shows that the coef
ficient of AIPZ remains significantly positive. This indicates that the 
action plan has a relatively small impact on the empirical conclusions of 
this study.

In 2013 and 2016, China launched a pilot carbon emissions trading 
policy, which may also affect firm carbon performance. To eliminate 
potential interference of the carbon emissions trading pilot policy on the 
empirical results of this study, we construct a dummy variable repre
senting this policy (policy_2) and introduce it into the baseline regres
sion. The results in column (2) of Table 5 show that the coefficient of 
AIPZ remains significantly positive, indicating that the carbon emissions 
trading pilot policy did not interfere excessively with the study's baseline 
conclusions.

In 2014, the Chinese Ministry of Environmental Protection issued the 
Interim Measures for the Ministry of Environmental Protection's In
terviews, which involved interviewing local government leaders 
responsible for environmental protection duties to strengthen the su
pervision of environmental violations and promote regulatory oversight 
related to environmental protection. To eliminate the impact of envi
ronmental interviews, we construct a dummy variable representing this 
policy (policy_3) and introduce it into the baseline regression. Column 
(3) of Table 5 presents the regression results, with the coefficient of AIPZ 
remaining significantly positive, indicating that environmental in
terviews did not significantly impact the conclusions of this study.

In 2017, 2019, and 2022, the Chinese State Council successively 
established Green Finance Reform and Innovation Pilot Zones in batches 
to reduce pollution emissions from enterprises within zones' jurisdiction 

and promote enterprises' green transformation, which may have affected 
firms' carbon performance. Therefore, we introduce a dummy variable 
representing this policy (policy_4) into the regression. Column (4) of 
Table 5 shows that the coefficient of AIPZ remains significantly positive, 
indicating that the Green Finance Reform and Innovation Pilot Zones 
policy had a relatively small impact on the conclusions of this study.

4.3.7. Other robustness tests
Additional robustness tests include the following:

4.3.7.1. Replacing the explained variable. We replace the explained 
variable of firm carbon performance with firm carbon emissions, which 
is measured by the natural logarithm of total carbon emissions (Car
bon_b). Column (1) of Table 6 reports the regression results, where the 
coefficient of AIPZ is significantly negative, confirming that the AIPZ 
policy indeed reduces firm carbon emissions, providing robust evidence 
for the conclusion of this study.

4.3.7.2. Lagging control variables by one period. To mitigate reverse 
causality concerns, we lag all control variables by one period before 
regression. The results are shown in column (2) of Table 6, and the co
efficient of AIPZ is significantly positive, validating the robustness of the 
baseline conclusions.

4.3.7.3. Further controlling for industry fixed effects. Firm carbon per
formance may vary across different industries; for example, the carbon 
emissions of heavily polluting firms are certainly much higher than 
those of non-heavily polluting firms. Therefore, this study further con
trols for industry fixed effects in the regression. Column (3) of Table 6
shows that the coefficient of AIPZ policy is significantly positive, con
firming the robustness of the conclusions.

4.3.7.4. Removing samples from the pilot year. In the baseline regression, 
we consider the pilot year and subsequent years as post-policy imple
mentation. For robustness, we exclude samples from the policy imple
mentation year and rerun the regression. The results in column (4) of 
Table 6 show that the coefficient of AIPZ remains significantly positive.

The above robustness tests further demonstrate the robustness of the 
baseline conclusion of this study, confirming that AI can significantly 
promote firms' emissions reduction and efficiency improvement.

5. Mechanism analysis

5.1. Talent effect

The baseline regression results indicate that the AIPZ policy signifi
cantly improves firms' carbon performance, but how it influences carbon 
performance remains to be examined. One possible key factor is the 

Table 5 
Excluding interference from other policies.

(1) (2) (3) (4)

Carbon Carbon Carbon Carbon

AIPZ 0.0209*** 0.0207*** 0.0206*** 0.0202***
(0.0057) (0.0057) (0.0057) (0.0057)

policy_1 − 0.0152
(0.0352)

policy_2 − 0.0033
(0.0190)

policy_3 − 0.0186
(0.0175)

policy_4 0.0387**
(0.0159)

Constant 7.0772*** 7.0692*** 7.0747*** 7.0595***
(0.2272) (0.2372) (0.2319) (0.2351)

Observations 22,632 22,632 22,632 22,632
Adjusted R-squared 0.888 0.888 0.888 0.888
Control variables YES YES YES YES

Firm FE YES YES YES YES
Year FE YES YES YES YES

Note: *, **, and *** indicate statistical significance at 10 %, 5 %, and 1 % levels, 
respectively. Firm and Year FE stand for firm and year fixed effects, respectively. 
Standard errors, clustered at the firm level, are reported in parentheses.

Table 6 
Other robustness tests.

(1) (2) (3) (4)

Carbon_b Carbon Carbon Carbon

AIPZ − 0.0514*** 0.0187*** 0.0212*** 0.0390***
(0.0136) (0.0063) (0.0057) (0.0089)

Constant − 7.2022*** 7.1379*** 7.1701*** 7.1908***
(0.4709) (0.3038) (0.1938) (0.2506)

Observations 22,632 18,725 22,630 17,461
Adjusted R-squared 0.956 0.888 0.889 0.896
Control variables YES YES YES YES

Firm FE YES YES YES YES
Year FE YES YES YES YES

Industry FE NO NO YES NO

Note: *, **, and *** indicate statistical significance at 10 %, 5 %, and 1 % levels, 
respectively. Firm and Year FE stand for firm and year fixed effects, respectively. 
Standard errors, clustered at the firm level, are reported in parentheses.
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talent effect. The introduction and application of AI technologies often 
requires firms to have a workforce with the relevant expertise and skills 
that can effectively operate and manage AI technologies and promote 
carbon reduction concepts and practices within the firm to enhance 
overall carbon performance. Such talent might optimize algorithms, 
improve production processes, and propose innovative carbon reduction 
strategies, directly or indirectly promoting firms' carbon performance.

Previous research has explored the impact of the number of R&D 
personnel and employees with financial backgrounds on firm perfor
mance (Custódio and Metzger, 2014; Zhang et al., 2023), demonstrating 
that employees' abilities or backgrounds can indeed affect firm devel
opment; however, these indicators are insufficient for measuring the 
impact of AI. While the number of R&D personnel can reflect a firm's 
investment in technological innovation, it does not fully capture em
ployees' ability to operate and manage AI technologies. Furthermore, the 
number of employees with financial backgrounds reflects the firm's 
expertise in finance and risk management, which is not directly related 
to AI implementation.

Therefore, to examine the moderating effect of the talent effect, this 
study uses the proportion of employees with postgraduate degrees or 
above to the total number of employees to measure the degree of high- 
level talent (Postgraduate). The rationale for this choice is threefold. 
First, employees with postgraduate degrees or higher typically receive 
more systematic and in-depth professional knowledge training, making 
them more likely to have the skills needed to operate and manage AI 
technologies (Awaworyi Churchill et al., 2019). Second, highly educated 
employees often demonstrate stronger learning capabilities and inno
vative thinking, enabling them to quickly adapt to and master new 
carbon reduction technologies and strategies, thereby fostering carbon 
reduction practices within the firm. Finally, highly educated employees 
often hold key positions within the firm (Blackman and Kildegaard, 
2010), and their practices and decisions can significantly impact the 
firm's overall carbon performance.

We incorporate the interaction term between the degree of high-level 
talent and the policy dummy variable (AIPZ*Postgraduate) into the 
regression, presenting the results in column (1) of Table 7. The 

coefficient of the interaction term is significantly positive, indicating 
that high-level talent can promote the impact of AI on firms' carbon 
performance. In other words, the more high-level human resources the 
firm employs, the more pronounced the effect of AI will be on enhancing 
carbon performance.

5.2. Media sentiment

The role of media attention as a mechanism of influence has been 
widely explored in previous research (Bissoondoyal-Bheenick et al., 
2023). This study deepens this field by examining media attention 
through a more refined lens; specifically, by differentiating between 
positive and negative attention to analyze how media sentiment in
fluences policy effects. To investigate the impact of media sentiment, 
this study references Clarkson et al. (2008), employing the Janis–Fadner 
coefficient to measure the media's attitude concerning firms. The 
calculation method for the Janis–Fadner coefficient is as follows: 

Janis − Fadner =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2 − ec
t2 if e > c,

ec − c2

t2 if c > e,

0 if e = c.

(9) 

where e represents the number of positive media reports, c represents 
the number of negative media reports, and t = e+ c. Therefore, the 
Janis–Fadner coefficient ranges from − 1 to 1. A coefficient closer to 1 
indicates a more positive media attitude toward the firm, a coefficient 
closer to − 1 indicates a more negative media attitude, and a coefficient 
of 0 suggests a neutral stance by the media toward the firm. The count of 
media reports is obtained from the CNRDS database.

After obtaining the Janis–Fadner coefficient, we introduce the 
interaction term of this coefficient with the policy dummy variable 
(AIPZ*Media) into the regression. The results in column (2) of Table 7
show that the coefficient of the interaction term is significantly positive. 
This indicates that more positive media coverage amplifies the positive 
impact of AI on firms' carbon performance. Positive media attention can 
enhance public awareness and acceptance of firms' AI-driven environ
mental measures, encouraging firms to further implement and promote 
these technologies. Additionally, positive media coverage can boost 
corporate management's confidence and determination, leading to the 
investment of more resources and effort in AI-driven environmental 
projects. A favorable public opinion environment may also attract more 
investments and policy support, providing firms with additional re
sources and technology to further improve their carbon performance.

5.3. Firms' internal control

Previous research has validated the importance of internal control in 
corporate performance (Vu and Nga, 2022); therefore, we hypothesize 
that a firm's level of internal control may also have a critical influence on 
how AI affects carbon performance. Firms with higher internal control 
typically have more comprehensive management systems and proced
ures, which enable more effective implementation and monitoring of AI 
technologies. In such firms, AI technologies are more likely to be 
distributed and used efficiently, maximizing their potential to improve 
carbon performance. Additionally, firms with strong internal control 
have superior information systems and risk management mechanisms 
that can swiftly identify and address issues that may arise during AI 
application to ensure projects' smooth progress. Moreover, firms with 
robust internal control often possess stronger compliance awareness and 
management capacities that allow them to better adapt to policy and 
market changes, optimize resource allocation, and enhance the effi
ciency and effectiveness of AI technology applications.

Table 7 
Mechanism analysis.

(1) (2) (3) (4)

Carbon Carbon Carbon Carbon

AIPZ*Postgraduate 0.0020**
(0.0010)

AIPZ*Media 0.0285***
(0.0088)

AIPZ*InternalControl 0.0090*
(0.0052)

AIPZ*Pollute − 0.0292***
(0.0113)

Postgraduate 0.0010
(0.0015)

Media − 0.0092**
(0.0041)

InternalControl 0.0025
(0.0022)

Pollute − 0.0322
(0.0254)

AIPZ 0.0055 0.0077 0.0217*** 0.0252***
(0.0082) (0.0071) (0.0057) (0.0062)

Constant 7.1935*** 7.1233*** 7.0799*** 7.0712***
(0.2458) (0.2397) (0.2396) (0.2333)

Observations 16,937 21,920 22,247 22,632
Adjusted R-squared 0.891 0.886 0.887 0.888
Control variables YES YES YES YES

Firm FE YES YES YES YES
Year FE YES YES YES YES

Note: *, **, and *** indicate statistical significance at 10 %, 5 %, and 1 % levels, 
respectively. Firm and Year FE stand for firm and year fixed effects, respectively. 
Standard errors, clustered at the firm level, are reported in parentheses.
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To explore the influence of internal control, we obtain firms' internal 
control data from the DIB database and introduce the interaction term 
between the policy dummy variable and internal control level (AIP
Z*InternalControl) into the regression. Column (3) of Table 7 shows that 
the interaction term's coefficient is significantly positive, indicating that 
firms with higher internal control benefit more from AI in terms of 
improved carbon performance.

5.4. Heavily polluting firms

As this study focuses on firms' carbon performance, it is reasonable to 
posit that the degree of pollution a firm generates could also affect the 
AIPZ policy's treatment effect. Previous research has investigated the 
impact of environmental regulations on heavily polluting firms (Cheng 
et al., 2022). Therefore, we hypothesize that a firm's pollution level may 
influence the emissions reduction effect of the AIPZ policy. Heavily 
polluting firms often rely on traditional high-energy, high-emissions 
production technologies. Achieving a low-carbon transition requires the 
introduction of more advanced and environmentally friendly production 
processes and equipment, which incur higher costs compared with non- 
heavily polluting firms. Additionally, the transition process may face 
challenges such as skill mismatches among employees and production 
line adjustments, increasing the difficulty and uncertainty of such 
transitions, which can limit the effectiveness of AI technologies in 
improving carbon performance. Furthermore, as heavily polluting firms 
are key targets for environmental governance, they are subject to stricter 
environmental regulations and more stringent policy enforcement. 
Faced with strict emissions reduction targets, these firms may need to 
allocate more resources to meet compliance requirements rather than 
directly investing in AI technologies to improve carbon performance. 
This compliance expenditure could crowd out resources that could 
otherwise be used for technological innovation and energy conservation, 
diminishing the effectiveness of the policy.

To test this hypothesis, we created a pollution dummy variable 
(Pollute), assigning heavily polluting firms a value of 1 and non-heavily 
polluting firms a value of 0. We then introduced the interaction term 
between the policy dummy variable and the pollution dummy variable 
(AIPZ*Pollute) into the regression. Column (4) of Table 7 shows that the 
interaction term's coefficient is significantly negative, indicating that AI 
has a smaller impact on improving heavily polluting firms' carbon per
formance compared with non-heavily polluting firms.

6. Heterogeneity analysis using GRF

6.1. Estimated average treatment effect

This study employs GRF to estimate the treatment effect of the AIPZ 
policy, using the grf package in R for modeling analysis (Athey et al., 
2019), with the number of trees set to 5000 and 10,000. Other param
eters such as tree depth and minimum node size are determined by the 
package's automated tuning process. Table 8 presents the treatment ef
fect estimation results based on GRF. The treatment effect of the AIPZ 
policy is significantly positive, which is consistent with the findings of 
the baseline analysis, indicating that the AI pilot policy can significantly 
improve firms' carbon performance.

Additionally, we also estimate the treatment effects for each firm 
using GRF, as shown in Fig. 8. The graph reveals that the treatment 

effects for all firms are greater than 0, indicating a significant promo
tional effect from the AIPZ policy on improving firms' carbon perfor
mance. Furthermore, the majority of firms exhibit treatment effects 
ranging from 0.25 to 0.4, while the overall sample's treatment effects 
range from 0.1 to 0.6. This suggests significant variation in treatment 
effects across different firms, which warrants further analysis.

6.2. Selecting heterogeneous variables

After identifying significant differences in treatment effects between 
firms, we endeavor to identify the features associated with the maximum 
heterogeneity in treatment effects. In other words, we seek to determine 
which features lead to more pronounced heterogeneity between firms. 
To investigate this, we use the variable importance feature in the grf 
package to select the factors that contribute most to heterogeneity, 
which is calculated as follows: 

importancei =

∑L
l=1

(∑N
n=1

The number of splits on feature i in tree n at layer l
∑N

n=1
Total number of splits in tree n at layer l

)

× l− 2

∑L
l=1l− 2

(10) 

where l represents the layer, L is the maximum depth of the tree, B is the 
total number of trees, and i denotes the series of heterogeneous features 
included in the regression. For each feature i, we compute the proportion 
of splits based on feature i at each layer over the total number of splits 
and adjust the importance weights of different levels using l− 2. Finally, 
we obtain the importance score for each heterogeneous feature i by 
weighted averaging. As shown in Fig. 9, ROA and TobinQ are the two 
features with the highest weights. This indicates that these two features 
contribute significantly to the heterogeneity in treatment effects be
tween firms; therefore, we use these features for further heterogeneity 
analysis.

6.3. Heterogeneity analysis results

6.3.1. Heterogeneity based on ROA
Fig. 10 illustrates the variation in policy treatment effects with 

changes in ROA. When ROA is less than 0, the treatment effect is rela
tively high and exhibits a slow upward trend; however, when ROA ex
ceeds 0, the treatment effect significantly declines. This trend can be 

Table 8 
Generalized random forest.

Carbon Carbon

ATE 0.323*** 
(0.019)

0.323*** 
(0.019)

Cluster YES YES
Trees 5000 10,000

Fig. 8. Individual firms' treatment effect distribution. 
Note: The horizontal axis represents individual treatment effects, and the ver
tical axis represents density.
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attributed to several causes. First, when ROA is negative, firms may be 
experiencing operational difficulties or instability, facing greater pres
sure to reduce costs and optimize resource efficiency. In such circum
stances, firms might be more motivated to adopt AI technologies, 
considering them to be crucial for reversing operational downturns and 
enhancing market competitiveness. Additionally, the initiation of AIPZ 
programs could attract more attention to these firms, helping alleviate 
investor and market concerns about their operational status. Therefore, 
firms with negative ROA might actively respond to policy initiatives, 
striving to improve their corporate image through concrete actions and 
ultimately achieving a fundamental turnaround in operations. 
Conversely, firms with positive ROA are likely to be in relatively good 
operational condition, with stable or growing profits. Such firms might 
prefer maintaining the status quo and could be cautious about incurring 
additional environmental costs, particularly if the introduction and 

upgrading of AI technologies lead to short-term increases in production 
costs. As a result, the impact of AI on improving carbon performance 
might be more limited for firms with positive ROA.

6.3.2. Heterogeneity based on Tobin's Q
Fig. 11 illustrates the relationship between the treatment effect and 

the Tobin's Q (TobinQ) heterogeneity factor. The results reveal an 
interesting trend in which, when Tobin's Q is less than 1, the treatment 
effect rises rapidly, remains at a peak between 1 and 2, and finally, when 
Tobin's Q exceeds 2, the treatment effect gradually declines. Notably, 
the treatment effect exhibits a slow rebound when Tobin's Q is greater 
than 10, but this is not further examined due to the small sample size.

To explain this trend, it is essential to understand the meaning of 
Tobin's Q, which is the ratio of a firm's market value to its asset 
replacement cost. The market value of a firm's stock represents investors' 
assessment, while the asset replacement cost theoretically represents the 
firm's fundamental value. Therefore, when Tobin's Q is less than 1, it 
indicates that the market undervalues the firm, suggesting market 
caution concerning the firm's prospects or inefficient asset allocation. 
Conversely, when Tobin's Q is greater than 1, it indicates that the market 
overvalues the firm, generally reflecting a positive assessment, as this 
indicates that investors believe the firm's assets can generate higher 
value than alternative investments.

Considering the meaning of Tobin's Q, we revisit Fig. 11. When 
Tobin's Q is between 1 and 2, the firm's market value roughly equals its 
replacement cost, meaning the market valuation accurately reflects the 
firm's fundamental value, and the treatment effect remains at its peak. 
When Tobin's Q is less than 1, the market undervalues the firm's 
fundamental value, resulting in a relatively lower treatment effect; 
however, as Tobin's Q approaches 1, the treatment effect rapidly rises to 
its peak. When Tobin's Q exceeds 2, the market significantly overvalues 
the firm's fundamental value, causing the treatment effect to gradually 
decline. This indicates that the policy treatment effect is stronger when 
the firm's fundamental value is accurately estimated by the market. This 
could be because the policy can better align with market expectations 
and the firm's actual performance, thereby generating a more significant 
impact.

Specifically, when Tobin's Q is between 1 and 2, the firm's market 
and fundamental value are aligned, making it easier for firms to benefit 
from AI policies. In this balanced state, the market and the firm itself can 
more accurately understand and leverage the advantages brought by AI 

Fig. 9. Variable importance plot. 
Note: The horizontal axis represents the importance scores for each variable, 
and the vertical axis represents the variable names.

Fig. 10. Variance in policy effects generated by the AIPZ policy with changes in 
ROA. 
Note: The red vertical dashed line represents ROA = 0. Conditional average 
treatment effect (CATE) represents the policy effects under different 
ROA conditions.

Fig. 11. Variance in policy effects of the AIPZ policy with changes in Tobin's Q. 
Note: The red vertical dashed line represents Tobin's Q = 1, and the green 
vertical dashed line represents Tobin's Q = 2. Conditional average treatment 
effect (CATE) represents the policy effects under different Tobin's Q conditions.
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technology. AI can optimize resource allocation, enhance production 
efficiency, and reduce costs, which is particularly significant for firms in 
this balanced state. When Tobin's Q is less than 1, the market un
dervalues the firm's worth, indicating that these firms may face opera
tional challenges and resource constraints. In such cases, implementing 
AI policies can help these firms improve operational efficiency, reduce 
costs, and enhance market performance. Therefore, as Tobin's Q ap
proaches 1, firms can better leverage AI technology to enhance their 
value, leading to a rapid increase in the treatment effect to its peak. 
When Tobin's Q exceeds 2, the market overestimates the firm's funda
mental value, and these firms may already have high profitability and 
market recognition. However, the potential short-term cost increases 
associated with further AI technology improvement might make these 
firms hesitant to invest. Consequently, the treatment effect gradually 
declines as Tobin's Q rises. Nevertheless, such firms still have certain 
advantages in technological leadership and market position, and the 
decline in the treatment effect is relatively slow.

Moreover, from the perspective of AIPZ city governments, extensive 
market research and enterprise needs assessments are typically con
ducted when promoting AI policies to ensure that policies effectively 
meet firms' actual conditions. Therefore, when a firm's actual situation is 
accurately reflected, policy specifics are more likely to align with its 
actual needs, subsequently increasing the treatment effect.

7. Conclusions and policy implications

This study uses data from Chinese listed companies from 2013 to 
2022 and considers the AIPZ policy as a quasi-natural experiment to 
explore its impact on firms' carbon performance. In the mechanism 
analysis, this study considers the moderating effects of talent, media 
sentiment, internal control, and firm pollution level. The study also 
employs machine learning techniques in heterogeneity analysis to more 
precisely and intuitively assess the impact of heterogeneity factors on 
the treatment effect.

The main conclusions of this study are as follows. First, the AIPZ 
policy has a significant positive impact on firm carbon performance; a 
conclusion that holds under a series of robustness tests. This finding 
enriches the existing literature on the relationship between technolog
ical innovation and firms' environmental performance, particularly in 
the context of AI application in environmental management. The 
mechanism analysis reveals that firms with higher talent levels, more 
positive media sentiment, and better internal control experience more 
pronounced carbon performance improvement due to the AIPZ policy. 
This indicates that firms with high-quality talent can more effectively 
leverage AI technology for carbon reduction, positive media coverage 
can boost firms' confidence in the policy and promote the application of 
AI technology in carbon reduction, and good internal control can ensure 
the effective implementation and operation of AI technology. Addi
tionally, the treatment effect is relatively smaller for heavily-polluting 
firms compared to non-heavily polluting firms, indicating that heavily- 
polluting firms face greater challenges in using AI technology for car
bon reduction. The heterogeneity analysis reveals the importance of 
ROA and Tobin's Q in heterogeneity through variable importance 
analysis using GRF. When ROA is negative, the policy effect is large and 
shows a slow upward trend, and when ROA is positive, the policy effect 
quickly declines, showing a clear zero-boundary effect. The relationship 
between Tobin's Q and the policy effect presents an inverted U-shape, 
with the largest policy effect when Tobin's Q is between 1 and 2.

Based on these conclusions, this study proposes the following policy 
recommendations to enhance the effectiveness of AI policies in 
improving firm carbon performance. First, local governments should 
vigorously promote firms' application of AI technology to improve car
bon performance. Specifically, special funds can be established to sup
port firms' AI research and application, particularly for the development 
of technologies for carbon emissions monitoring, management, and 
optimization. In addition, tax breaks and financial subsidies can be used 

to encourage firms to invest in relevant AI technologies to improve ef
ficiency and effectiveness in carbon reduction. Governments can also 
organize regular training sessions and seminars to introduce firms to the 
latest developments in AI technology and application examples to 
enhance AI technological capabilities and management.

Second, governments should support firms in cultivating and intro
ducing high-quality talent, particularly those with expertise in AI and 
environmental management. This can be achieved through special 
funding, scholarships, training programs, and promoting international 
talent exchanges. Firms should also provide internal training to enhance 
existing employees' skills to make them better equipped to use AI 
technology for carbon reduction.

Additionally, governments and firms should strengthen cooperation 
with the media to actively publicize environmentally friendly firms and 
successful carbon reduction cases. Environmental awards or environ
mental protection campaigns can be established to increase public 
awareness and positive attitudes toward environmental issues. Positive 
media coverage can enhance the confidence of firms and the public 
concerning in the role of AI in environmental protection to foster a 
favorable public opinion environment and promote the application of AI 
technology in carbon reduction.

Moreover, governments should formulate relevant regulations to 
encourage firms to strengthen internal control to ensure the effective 
implementation of AI technology in carbon management. Internal con
trol guidelines can be developed, internal control assessments can be 
conducted, and firms that excel in internal control can be rewarded. 
Firms should establish sound internal control systems to ensure the 
effective application and continuous improvement of AI technology, 
which will enhance their carbon performance.

Governments should provide more technical support and financial 
subsidies to help heavily polluting firms overcome the difficulties of 
technological transformation. Special funds can be established to sup
port the introduction and application of advanced AI technology in 
heavily polluting firms, and tax breaks and low-interest loans can be 
provided to reduce transformation costs. Governments should also 
strengthen heavily polluting firms' supervision to ensure that they 
continue to improve their technical levels and management capabilities 
while achieving carbon reduction goals to advance sustainable 
development.

Compared with previous research, this study reveals the actual 
impact of AI on firm carbon performance from the perspective of AIPZ 
policy implementation, enriching the literature on the relationship be
tween AI and environmental performance. The mechanism analysis 
considers the moderating effects of talent, media sentiment, internal 
control, and firm pollution level, systematically analyzing how these 
factors influence the impact of AI on carbon performance, which fills the 
gap in mechanism research in the existing literature. Furthermore, un
like traditional heterogeneity analysis methods such as grouped 
regression, this study innovatively employs machine learning methods 
in heterogeneity analysis, providing a more detailed and intuitive 
evaluation method that further enhances the rigor and credibility of the 
research.

Despite the progress made in this study, some research gaps remain. 
Future research can explore other potential mechanisms such as the 
impact of corporate culture and the external market environment on the 
effectiveness of AI policies, and conduct cross-country comparative 
studies to understand the policy implementation effects of similar ini
tiatives in different countries and regions. Additionally, existing 
research lacks comparisons between different types of firms. Therefore, 
future research can further explore the differentiated performance and 
underlying logic of firms of different sizes and industry backgrounds in 
adopting AI technology and optimizing carbon performance to provide a 
scientific basis for firms to develop more targeted AI application stra
tegies, jointly promoting the green, low-carbon, and high-quality 
development of the global economy.
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Appendix A. Correlation analysis

Table A1 
Results of variable correlation analysis.

Carbon did Size Lev ROA Board Top TobinQ FirmAge Fixed

Carbon 1
AIPZ 0.239*** 1
Size 0.047*** 0.081*** 1
Lev 0.017** 0.021*** 0.526*** 1
ROA − 0.030*** − 0.030*** 0.00300 − 0.372*** 1
Board − 0.046*** − 0.055*** 0.278*** 0.157*** − 0.00300 1
Top − 0.052*** − 0.00600 0.204*** 0.044*** 0.133*** 0.014** 1
TobinQ − 0.047*** 0.00500 − 0.373*** − 0.290*** 0.209*** − 0.122*** − 0.097*** 1
FirmAge 0.172*** 0.133*** 0.160*** 0.143*** − 0.070*** 0.069*** − 0.072*** − 0.055*** 1
Fixed − 0.041*** − 0.160*** 0.092*** 0.054*** − 0.073*** 0.141*** 0.079*** − 0.095*** − 0.00500 1

Note: *, **, and *** indicate statistical significance at 10 %, 5 %, and 1 % levels, respectively. Overall, most of the coefficients are statistically significantly correlated, 
which support us for further analysis in this study.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2024.108040.
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