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Preface

Economic forecasting is a key ingredient of decision making both in the pub-
lic and in the private sector. Governments and central banks, consumers and
firms, banks and financial institutions base many of their decisions on future
expected economic conditions or on the predictions of specific indicators of
interest such as income growth, inflation, unemployment, interest rates, ex-
change rates, earnings, wages, oil prices, and so on. Unfortunately, economic
outcomes are the realization of a vast, complex, dynamic and stochastic
system, which makes forecasting very difficult and forecast errors unavoid-
able. However, forecast precision and reliability can be enhanced by the use
of proper econometric models and methods, like those we present in this
book.

We wish to satisfy an audience including both undergraduate and gradu-
ate students willing to learn basic and advanced forecasting techniques, and
researchers in public and private institutions interested in applied economic
forecasting. For this reason, the book is divided into four parts. In Part I, the
first chapter provides a brief review of basic regression analysis, followed by
two chapters dealing with specific regression topics relevant for forecasting,
such as model mis-specification, including structural breaks, and dynamic
models and their predictive properties. The fourth chapter, on the topic
of forecast evaluation and combination, is the first exclusively dedicated to
forecasting. The material in Part I could be used in the senior year of an
undergraduate program for students who have a strong interest in applied
econometrics, or as an introduction to economic forecasting for graduate stu-
dents and researchers from other disciplines.

Part II of the book is devoted to time series models, in particular univari-
ate autoregressive integrated moving average (ARIMA) models and vector
autoregressive (VAR) models. Specifically, Chapter 5 deals with ARIMA
models, Chapter 6 with VAR models, Chapter 7 with cointegration and er-

xv
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ror correction (ECM) models, and Chapter 8 with Bayesian methods for
VAR analysis. The material progressively becomes better suited for master
level and/or PhD level classes, in particular the chapters on cointegration
and Bayesian VARs. Models considered in Part II are also common tools for
practical forecasting in public and private institutions.

Parts III and IV of the book contain a collection of special topics chapters.
Each chapter is self-contained, and therefore an instructor or researcher can
pick and choose the topics she or he wants to cover. Part III deals mainly
with modeling parameter time-variation. Specifically, Chapter 9 presents
Threshold and Smooth Transition Autoregressive (TAR and STAR) models,
Chapter 10 Markov switching regime models, and Chapter 11 state space
models and the Kalman filter, introducing, for example, models with random
coefficients and dynamic factor models.

Part IV deals with mixed frequency data models and their use for now-
casting in Chapter 12, forecasting using large datasets in Chapter 13 and,
finally, volatility models in Chapter 14.

Each chapter starts with a review of the main theoretical results to pre-
pare the reader for the various applications. Examples involving simulated
data follow, to make the reader familiar with application using at first styl-
ized settings where one knows the true data generating process and one
learns how to apply the techniques introduced in each chapter. From our
own teaching experience we find this to be extremely useful as it creates
familiarity with each of the topics in a controlled environment. The simu-
lated examples are followed by real data applications - focusing on macroe-
conomic and financial topics. Some of the examples run across different
chapters, particularly in the early part of the book. All data are public
domain and cover Euro area, UK, and US examples, including forecasting
US GDP growth, default risk, inventories, effective federal funds rates, com-
posite index of leading indicators, industrial production, Euro area GDP
growth, UK term structure of interest rates, to mention the most prominent
examples.

The book is mostly software neutral. However, for almost all the simu-
lated and empirical examples we provide companion EViews R© and R code.
The former is mostly - but not exclusively - a menu driven licensed software
package whereas the latter is an open source programming language and soft-
ware environment for statistical computing and graphics supported by the
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R Foundation for Statistical Computing.1. We provide code and data for all
the simulated and empirical examples in the book on the web.2 Moreover, all
the tables and figures appearing in the book were produced using EViews R©.

As the title suggests, this book is an applied time series forecasting book.
Hence, we do not have the pretense to provide the full theoretical founda-
tions for the forecasting methods we present. Indeed, there are already a
number of books with thorough coverage of theory. The most recent exam-
ple is the excellent book by Elliott and Timmermann (2016) which provides
an in-depth analysis of the statistical theory underlying predictive models,
covering a variety of alternative forecasting methods in both classical and
Bayesian contexts, as well as techniques for forecast evaluation, comparison,
and combination. Equally useful and complimentary are the many standard
econometrics textbooks such as Hendry (1995), Judge, Hill, Griffiths, Lütke-
pohl, and Lee (1988), Stock and Watson (2009), Wooldridge (2012), and
the many graduate time series textbooks such as Box and Jenkins (1976),
Clements and Hendry (1998), Diebold (2008), Hamilton (1994), or Lütkepohl
(2007), among others.

We should also highlight that this book is an applied time series forecast-
ing book. As such, we will not discuss forecasting using economic theory-
based structural models, such as Dynamic Stochastic General Equilibrium
(DSGE) models, see, e.g., Del Negro and Schorfheide (2013) for an exhaus-
tive overview and references. Typically, these structural models are better
suited for medium- and long-horizon forecasting, and for policy simulations,
while time series methods work better for nowcasting and short-term fore-
casting (say, up to one-year ahead).

This book would not have been completed without the invaluable and
skillful help of a number of our current and former TAs and RAs. Special
thanks go to Cristina Angelico, Francesco Corsello, Francesco Giovanardi,
Novella Maugeri, and Nazire Özkan who helped with all the simulation and
empirical examples throughout the entire book, as well as Hanwei Liu who
wrote the R codes. Their contributions to the book were invaluable. We
would also like to thank many cohorts of undergraduate, master, and PhD

1Please visit the web page http://www.eviews.com for further information on EViews R©

and R programming language Wikipedia web page https://en.wikipedia.org/wiki/R
(programming language).

2Please visit our respective webpages www.unc.edu/∼eghysels or www.igier.unibocconi.
it/marcellino to download the code and data.

http://www.eviews.com
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
www.unc.edu/~eghysels
www.igier.unibocconi.it/marcellino
www.igier.unibocconi.it/marcellino
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students who took courses based on the materials covered in the book at
Bocconi University and at the University of North Carolina, Chapel Hill and
the Kenan-Flagler Business School.

We are also grateful to a number of coauthors of papers on the topics
covered in the book. In particular, Eric Ghysels would like to thank Lucia
Alessi, Elena Andreou, Jennie Bai, Fabio Canova, Xilong Chen, Riccardo
Colacito, Robert Engle, Claudia Foroni, Lars Forsberg, Patrick Gagliardini,
René Garcia, Clive Granger, Andrew Harvey, Jonathan Hill, Casidhe Horan,
Lynda Khalaf, Andros Kourtellos, Virmantas Kvedaras, Emanuel Moench,
Kaiji Motegi, Denise Osborn, Alberto Plazzi, Eric Renault, Mirco Rubin,
Antonio Rubia, Pedro Santa-Clara, Pierre Siklos, Arthur Sinko, Bumjean
Sohn, Ross Valkanov, Cosmé Vodounou, Fangfang Wang, Jonathan Wright,
and Vaidotas Zemlys (and Massimiliano of course!). Massimiliano Marcellino
would like to thank Knut-Are Aastveit, Angela Abbate, Elena Angelini, Mike
Artis, Anindya Banerjee, Guenter Beck, Stelios Bekiros, Ralf Burggemann,
Andrea Carriero, Roberto Casarin, Todd Clark, Francesco Corielli, Sandra
Eickmeier, Carlo Favero, Laurent Ferrara, Claudia Foroni, Giampiero Gallo,
Ana Galvão, Pierre Guérin, Jerome Henry, Christian Hepenstrick, Kristin
Hubrich, Oscar Jorda, George Kapetanios, Malte Knüppel, Hans-Martin
Krolzig, Danilo Leiva-Leon, Wolfgang Lemke, Helmut Lütkepohl, Igor Mas-
ten, Gian Luigi Mazzi, Grayham Mizon, Matteo Mogliani, Alberto Musso,
Chiara Osbat, Fotis Papailias, Mario Porqueddu, Esteban Prieto, Tommaso
Proietti, Francesco Ravazzolo, Christian Schumacher, Dalibor Stevanovic,
Jim Stock, Fabrizio Venditti, and Mark Watson (and Eric of course!).

Several colleagues provided useful comments on the book, in particular
Frank Diebold, Helmut Lütkepohl, Serena Ng, Simon Price, Frank Schorfheide,
and Allan Timmermann. Of course, we remain responsible for any remaining
mistakes or omissions.

Finally, we would like to thank our families for their continuous support
and understanding. We forecast a quieter and more relaxed “Life after the
Book,” but as all forecasters, we could be proven wrong.

Eric Ghysels, Chapel Hill, United States

Massimiliano Marcellino, Milan, Italy
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Forecasting with the Linear
Regression Model
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Chapter 1

The Baseline Linear Regression
Model

1.1 Introduction

The most common model in applied econometrics is the linear regression
model. It also provides the basis for more sophisticated specifications, such
as those that we will consider in the following chapters. Hence it is useful
to start with a short overview about the specification, estimation, diagnos-
tic checking and forecasting in the context of the linear regression model.
More detailed presentations can be found, for example, in Hendry (1995),
Judge, Hill, Griffiths, Lütkepohl, and Lee (1988), Marcellino (2016), Stock
and Watson (2009), Wooldridge (2012), among others.

The chapter is structured as follows. In Section 1.2 we introduce the
basic specification and assumptions. In Section 1.3 we discuss parameter
estimation. In Section 1.4 we consider measures of model fit. In Sections
1.5 and 1.6 we derive, respectively, optimal point and density forecasts. In
Section 1.7 we deal with parameter testing and in Sections 1.8 and 1.9 with
variable selection. In Section 1.10 we evaluate the effects of multicollinearity.
In Sections 1.11 and 1.12 we present examples based on, respectively, sim-
ulated and actual data. Section 1.13 explores some features of time lags in
the context of forecasting with the baseline linear regression model. Section
1.14 concludes the chapter.

3
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4 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

1.2 The basic specification

We are interested in assessing the explanatory power of a set of k variables,
grouped into X, for the variable y. For example, we may want to study what
explains the behavior of the short term interest rate or of inflation for a given
country. For the former variable, candidate regressors to be included in X
are measures of the output gap and of inflationary pressures, since these
are the typical drivers of the decisions of central banks, whose policy rate
is in turn a key determinant of the short term interest rate. For inflation,
we may want to consider cost push factors, such as unit labor costs and
the prices of intermediate inputs and energy, though inflation expectations
can also matter if they affect the wage bargaining process and the price
determination mechanism.

From a statistical point of view, both the elements of X and y are stochas-
tic processes, namely, collections of random variables, for which we have a
set of realizations, Xt and yt, t = 1, . . . , T. Continuing the previous example,
we can collect data on inflation and the short term interest rate over a given
temporal period, for example 1970 to 2012, at a given frequency t, e.g., each
month or each quarter, or even each day, or even perhaps each minute for
the interest rate. In the following we will not explicitly distinguish between
a random variable and its realization, unless necessary for clarity. Note also
that some of the variables in X can be deterministic, for example X can
include an intercept or a linear trend.

If we assume that the explanatory variables X have a linear impact on
the dependent variable y, we can write the model as follows:

yt = X1tβ1 +X2tβ2 + . . . Xktβk + εt, (1.2.1)

t = 1, . . . , T. Moreover, βi is a parameter related to the explanatory power
of Xit, i = 1, . . . , k. More precisely, as the model in (8.2.4) implies E[yt|X1t,
X2t, . . . , Xkt] = X1tβ1 + X2tβ2 + . . . Xktβk, βi measures the change in
the expected value of yt when there is a marginal change in Xit, and the
other Xs are kept constant. Finally, εt is an error term capturing the part
of yt that is not explained by the variables in Xt. Formally, it is εt = yt -
E[yt|X1t, X2t, . . . , Xkt].

If we group yt and εt, t = 1, . . . , T, into the T × 1 vectors y and ε
respectively, β1, . . . , βk into the k× 1 vector β, and X1t, . . . , Xkt, t = 1, . . . ,
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T, into the T × k matrix X, we can rewrite the linear regression model as

y
(T×1)

= Xβ + ε
(T×k)(k×1) (T×1)

. (1.2.2)

We make a few additional assumptions on the model in (1.2.2), most of
which will be relaxed later on:

Assumption 1.2.1 (Linear Regression Assumptions). The linear regression
model defined in equation (1.2.2) satisfies the following assumptions:

LR1 E(ε) = 0,

LR2 E(εε′) = σ2IT ,

LR3 X is distributed independently of ε,

LR4 X ′X is non singular,

LR5 X is weakly stationary.

The assumptions LR1 through LR5 are typically known as “weak as-
sumptions.” The first assumption says that the expected value of the error
term should be equal to zero, namely, on average the model should provide a
correct explanation for y, which is a basic ingredient of a reasonable model.
Assumption 1.2.1 - LR2 states that the matrix of second moments of the er-
rors (which is also equal to their variance covariance matrix given Assumption
1.2.1 - LR1) is diagonal. This implies that the variance of the error term is
stable over time (homoskedasticity), and that the errors are uncorrelated over
time (no correlation). The requirement that X is distributed independently
of ε, in Assumption 1.2.1 - LR3, is needed to guarantee good properties for
the simplest parameter estimator, as we will see in the next section. Assump-
tion 1.2.1 - LR4 is typically referred to as lack of perfect multicollinearity,
and it is concerned with regressor redundancy and the identifiability of all
the β parameters. Actually, consider the case where k = 2 and X1 = X2.
The matrix X ′X in this case has dimensions 2 × 2, but its rank is equal to
one, and it can be easily shown that we can only identify (namely, recover
from the available information) β1 + β2 but not both β1 and β2 separately.
Assumption 1.2.1 - LR5 is instead concerned with the amount of temporal
persistence in the explanatory variables, and basically requires that if each
element of X is affected by a shock, the resulting effects on that element
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6 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

(and on y) are not permanent. A more precise definition of weak stationarity
will be given in Chapter 5, and a treatment of the linear model without this
assumption in Chapter 7.

To conclude, it is worth highlighting three additional implicit assumptions
on the model in (1.2.2). First, all the relevant explanatory variables are
included in the model (there are no omitted variables and no redundant
variables). Second, linearity, which means that the model is linear in the
parameters β. Hence, a model with x2

1t as an explanatory variable remains
linear, while a model where y depends on xβit is no longer linear. Finally,
stability of the β parameters over time, namely the relationship between y
and X does not change over the sample under analysis. This is an important
assumption which will be discussed at length later.

1.3 Parameter estimation

The model in (1.2.2) can still not be used for forecasting since we do not know
the values of the parameters in β (and σ2). To address this issue, we need
to define an estimator for the parameters, namely, a function of the random
variables X and y that is informative about the true β (and σ2). Substituting
the random variables X and y in the expression for the estimators with their
realizations, we will then obtain an estimate for β (and σ2).

Several estimators for the parameters of the linear regression model are
feasible but, if we assume for the moment that X is deterministic, from the
Gauss Markov theorem, we know that the best linear unbiased estimator
(BLUE) for β is

β̂
k×1

= (X ′X)−1X ′y. (1.3.1)

This is the so-called ordinary least squares (OLS) estimator, which can be
derived as the minimizer with respect to β of ε′ε =

∑T
t=1 ε

2
t =

∑T
t=1(yt −

Xtβ)2, where Xt is a 1 × k vector containing X1t . . . Xkt.
The OLS estimator is unbiased because

E(β̂) = β, (1.3.2)

which means that if we could draw a very large number of samples from
y, each of dimension T, and for each sample j we computed β̂j using the

formula in (1.3.1), the average across the many samples of β̂j would be equal

to β. The OLS estimator β̂ is the best linear unbiased estimator since it is
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the most precise in the class of the linear unbiased estimators for β. In other
words, β̂ has minimal variance in the class of estimators that are obtained
as a linear combination of the y1, . . . , yT . Minimum variance, more formally,
means that the difference between the variance covariance matrix of β̂j and
that of another linear unbiased estimator is negative definite. This is a
convenient property since it implies that we are using optimally the available
information, in the sense of obtaining the most precise estimator for the
parameters β. Specifically, it is

V ar(β̂) = σ2(X ′X)−1, (1.3.3)

where the k elements on the main diagonal of this k × k matrix contain
var(β̂j), j = 1, . . . , k, and the off-diagonal elements report the covariances

among the elements of β̂. Note that we can rewrite var(β̂) as

V ar(β̂) =
σ2

T

(
X ′X

T

)−1

While estimators are random variables, estimates are just numbers, and since
in general X ′X/T converges to a matrix when T diverges while σ2/T goes to
zero, it is

lim
T→∞

V ar(β̂) = 0.

This finding, combined with the unbiasedness of β̂, implied that the OLS
estimator is consistent for β, meaning that when the size of the sample size
T gets very large β̂ gets very close to the true value β (more formally, β̂
converges in probability to β).

Let us now use β̂ to construct the residuals

ε̂t = yt −Xtβ̂, (1.3.4)

and collect ε̂t, t = 1, . . . , T, into the T ×1 vector ε̂. The residuals are related
to the errors but different. Specifically, they are:

ε̂ = (I −X(X ′X)−1X ′)ε.

We can use the residuals to construct an estimator for the variance of the
errors σ2 as

σ̂2 = ε̂′ε̂/(T − k), (1.3.5)
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8 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

where we normalize by the degrees of freedom (T − k) instead of the sample
size (T ) to achieve unbiasedness of σ̂2, namely,

E(σ̂2) = σ2.

If, in addition to the assumptions stated above, we are also willing to maintain
that the errors are normally distributed, so that

ε ∼ N(0, σ2IT ), (1.3.6)

then the distribution of the OLS estimator is:

√
T (β̂ − β) ∼ N

(
0, σ2

(
X ′X

T

)−1
)
, (1.3.7)

(T − k)σ̂2/σ2 ∼ χ2(T − k), (1.3.8)

and β̂ and σ̂2 are independent. Adding normality to the assumptions LR1 -
LR5 gives what are usually called “strong assumptions.”

Similar results regarding the distribution of the parameter estimators hold
when (some of) the elements of X are stochastic but uncorrelated with ε and
the sample size T is very large (we say that the results hold asymptotically).

Note that the size of the estimated coefficients depends on the unit of
measurement of the variables. For example, if we divide each element of X
by 10, each element of β will be multiplied by 10. Hence, the magnitude of
the estimated coefficients by itself should not be interpreted as an indicator
of the importance of the associated regressors.

To conclude, we should mention that as the regression model is a not
a structural equation, we should not assign a structural interpretation to
the estimated parameters. Significant parameters simply indicate that the
associated variables have explanatory and, hopefully, forecasting power for
the target variable.

1.4 Measures of model fit

A model that fits well in sample, such that the errors are “small,” is not
necessarily a good forecasting model. Actually, the model could be too “tai-
lored” for the particular estimation sample and therefore lose explanatory
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power beyond the specific sample. On the other hand, a model with a poor
in sample fit rarely forecasts well. In this sense, it is convenient to examine
measures of in sample model fit prior to forecasting, though this should not
be the unique forecast selection criterion.

A common measure of model fit is the coefficient of determination, R2,
that compares the variability in the dependent variable y with that in the
model (OLS) residuals ε̂. The better the model, the smaller the latter with
respect to the former. More precisely, R2 is defined as

R2 = 1− ε̂′ε̂

y′y
=
ŷ′ŷ

y′y
(1.4.1)

= 1−
∑T

t=1 ε̂
2
t∑T

t=1 y
2
t

=

∑T
t=1(yt −Xtβ̂)2∑T

t=1 y
2
t

where

ŷ = Xβ̂ (1.4.2)

is the model fit. Hence, it is 0 ≤ R2 ≤ 1, with R2 = 0 when ε̂′ε̂ = y′y, namely
the model has no explanatory power, and R2 = 1 if the fit is perfect.1

It is possible to show that it is also

R2 = Corr(y, ŷ)2,

meaning that the better the model fit the closer the correlation between
actual and expected y according to the model.

A problem with the coefficient of determination is that it is monotonically
increasing with the number of explanatory variables, meaning that a model
with many regressors will always generate a higher R2 than a model with a
subset of them, even when the additional variables in the larger model are
useless. Hence, it is convenient to introduce a modified version of R2 that
corrects this problem. The adjusted R2 is defined as

R
2

= 1− ε̂′ε̂/(T − k)

y′y/(T − 1)
= 1−

∑T
t=1 ε̂

2
t/(T − k)∑T

t=1 y
2
t /(T − 1)

, (1.4.3)

1Note that R2 is based on a decomposition of y into two orthogonal components, ŷ (the
fit) and ε̂ (the residual). OLS estimation guarantees orthogonality of fit and residuals, ŷ′ε̂
= 0, but this is not necessarily the case with other estimation methods. Moreover, an
intercept should be included in the model to make sure that 0 ≤ R2 ≤ 1.
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10 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

where k is number of regressors and T the sample size. Adding explanatory

variables to the model has a double effect on R
2
: it decreases ε̂′ε̂, but it also

decreases T − k, so that the overall impact on R
2

will be positive only if
the former effect dominates the latter, namely, if the added variables have
sufficiently good explanatory power for y. Comparing (1.4.1) and (1.4.3), it

is easy to show that R
2 ≤ R2.

Information criteria provide an alternative method for model evaluation.
They combine model fit with a penalty related to the number of model pa-
rameters. The idea is to penalize models with many explanatory variables,
reaching a compromise between fit and parsimony of the specification. In-
formation criteria will be discussed in details in the context of the dynamic
linear model in Chapter 3; see also Chapter 5 on ARMA models.

The coefficient of determination and information criteria are both useful
to compare alternative models for the same dependent variable. It is unfor-
tunately not possible to define a generic threshold for them and decide which
model is good. For example, a value of R2 = 0.1 (i.e., 10%) can be very
good for a model for a variable while very bad for another one. In particular,
volatile variables such as equity returns are hard to be explained, and even
harder to forecast, but even a low explanatory power can be useful, for ex-
ample, to design an appropriate trading strategy. A polar opposite example
would involve persistent variables, such as interest rates, which are instead
easier to explain, but the model could add very little beyond the information
contained in the past of the dependent variable.

1.5 Constructing point forecasts

We are interested in forecasting yT+h, the value the dependent variable will
take in period T+h, given the linear regression model in (1.2.2), with param-
eters estimated as in (1.3.1), assuming for the moment we know the future
values of the regressors, i.e., XT+h. We want to show that the best linear
unbiased forecast of yT+h is

ŷT+h = XT+h
1×k

β̂
k×1

, (1.5.1)

in the sense of producing minimum forecast error variance and zero mean
forecast error (forecast unbiasedness), where the forecast error is

et+h = yT+h − ŷT+h. (1.5.2)
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Let us consider the set of linear predictors characterized by a 1 × T vector
l′ applied to the data such that

yT+h − l′y = (XT+h
1×k

− l′
1×T

X
T×k

) β
k×1

+ εT+h − l′ε.

Taking expectations yields

E (yT+h − l′y) = (XT+h − l′X) β,

so that unbiasedness of the forecast (namely, zero mean forecast error) re-
quires l′X = XT+h.

Assuming that this condition is satisfied, the variance of the forecast error
coincides with the second moment:

E (yT+h − l′y)
2

= E (εT+h − l′ε)2
= σ2 (1 + l′l) .

We want to find the vector l which minimizes this quantity, or just l′l, subject
to the constraint l′X = XT+h. To that end, we construct the Lagrangian
function:

L = l′l − λ′
1×k

(X ′l −X ′T+h
k×1

),

whose derivatives with respect to l and λ are:

∂L/∂l
T×1

= 2l −Xλ,

∂L/∂λ
k×1

= X ′l −X ′T+h.

Therefore, the first order conditions can be written as: 2I
T×T

−X
T×k

X ′
k×T

0
k×k

[ l
T×1

λ
k×1

]
=

[
0

X ′T+h

]
so that the optimal solutions, denoted l∗ and λ∗, are[

l∗

λ∗

]
=

[
1/2 I − 1/2 X(X ′X)−1X ′ X(X ′X)−1

−(X ′X)−1X ′ 2(X ′X)−1

] [
0

X ′T+h

]
,

and the optimal point forecast is indeed

ŷT+h = l∗′y = XT+h(X
′X)−1X ′y = XT+hβ̂. (1.5.3)
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Moreover, the associated forecast error (which is unbiased by construction)
is

eT+h = XT+h(β − β̂) + εT+h, (1.5.4)

and its variance can be computed as

E(yT+h − ŷT+h)
2 = E

(
XT+h(β − β̂) + εT+h

)2

= (1.5.5)

= σ2(1 +XT+h
1×k

(X ′X)−1

k×k
X ′T+h
k×1

).

This expression is useful to understand which elements increase the vari-
ance of the forecast error and hence decrease the precision of the forecast.
Forecast uncertainty, according to (1.5.5), is due to the variance of the error
term in the model for y, σ2, and the variance of the parameter estimator,
var(β̂) = σ2(X ′X)−1.

There are, however, other important elements that increase forecast un-
certainty. First, in general, the future values of the explanatory variables
XT+h are not known and have to be replaced by forecasts themselves. These
forecasts can be obtained from external sources, such as values provided by
other forecasters, or by extending the model to explain the X variables as
well. Second, in practice, the explanatory variables to be inserted in the
model for y are also unknown, so that we may be using an incomplete or too
large set of regressors. This raises the important issue of variable selection.
Third, the relationship between the explanatory variables and y could be
non-linear and/or could change over time, which requires to go beyond the
linear model with stable parameters that we have considered so far. We will
consider all these issues one by one in due time.

A few final comments are worth making. First, we have derived the
optimal linear forecast assuming that we want an unbiased forecast error
with minimum variance. If we change the loss function, the optimal forecast
will also change. The choice of the loss function should be based on the
specific application and end use of the forecasts. For example, for a central
bank the cost of under-predicting inflation may be very different from over-
predicting it. Therefore, the bank may well use an asymmetric loss function
where negative forecast errors (over-predicting inflation) have a larger weight
than positive ones. In this case the optimal forecast can be biased and quite
different from the expression given in (1.5.1). Additional details on this issue
can be found, e.g., in Granger (1999), Artis and Marcellino (2001), Elliott,
Komunjer, and Timmermann (2008), among others.
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Second, note that we have used a similar loss function for the derivation
of the OLS estimator and of the optimal linear forecast. If the forecast loss
function is different from the mean squared error, we might use a comparable
loss function also at the estimation stage, which of course would produce
a different type of parameter estimator, see, e.g. Elliott, Komunjer, and
Timmermann (2008).

Third, the empirical counterpart of the theoretical second moment of
the forecast error (our loss function) is called Mean Squared Forecast Error
(MSFE), and it is often used as a goodness of measure of a forecast, see
Chapter 4 for more details.

Finally, and as mentioned, the forecast in (1.5.1) is optimal if the assump-
tions underlying the model are valid. If, for example, the errors of the linear
model are not i.i.d., this should be taken into proper consideration in the
derivations. We will revisit this issue in the next chapters.

1.6 Interval and density forecasts

A point forecast for a given variable, like that in (1.5.1), is certainly inter-
esting but there can be situations where it is not sufficient, and the entire
density of the variable is of interest. Consider for example the case of a cen-
tral bank with an inflation target of 2%. Knowing that the optimal forecast
for inflation is, say, 1.8% is interesting, but the bank may also want to know
what is the probability that inflation will be above 2% or what is the interval
that with a pre-assigned probability contains the future value of inflation.
To address both question, we need to construct a density forecast.

Let us assume that Assumptions 1.2.1 LR1 - LR5 are valid, the sample size
T is large and in addition the error term in (1.2.2) has a normal distribution.
From the definition of the forecast error eT+h = yT+h - ŷT+h (see (1.5.2)), it
follows that (

yT+h − ŷT+h√
Var(eT+h)

)
∼ N(0, 1),

which implies

yT+h ∼ N(ŷT+h,Var(eT+h)). (1.6.1)

The latter is the expression for the density forecast of yT+h. In finite samples,
it is only an approximation since we are basically treating the parameters as
known (we are assuming that T is large). If instead we want to explicitly
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14 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

consider that we are using parameter estimators for β and σ2 and the sample
is finite, then the standardized forecast error has a Student t distribution
with T − k degrees of freedom, as well as yT+h in (1.6.1).

The density forecast can be used to assign probabilities to specific events
of interest concerning the future behavior of the variable y. For example, if y
is inflation, with the formula in (1.6.1) we can compute the probability that
inflation in period T + h will be higher than 2%.

Another use of the forecast density is to construct interval forecasts for
yT+h. A [1− α] % forecast interval is represented as

ŷT+h − cα/2
√

Var(eT+h); ŷT+h + cα/2
√

Var(eT+h), (1.6.2)

where cα/2 is the (α/2) % critical value for the standard normal density (or
from the Student t density in the case of estimated parameters and small
samples). For example, a 95% confidence interval is given by

ŷT+h − 1.96
√

Var(eT+h); ŷT+h + 1.96
√

Var(eT+h). (1.6.3)

For example, if y is again inflation, the optimal linear point forecast is ŷT+h =
2, and Var(eT+h) = 4, the formula implies that a 95% interval forecast for
inflation in period T+h is [−1.92, 5.92]. As in the case of the density forecast,
the interval forecast is also only approximate with finite estimation samples.

The interpretation of the interval forecast is the following. Suppose that
we could generate a very large number of samples of data for y and X, each
of size T + h, and for each sample construct the interval forecast for yT+h

as in (1.6.2). Then, in [1 − α] % of the samples the realization of yT+h

will fall in the interval described in (1.6.2). A more common interpretation
is that there is a [1 − α] % probability that the future realization of yT+h

will fall in the interval in (1.6.2). Hence, continuing the example, there is a
95% probability that inflation at T + h will be lower than 5.92 and higher
than −1.92. However, strictly speaking, only the former interpretation of the
confidence interval is correct.

Note that density forecasts and confidence intervals can also be con-
structed with different assumptions on the distribution of the error term,
though the derivations are more complex. Moreover, as long as the distribu-
tion of the error is symmetric, the density (and the interval forecasts) will be
centered around the optimal point forecast that coincides, as said, with the
future expected value of the dependent variable, conditional on the available
information set.

9103253
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1.7. PARAMETER TESTING 15

Finally, both forecast densities and interval forecasts tell us more about
(inflation) risk, a topic we will also discuss in further detail in later chap-
ters.

1.7 Parameter testing

Let us consider again the linear regression model

yt = X1tβ1 +X2tβ2 + . . . Xktβk + εt, (1.7.1)

or, in compact notation,

y = Xβ + ε, (1.7.2)

and assume that Assumptions 1.2.1 LR1 - LR5 and (1.3.6) hold, so that we
are under strong assumptions.

So far we have maintained that all the relevant explanatory variables are
included in the model for y, and all the irrelevant ones are excluded, in the
sense that βi 6= 0, i = 1, . . . , k, and βj = 0 for j > k. However, one of
the main practical problems in modeling and in forecasting is to include the
proper set of regressors in the model for the variable of interest. Hence, we
need statistical tools that help us decide whether a specific variable should be
included or excluded from the model. A key instrument is hypothesis testing,
which naturally can be applied to also verify more general hypotheses on the
model parameters, as we now briefly review.

A testing problem has four main ingredients:

1. The hypothesis of interest, often labeled null hypothesis and indicated
by H0, which is typically a statement about what we believe true about
a specific parameter or group of them. For example, H0 : β1 = 0 in
(1.7.1) or H0 : β = 0 in (1.7.2), where the latter means β1 = 0, . . . , βk
= 0 jointly.

2. The alternative hypothesis, which is what we believe holds true when
the null hypothesis is rejected, is indicated by H1. For example, H1 :
β1 < 0 or H1 : β 6= 0, where the latter means that at least one β
parameter is different from zero in (1.7.1). When the alternative hy-
pothesis contains an inequality the test is said to be one-sided, while it
is two-sided when H1 is expressed as “different from.”
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16 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

3. The test statistic, which is a random variable that must be informative
about the null hypothesis, and whose distribution under the null hy-
pothesis must be known (i.e., not dependent on unknown parameters).
For example, if we are interested in testing the null hypothesis β1 =
0 versus the alternative hypothesis β1 < 0, we may think of using the
OLS estimator of β1, β̂1, as the test statistic. β̂1 satisfies the first char-
acteristic, since it is definitely informative about β1 as we have seen
above. However, from (1.3.7), the distribution of β̂1 depends on σ2,
which is not known, and therefore β̂1 cannot be used as a test statistic.

4. A decision rule that tells us, based on the value of the test statistic,
whether to accept or reject the null hypothesis. In practice, we define
a rejection region as a set of values such that if the realization of the
test statistic falls in this region, we reject the null hypothesis.

Let us now consider the problem of testing the null hypothesis βi = c
versus the alternative hypothesis βi < c, where c is a generic value and i =
1, . . . , k. We have seen that β̂i is not a proper test statistic. However, we
can use the t-statistic, or t-stat, defined as

t− stat =
β̂i − c√
v̂ar(β̂i)

, (1.7.3)

where v̂ar(β̂i) is the ith element on the diagonal of

v̂ar(β̂) = σ̂2

(
X ′X

T

)−1

,

and σ̂2 is defined in (1.3.5).
It can be shown that, under H0,

t− stat ∼ t(T − k), (1.7.4)

where t(T − k) is a Student t distribution with T − k degrees of freedom.
Under the alternative hypothesis βi < c, the t-statistics will be negative,
the more so the further away we are from the null hypothesis. Hence, the
rejection region will include low enough values of the t-statistic. But how
low?
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Formally, we need to define the significance level of the test, α, which
is the maximum probability of rejecting the null hypothesis when it is true
(often called type I error). For a one-sided test with H1 : βi < c, we then
find tα, the α% critical value from the left tail of the distribution under H0

of the test statistic, and we reject if the test is lower than tα. In our case, tα
is the α% critical value from the t(T − k) distribution, namely, that value
that has α % of probability to its left according to the t(T − k) distribution.
The choice of α is left to the user, but typical values are 1%, 5%, and 10%,
meaning that in general we want a small probability of type I error.2

What happens instead if we change the alternative hypothesis to H1 βi
6= 0? We can still use the t-stat as defined above for this two-sided test, but
we need to use a different rejection rule. Actually, now under the alternative
hypothesis the t-stat can be either positive or negative, depending on the
value of c. Hence, we reject when the absolute value of the t-stat is far
enough from zero. More specifically, we reject when |t− stat| > tα/2, where
tα/2 is the (α/2) % critical value from the right (or left) tail of the t(T − k)
distribution.

When the hypothesis of interest is βi = 0, a case labeled significance
testing since we are checking whether variable xi is significant for explaining
y, we proceed in exactly the same way. In particular, the test statistic is

t− stat =
β̂i√
v̂ar(β̂i)

, (1.7.5)

and the rejection region depends on the chosen alternative hypothesis, which
can be either βi 6= 0 or βi < 0 or βi ¿ 0.

An alternative decision rule can be sometimes useful, in particular when
using standard econometric software. Typically, the software reports the
probability, under the null hypothesis, that the absolute value of the test
statistic is larger than the realized value of the statistic. This quantity is
called p-value and it is formally defined, in the case of the t-stat, as

p− value = probH0(|t− stat| > a), (1.7.6)

or

p− value = probH0(t− stat > a) + probH0(t− stat < −a),

2The case where the alternative hypothesis is βi > c is similar.
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18 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

where a is the realization of the t-stat. Hence, if the p-value is smaller than α,
it means that the t-stat is either very positive or very negative, and therefore
we can reject the null hypothesis.

Let us now consider the composite null hypothesis H0 : β = c in (1.7.2),
meaning β1 = c1, . . . , βk = ck jointly. For testing H0 we can use the F-
statistic, or F-stat, defined as

F − stat =
(β̂ − c)′X ′X(β̂ − c)

kσ̂2
=

(β̂ − c)′v̂ar(β̂)−1(β̂ − c)
k

(1.7.7)

and the expression for σ̂2 is provided in (1.3.5).
It can be shown that when H0 is true it is

F − stat ∼ F (k, T − k),

where F (k, T − k) indicates an F-distribution (the ratio of two independent
χ2 distributions) with k and T − k degrees of freedom.

Since the F-stat is a quadratic form, it can only take positive values.
Hence, the alternative hypothesis can only be two-sided, namely, H1 : β 6= c.
We reject the null hypothesis when the realized value of the F-stat is larger
than the critical value Fα, where Fα is in the right tail of the F (k, T − k)
distribution and has α % of probability in the right tail. Alternatively, we
reject the null hypothesis when the p-value of the F-stat is smaller than α.

To conclude, we need to define the power of a test-statistic. It is the
probability that the test will reject the null hypothesis when it is false. In
general we would like to use test-statistics whose actual size is close to the
nominal value, α, and as powerful as possible. It can be shown that in general
the t-stat and the F-stat satisfy these requirements, though the actual power
will depend on how large is the sample size and how far the parameter values
are from those assumed under the null hypothesis.

1.8 Variable selection

As mentioned, one of the main practical problems in modeling and in fore-
casting is to include the proper set of regressors in the model for the variable
of interest. Hence, in practice models can have omitted variables, and redun-
dant ones. Let us briefly summarize the consequences of these two issues at
the modeling stage, and then we will discuss the implications for forecasting.
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If we include redundant variables in the model, namely regressors whose
associated true coefficient is zero, the parameter estimators remain consis-
tent. Hence, in large samples the estimated coefficients of the redundant
variables will be close to zero, and t- and F-statistics for their significance
will provide the right answer. However, in small samples it can be more
problematic to detect which regressors are redundant, and their inclusion in
the model can increase estimation uncertainty, and therefore also forecast
uncertainty.

If instead we omit relevant explanatory variables from the model for y,
it can be shown that the OLS estimators are in general biased, and they do
not converge to the true parameter values even in very large samples. In
addition, the omitted variables will enter as part of the error term, lowering
the model fit and possibly invalidating the Assumptions 1.2.1 LR1-LR3. All
these negative effects can naturally lower the quality of the forecasts. There-
fore, omitting regressors is in general a more serious problem than including
redundant variables.

An exception to this general rule is when either the coefficient of a variable
is different from zero but close to it or the associated parameter estimator is
very imprecise. In this case, the bias induced by omitting this variable can
be dominated by the increased parameter estimation precision, thus yielding
forecasts with an overall lower variance. See Clements and Hendry (1998,
Chap. 12) for a theoretical derivation of this result and more precise condi-
tions for its validity.

The aforementioned issues pertaining to variable omission suggest that
a top-down modeling strategy that starts from a general model and tries
to reduce it by deleting non-significant regressors is more promising than a
bottom-up approach where a small model is progressively extended. The
former approach is also often called general to specific, and the latter specific
to general.

Reducing a general model is not a simple task, in particular when the
sample size is not very large. In that case, the number of parameters will
likely be fairly large compared with the number of observations, implying
that parameter estimators will be rather imprecise, making it difficult to
assess the significance of the single regressors. In addition, simplifying the
model is a sequential specification procedure that can be conducted in several
alternative ways. For example, we could decide to start by dropping the least
significant regressor according to the outcome of a t-stat with a given level
α, then re-estimate the model and drop again the least significant regressor,
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and continue untill all the retained regressors are significant. However, this
procedure has a few drawbacks: first, it is very difficult to determine its
overall probability of type I error, due to the use of sequential testing; second,
if we choose a too high value of α we could keep redundant regressors, while
with a too low value we could omit relevant regressors; third, if we deleted
non-significant variables in groups rather than one by one, using F-statistics,
we might end up with a different model; fourth, the final model could possibly
not satisfy the Assumptions LR1 - LR5 in 1.2.1 even though the starting
general model did; finally, manually the procedure may require a lot of time
though it can be rather easily coded, see also Section 2.9.

An alternative approach to model specification is based on information
criteria, as already described (and discussed in more detail in Chapter 5). In
this case we need to select a specific criterion, compute it for each possible
model (including different variables), and select the one that optimizes the
criterion. Different criteria can yield different outcomes in terms of preferred
models. However, the main defect of this approach is that it can be very time
demanding, since we need to consider a total of 2k models, where k is the
number of explanatory variables in the general model. For example, with 10
regressors in the general model we should consider a total of 1024 alternative
reduced models, while with 20 regressors the number becomes 1,048,576.

The reduction of a large general model based either on testing or on infor-
mation criteria can be, as we have seen, very demanding. Economic theory
should be used to restrict the starting set of variables under consideration,
but often this is not sufficient to substantially reduce the number of poten-
tially relevant regressors. Hence, specific automated procedures have been
designed for this case, and we will review some of them in the next section.

To conclude, we should mention that while the general to specific mod-
eling approach seems more promising from a statistical point of view, the
specific to general method can be a good idea when the specific model is
theory driven, and already works quite well. For example, theory suggests
that aggregate private consumption should be driven by aggregate income
and wealth, and possibly its own past values in the presence of habit persis-
tence, so one may start with a specification that includes these explanatory
variables only, and check whether it is appropriate and produces good fore-
casts, or instead the model is not satisfactory and requires the inclusion of
additional explanatory variables.
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1.9 Automated variable selection

procedures

A few researchers, including Hoover and Perez (1999) and Hendry and Krolzig
(2005), studied ways to automate the general-to-specific (GETs) model se-
lection procedure, often associated with the London School of Economics
methodology to econometric analysis. As we have discussed, the GETs
methodology, starting from a general statistical model, exploits standard
testing procedures to reduce its complexity by eliminating statistically in-
significant variables and checking that the resulting model satisfies the un-
derlying assumptions by means of diagnostic tests. The software Automet-
rics, Doornik (2009), permits a practical implementation, and the forecasts
from the resulting models seem to be rather good, see also Castle, Doornik,
and Hendry (2011).

Alternative techniques for model reduction can be classified into hard- and
soft-thresholding rules, see, e.g., Bai and Ng (2008). Under hard-thresholding,
a regressor is selected according to the significance of its correlation coeffi-
cient with the target. Typically, only regressors whose correlation with the
target is above a given threshold are selected as predictors. The obvious
shortcoming of this selection criterion is that it only takes into account the
bivariate relationship between the target variable and each regressor, with-
out accounting for the information contained in other regressors. As a result,
hard-thresholding tends to select highly collinear targeted predictors and, as
we will see in the next section, this can complicate parameter estimation.

Soft-thresholding rules, on the contrary, order and select the (N) regres-
sors on the basis of a minimization problem of the following form:

min
β

Φ(RSS) + λΨ(β1, . . . , βj, . . . , βN),

where as usual RSS indicates the Residual Sum of Squares of a regression
of the target on the N regressors. The parameter λ, which is a Lagrange
multiplier, governs the shrinkage (the higher λ, the higher the penalty for
having extra regressors in the model), while Φ and Ψ are functions of, re-
spectively, the RSS and the parameters (β) associated with the N regressors.
Clearly, the cross-correlation among the regressors is taken into consideration
explicitly when minimizing this loss function.

Depending on the functional form of Φ and Ψ, different thresholding
rules are obtained. We now discuss some of the most common ones, namely,
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Forward Selection regressions (FWD), Least angle regressions (LARS), Least
Absolute Shrinkage Selection Operator (LASSO), and Elastic net estimator
(NET). We refer, e.g., to Bai and Ng (2008) and Bulligan, Marcellino, and
Venditti (2015) for more details and empirical applications. Other variable
selection methods are surveyed and applied in, e.g., Kapetanios, Marcellino,
and Papailias (2014).

1.9.1 Forward selection (FWD)

Suppose a researcher wants to study the forecasting relationship between a
target variable y and a large set of covariates X. A good starting point is
to identify the regressor that shows the highest correlation with the target,
say x1. At this point Forward Selection (FWD) consists of regressing y on
x1, storing the residuals (ε̂1), and then looking for the covariate in the X
information set with the highest correlation with this residual, say x2. The
residual ε̂1 is projected onto x2, a new residual ε̂2 is stored, and the covariate
mostly correlated with ε̂2 is next identified. The procedure continues until all
the variables in the information set have been ranked, or it can be stopped
when a given criterion is satisfied, e.g., the adjusted R2 in a regression of y
on the selected regressors is above a given threshold.

The philosophy behind FWD is exactly the opposite of that behind hard-
thresholding. While the latter can select a large number of regressors very
correlated with each other, Forward Selection tends to keep fewer variables,
as orthogonal as possible to each other.

1.9.2 Least angle regressions (LARS)

The LARS (Least Angle Regression) algorithm, devised by Efron, Hastie,
Johnstone, and Tibshirani (2004), starts as Forward Selection, by identifying
the covariate that has the highest correlation with the target. Like in FWD,
the largest step in the direction of this covariate x1 is taken until a new
predictor x2 has as much correlation with the current residual. After this
step, however, LARS proceeds equiangularly between x1 and x2 rather than
orthogonally as in Forward Selection. After k steps, there are k variables
in the active set. If the algorithm is stopped here, the coefficients of the
remaining N - k regressors are all set to zero. The desired shrinkage can
therefore be seen as a stopping rule for k.



i
i

i
i

i
i

i
i

1.9. AUTOMATED VARIABLE SELECTION PROCEDURES 23

Efron, Hastie, Johnstone, and Tibshirani (2004) show that the LARS
algorithm encompasses other popular shrinkage methods, including Forward
Selection itself, LASSO and the Elastic Net, to which we turn next.

1.9.3 LASSO and elastic net estimator (NET)

Least Absolute Shrinkage Selection Operator (LASSO) can be obtained in
the LARS algorithm by imposing at each step of the algorithm a restriction
on the sign of the correlation between the new candidate regressor and the
projection along the equiangular direction in the previous step. To get some
intuition on how the procedure works, let us start again from step 1, when
the variable which is most correlated with the target enters the active set of
regressors. Suppose that this correlation is positive. In selecting the second
variable for the active set, LARS is agnostic on the sign of the correlation
between the target and the new variable. If one imposes that the sign of this
correlation must not switch, the LASSO regression is obtained.

LASSO can also be related to the RIDGE estimator, which is a con-
strained OLS estimator that penalizes overfitting. GivenM regressors, RIDGE
coefficients are obtained by solving the following minimization problem

min
β
RSS + λ

M∑
j=1

β2
j ,

where RSS is again the Residual Sum of Squares. The Lagrange multiplier λ
governs the shrinkage: the higher λ, the higher the penalty for having extra
regressors in the model.

LASSO introduces a slight but important modification of the penalty
function of the RIDGE regressor, which, rather than being a quadratic func-
tion shows a kink at zero:

min
β
RSS + λ

M∑
j=1

|βj|.

This modification implies that, unlike in the RIDGE setup, in LASSO some
regression coefficients are set exactly at zero. This is a convenient feature
in particular when many potential regressors are considered, as for example
in applications with big data (see Chapter 13 for further discussion on the
topic).
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The Elastic Net (NET) estimator is a refinement of LASSO, and it is the
solution to the following minimization problem:

min
β
RSS + λ1

M∑
j=1

|βj|+ λ2

M∑
j=1

β2
j .

Shrinkage under NET depends on two tuning parameters, λ1 and λ2. Bai
and Ng (2008) show that it suffices to apply a variable transformation to
reformulate the NET as a LASSO problem, which can be therefore obtained
through the LARS algorithm.

The more sophisticated estimators we have presented in general cannot be
computed analytically, but the proper minimization problems can be solved
numerically. See, for example, Hastie, Tibshirani, and Friedman (2008) for
a discussion of the theoretical properties of the estimators. The parameters
λ, or λ1 and λ2, that control the amount of shrinkage, are often selected via
cross-validation. In a first step, a training sample is used to estimate the
model for various values of λ; to compute a loss function of interest, e.g. the
MSFE; and choose the value of λ, which minimizes the loss. In a second step,
a new sample is used to compute the loss function for the selected values of
λ, checking that the choices also produce good results outside the training
sample.

Empirically, there is no clear-cut ranking of the forecasting performance
of these alternative estimation algorithms, so in practical applications a few
of them can be compared over a training sample and the best one used to
estimate the parameters to be used over the forecast sample. This approach
is another example of the “cross-validation” principle in the statistical liter-
ature.

1.10 Multicollinearity

We have so far maintained Assumption 1.2.1 LR4 that is concerned with
regressor redundancy and the identifiability of all the β parameters in the
regression model. As a counter-example, we have considered the case where
k = 2 and X1 = X2. The matrix X ′X in this case has dimension 2 × 2 but
its rank is equal to one. Since the model becomes

yt = β1x1t + β2x2t + εt (1.10.1)

= (β1 + β2)x1t + εt,



i
i

i
i

i
i

i
i

1.10. MULTICOLLINEARITY 25

we can only identify (namely, recover from the available information) β1 +β2

but not β1 and β2 separately. Technically, the first order conditions used to
derive β̂1 and β̂2 admit an infinite number of solutions, while the solution for

β̂1 + β2 is unique.

The case in the previous example is extreme, but in empirical applica-
tions, in particular with persistent macroeconomic variables, it can indeed
happen that some of the explanatory variables are highly, though not per-
fectly, correlated. This still makes it difficult to separately identify all the β
parameters, and it is reflected in large standard errors for the associated OLS
estimators (since their variance covariance matrix is given by σ2(X ′X)−1 and
the determinant of X ′X is close to zero).

Hypothesis testing can also be affected by multicollinearity. The large
estimation uncertainty will often lead to not rejecting the null hypothesis
even when it is false, hence lowering the power of test statistics. In particular,
significant coefficients could turn out to be not statistically different from
zero. Intuitively, if X1 and X2 are highly correlated, we can by mistake say
that X1 is not relevant given that it is anyway well approximated by X2.
For the same reason, variable selection is complicated by the presence of
multicollinearity.

It is in principle possible to check for perfect multicollinearity by testing
whether the rank of X ′X is full or not. However, in practice it is more com-
mon to assess the extent of cross correlation among pairs of regressors. This
check typically provides a good indication of possible high multicollinearity
problems, though it can miss cases where the pattern of multicollinearity is
more complex than bivariate, for example X1 could be a linear combination
of X2 and X3.

In terms of remedies, when high correlation among regressors is a tempo-
rary feature, extending the sample under analysis can alleviate the problem.
For example, several real regressors could move together during a specific
expansionary or recessionary phase, but if we use a sample including several
business cycles, their overall correlation can be much lower.

When instead high correlation is not sample specific but related to the
characteristics of the explanatory variables, either re-parameterizing the model,
as for example in (1.10.1), or summarizing the highly similar regressors can
work. Principal components are often used to reduce the number of highly
correlated regressors. They are particular linear combinations of the original
k regressors with the property of being orthogonal to each other and ordered
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according to their overall explanatory power for the original regressors, so
that the first principal component explains the largest fraction of the vari-
ability of all the Xs. For example, as we mentioned, Hard-thresholding could
end up with a large set of selected explanatory variables, each of them highly
correlated with the target variable and with all the other selected variables.
Hence, rather than using all the selected variables for forecasting y we could
only exploit their first principal component. More details can be found in
Chapter 13.

Multicollinearity is particularly problematic for structural analysis, where
identification of each single component of the β parameter vector is relevant
to assess the contribution of each explanatory variable. From a forecasting
point of view, it is less of a problem as long as the main goal is to produce
the best, in the mean square forecast error sense, forecast for the y variable.
Consider for example the model in (1.10.1). The optimal forecast for yT+h

can be written either as

ŷT+h = β̂1x1T+h + β̂2x2T+h,

or as
ŷT+h =

(
β̂1 + β2

)
x1T+h,

and in this sense multicollinearity is not an issue. However, for interpreting
the forecast, for example to assess the relative role of x1T+h and x2T+h as
determinants of ŷT+h, multicollinearity represents an issue also in a predictive
context.

1.11 Example using simulated data

In this example we use simulated data to illustrate in a controlled environ-
ment parameter estimation, testing, and model selection. The forecasting
procedure is discussed as well.

1.11.1 Data simulation procedure

We start with a brief discussion of the data generating process (DGP), which
will also be further used for the examples in Chapters 2 - 4. For this reason,
the DGP will be a bit more general – i.e., not a static linear regression model.
Why do we start with a more general model? It will allow us to examine
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Figure 1.11.1: Simulated dependent variable y, regressor x, and scatter plot y and

X

what happens when we estimate various models, starting with a static linear
regression which will be de facto the wrong model. More specifically, the
DGP is the following:

yt = 1 +Dt +Dtxt + xt + 0.5xt−1 + 0.5yt−1 + εt (1.11.1)

where yt = ln (Yt) is the dependent variable, xt is the independent variable,
lags of ln (Yt) and x appear also as explanatory variables, Dt is a dummy
variable that determines a change in the intercept and in the coefficient of
xt, and εt is i.i.d. distributed as N(0, 1).3 The total sample consists of 501
observations – the first observation is introduced to manage the lag of the

3Dummy variables and their use to allow for parameter changes are discussed in section
2.5 in Chapter 2.
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dependent variable in the DGP. We discard the first 101 observations to
prevent starting value effects, and divide the rest of the sample in 2 parts:

• Estimation sample: observations 102 - 301

• Forecasting sample: observations 302 - 501

The estimation sample is used to estimate and test model specifications while
in the forecasting sample we evaluate the predictive performance of alterna-
tive model specifications. The dummy variable is equal to 1 for the observa-
tions from 202 to 501 and 0 otherwise.

Linear regression model

Figure 1.11.1 represents the temporal evolution of y and x, and a scatter plot
of both y and x.

From the scatter plot we can see that there seems to be a linear relation
between y and x. In particular, we observe that an increase in x is associated
with an increase in y. To strengthen our hypothesis let us evaluate the cor-
relation between y and x. The correlation is significantly high and positive,
equal to 0.6729.

Coefficient Std. Error t-Statistic Prob.

BETA(0) 5.380 0.667 8.072 0.000
BETA(1) 1.491 0.117 12.801 0.000

R-squared 0.453 Mean dep var 6.695
Adjusted R-squared 0.450 S.D. dep var 12.560
S.E. of regression 9.314 Akaike IC 7.311
Sum squared resid 17176.480 Schwarz IC 7.344
Loglikelihood -729.086 Hannan-Quinn 7.324
F-statistic 163.861 DW stat 0.955
Prob(F-statistic) 0.000

Table 1.11.1: Baseline linear regression model for the sample: 102 - 301

The baseline linear regression model we consider is the following:

yt = β0 + β1xt + εt, (1.11.2)
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Figure 1.11.2: Plot of actual y series, linear model forecast yhat1, and yhat1 up

and yhat1 low series of forecasts’ 95% approximate forecast interval upper and

lower bounds respectively
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From Table 1.11.1 we see that the coefficient for x is positive and sig-
nificantly different from 0 at the 5% confidence level. Since we know the
actual value of the coefficient because we are using simulated data, we can
also compare it with the value of the estimated coefficient. In the DGP the
coefficient of x is equal to 1. The estimated coefficient is equal to 1.491,
which is significantly different from 1, (t − stat = (β̂1 − 1)/SEβ̂1 = 4.2181).
This result is not surprising as the econometric model we are using is rather
different from the DGP.

The equation output in many software packages – such as EViews – pro-
vides additional information about the model performance. In the chapter
we have discussed several measures of model fit. Let us start with the coef-
ficient of determination R2. For the baseline linear model the R-squared is
equal to 45.283 %, while the adjusted R-squared is equal to 45.01 %. EViews
presents in the standard regression output also information criteria, another
type of measures of model fit, such the Akaike Information Criterion (AIC)
and the Schwarz Criterion. Those measures are mostly used for model selec-
tion purposes and will be discussed in later chapters.

Forecasting Method
Static Recursive

RMSE 9.7426 9.5705
MAFE 8.0798 7.9432

Table 1.11.2: Baseline linear regression model forecasting performance

Let us now consider the forecasting performance over the 302 - 501 sam-
ple of the simple linear regression model we have estimated. Figure 1.11.2
presents the forecast series and the approximate 95% forecast intervals com-
puted as in equation (1.6.3) (Panel (b)) and the actual series against the
forecasts (Panel (a)). When computing the forecast described above, we as-
sume that the model coefficients are computed over the entire estimation
sample and then kept fixed over the forecast sample. We call this scheme
static. We also assume that the future values of the regressors x are known.

To take into account the possibility of parameter time variation, we can
compute a recursive forecast where the model is estimated over an expanding
estimation sample (one observation is added each time), and the forecasts
are computed with the recursively estimated parameters. Hence, the method
requires the following steps:
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1. Estimate the model for a given estimation sample.

2. Compute (one-step-ahead) forecasts using the estimated coefficients
from step 1.

3. Add one observation to the estimation sample and go to step 1 again.

Figure 1.11.3 presents the forecasts obtained from the recursive forecast
procedure using 102 - 301 as first estimation sample and progressively ex-
panding it by one observation. To evaluate the model forecasting perfor-
mance we use two most common measures: the Root Mean Square Forecast
Error (RMSE) and the Mean Absolute Forecast Error (MAFE), see Chap-
ter 4 for further details. Table 1.11.2 presents these for static and recursive
forecasts, indicating a mild preference for the latter.

In the next empirical examples we will repeat the same steps (model
specification, estimation, and forecasting) but use real economic data.
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Figure 1.11.3: Plot of actual y series and yhat1 rec which presents the forecasts

obtained from a recursive forecast procedure
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1.12 Empirical examples

Three empirical examples are considered. The first two cover forecasting
Gross Domestic Product (GDP), for respectively the Euro area and the
United States. The third and final example deals with forecasting default
risk spreads.

1.12.1 Forecasting Euro area GDP growth

In this empirical example, we illustrate the formulation, estimation, param-
eter testing and model selection using simple linear regressions without dy-
namics. We will also illustrate how to produce short term forecasts using such
models. At the outset we should stress again that more structural models
can be better suited for medium- and long-run forecasting.

Let us first talk about the data. We consider both hard and soft data.
For hard data, we use GDP and industrial production (IPR) of Euro area 17
countries (EA17), an inflation measure – the monthly rate of change of the
Harmonized Index of Consumer Prices (HICP), as well as the Eurostoxx data
downloaded from the Eurostat website. Both GDP and IP data are seasonally
adjusted. For soft data, we use the Economic Sentiment Indicator (ESI) of
the Euro area downloaded from the Directorate General for Economic and
Financial Affairs of the European Commission (DG-ECFIN) website.4 The
data of GDP, IP, and Eurostoxx are quarterly. As the survey data and the
growth rate of the HICP are monthly, we aggregate them to their quarterly
values (see Chapter 12 for methods to directly handle mixed frequency data).
111

We compute the quarterly aggregates as averages across the months in
a quarter. We consider growth rate of the above variables in this example,
except for HICP which is already a growth rate. We compute the quar-
terly growth rate as the first difference of the variables in natural logarithm
multiplied by 100.

Throughout this example, we denote the variables using the following
notations:

• yt is the quarterly EA17 GDP growth

4In general the DG-ECFIN provides an excellent source of Euro area macroeconomic
data such as the series used in this book, see http://ec.europa.eu/economy finance/index
en.htm.

http://ec.europa.eu/economy �nance/index_en.htm
http://ec.europa.eu/economy �nance/index_en.htm
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• iprt is the quarterly EA17 IP growth

• srt is the quarterly growth rate of the Eurostoxx (stock returns)

• sut is the quarterly growth rate of the EA ESI

• prt is the quarterly aggregate of the monthly growth rate of the EA17
HICP (inflation rate)

We first consider the sample period from 1996Q1 to 2013Q2. The early
90’s saw first major troubles in the managed exchange rate system – the EMS
– with Italy and the UK leaving the EMS. Then many structural and policy
changes, related to the adoption of the Maastricht Treaty for the introduction
of the single currency, took place. Hence, we prefer to start our analysis in
1996, at the cost of losing estimation efficiency due to the rather short sample.

Figure 1.12.1 shows the plots of the above variables. It is clear from the
graph that all series exhibit a dip around the end of 2008 and the beginning
of 2009, most pronounced in the growth rate of GDP, IP, and survey data.
Interestingly the dips in GDP growth and IP growth appear to lag the dips
in stock returns, growth rate in the sentiment indicator, and inflation rate
by one quarter. It may imply that the contemporaneous value of IP growth
is more useful in explaining GDP growth, while the lag values of the other
three variables are more informative about GDP growth. In this chapter,
we focus on baseline regression model without dynamics. Details of dynamic
models will be discussed in Chapter 3.

Model estimation, parameter testing and model/variable selection

Our interest here is first to illustrate the power of the regressors in explaining
GDP growth, via significance tests applied to the estimated parameters, as
well as the measures of model fit. As we noted before, the regression model
is not a structural equation, and therefore we should not assign a structural
interpretation to the estimated parameters. Significant parameters simply
indicate that there is a statistical relationship that links the dependent vari-
ables to the dependent one in-sample, and hopefully out-of-sample as well.
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Figure 1.12.1: Plots of the quarterly growth rates of Euro area GDP (Y), indus-

trial production (IPR), economic sentiment indicator (SU), Eurostoxx stock index

(SR), and the quarterly aggregates of the monthly growth of harmonized index of

consumer prices (PR).

We will also illustrate some automated variable selection procedures. We
proceed by estimating the following linear regression models analogous to
equation (1.2.2). To separate the role of the intercept, we denote it via the



i
i

i
i

i
i

i
i

1.12. EMPIRICAL EXAMPLES 35

parameter α. We start with three cases in which the regressors Xt vary.

yt = α +Xtβ + εt (1.12.1)

• Case 1 (Model 1): Xt = (iprt, sut, prt, srt)

• Case 2 (Model 2): Xt = (iprt, sut, srt)

• Case 3 (Model 3): Xt = (iprt, sut)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.331 0.060 5.489 0.000
IPR 0.336 0.029 11.618 0.000
SU -0.034 0.015 -2.239 0.029
PR -0.388 0.305 -1.272 0.208
SR 0.012 0.005 2.181 0.033

R-squared 0.801 Mean dep var 0.350
Adjusted R-squared 0.789 S.D. dep var 0.629
S.E. of regression 0.289 Akaike IC 0.425
Sum squared resid 5.435 Schwarz IC 0.586
Loglikelihood -9.881 Hannan-Quinn 0.489
F-statistic 65.338 DW stat 1.438
Prob(F-statistic) 0.000

Table 1.12.1: Estimation output for Model 1 for sample: 1996Q1 - 2013Q2

Table 1.12.1 presents the estimation results for Model 1. Negative signs
are found on the estimated parameters for the change of ESI and the in-
flation rate, contrary to economic intuition. This result can be due either
to collinearity among the regressors or to model mis-specification. The re-
ported t-statistics for individual two-sided significance tests show that the
null hypothesis of an insignificant parameter can be rejected at the 5% sig-
nificance level for all variables except prt. Excluding the inflation rate from
the set of regressors and re-estimating the model results in the output shown
in Table 1.12.2. While the IP growth remains highly significant, exclusion
of the inflation rate results in less significant parameters on the change of
ESI and stock returns, with the stock returns being the most insignificant
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in this case. Table 1.12.3 shows the estimation output when we further ex-
clude stock returns from the list of regressors. It can be seen once again that
IP growth still remains highly significant but the explanatory power of the
change of ESI has been weakened. In addition to the individual significance
tests, the F -statistic and the corresponding p-value for testing joint (model)
significance of all the explanatory variables apart from the intercept are also
reported as part of the estimation output. It is clear that the null hypothesis
can be rejected at standard significance levels for all the three models.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.269 0.036 7.481 0.000
IPR 0.326 0.028 11.683 0.000
SU -0.029 0.015 -1.981 0.052
SR 0.010 0.005 1.892 0.063

R-squared 0.796 Mean dep var 0.350
Adjusted R-squared 0.787 S.D. dep var 0.629
S.E. of regression 0.291 Akaike IC 0.421
Sum squared resid 5.571 Schwarz IC 0.550
Loglikelihood -10.742 Hannan-Quinn 0.472
F-statistic 85.774 DW stat 1.434
Prob(F-statistic) 0.000

Table 1.12.2: Estimation output for Model 2 for sample: 1996Q1 - 2013Q2

The lower parts of the three tables present some summary statistics. The
reported R2 of the three models seem to be relatively high in general, with
values around 0.8. The issue of the monotonic increase in the value of R2 with
number of explanatory variables can be observed by comparing the reported
statistics across the three models. Having the largest set of regressors among
the three, Model 1 appears to have the highest R2. Besides, Model 1 also

appears to have the highest R
2
, but the difference with the other models is

diminished.
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.282 0.036 7.806 0.000
IPR 0.323 0.028 11.384 0.000
SU -0.014 0.013 -1.114 0.269

R-squared 0.785 Mean dep var 0.350
Adjusted R-squared 0.778 S.D. dep var 0.629
S.E.of regression 0.296 Akaike IC 0.445
Sum squared resid 5.873 Schwarz IC 0.542
Loglikelihood -12.590 Hannan-Quinn 0.484
F-statistic 122.169 DW stat 1.338
Prob(F-statistic) 0.000

Table 1.12.3: Estimation output for Model 3 for sample: 1996Q1 - 2013Q2

Variable Coefficient Std. Error t-Statistic Prob.

C 0.501 0.082 6.101 0.000
IPR 0.326 0.075 4.377 0.000
SU -0.023 0.024 -0.976 0.335
PR -0.732 0.403 -1.815 0.077
SR 0.010 0.005 1.776 0.084

R-squared 0.524 Mean dep var 0.564
Adjusted R-squared 0.475 S.D. dep var 0.355
S.E. of regression 0.257 Akaike IC 0.228
Sum squared resid 2.578 Schwarz IC 0.431
Loglikelihood -0.019 Hannan-Quinn 0.303
F-statistic 10.715 DW stat 1.940
Prob(F-statistic) 0.000

Table 1.12.4: Estimation output for Model 1 for sample: 1996Q1 - 2006Q4

As mentioned in Section 1.4, the information criteria provide an alter-
native way to evaluate model fit. They measure the fit of models while at
the same time penalize those with many explanatory variables. Although
details of information criteria will be presented in Chapter 3, we can exam-
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ine here the outcome while briefly mentioning that the preferred models are
those with the lowest values. The tables report values of three information
criteria: Akaike Information Criterion (AIC), Schwarz Criterion (BIC), and
Hannan-Quinn Criterion (HQ), and models with smaller values of the criteria
are preferred.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.388 0.055 7.018 0.000
IPR 0.310 0.076 4.068 0.000
SU -0.016 0.024 -0.683 0.499
SR 0.008 0.006 1.413 0.166

R-squared 0.483 Mean dep var 0.564
Adjusted R-squared 0.445 S.D. dep var 0.355
S.E. of regression 0.264 Akaike IC 0.264
Sum squared resid 2.796 Schwarz IC 0.426
Loglikelihood -1.802 Hannan-Quinn 0.324
F-statistic 12.474 DW stat 1.938
Prob(F-statistic) 0.000

Table 1.12.5: Estimation output for Model 2 for sample: 1996Q1 - 2006Q4

It turns out that the three information criteria do not always agree with
each other in telling which model is best. Model 1 appears to have the largest
values of all the reported information criteria, though marginally. Model 2
appears to have the smallest values of both AIC and HQ, though its SC
is slightly larger than that of Model 3. Based on the value of the criteria
and the fact that, if we set the significance level at 10%, all its estimated
parameters are statistically significant, we can prefer Model 2.
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.410 0.054 7.602 0.000
IPR 0.297 0.076 3.884 0.000
SU -0.002 0.022 -0.071 0.943

R-squared 0.458 Mean dep var 0.564
Adjusted R-squared 0.431 S.D. dep var 0.355
S.E. of regression 0.268 Akaike IC 0.267
Sum squared resid 2.936 Schwarz IC 0.389
Loglikelihood -2.873 Hannan-Quinn 0.312
F-statistic 17.293 DW stat 1.854
Prob(F-statistic) 0.000

Table 1.12.6: Estimation output for Model 3 for sample: 1996Q1 - 2006Q4

Forecasting

We now continue our empirical illustration by performing a forecasting exer-
cise. We first split our full sample period 1996Q1 to 2013Q2 into an estima-
tion sample that covers 1996Q1 to 2006Q4, and a forecast evaluation period
that covers 2007Q1 to 2013Q2. We then re-estimate Models 1, 2, and 3 over
the shorter estimation sample.

Tables 1.12.4, 1.12.5, and 1.12.6 present the estimation results. Com-
paring them with those presented in Tables 1.12.1, 1.12.2, and 1.12.3 which

use the full sample, it can be seen that the values of the R2 and R
2

are
much lower than before. Moreover, two out of three information criteria now
seem to prefer Model 1. Moreover, the ESI becomes less significant. This
is perhaps not surprising as the estimation sample now excludes the recent
recession and survey data have been found to have more explanatory power
during the recession than when the economy is relatively stable.

Note that there is evidence, as shown in Table 1.12.4, that the inflation
rate has stronger individual significance in explaining GDP growth than the
survey data over this sample period than when we consider the full sample
(as shown in Table 1.12.3). We name the model that includes this set of
regressors (IPR, PR, SR) as Model 4.

We now perform a forecasting exercise. To illustrate the importance of
the choice of regressors, we consider forecasts using Models 1 through 4.
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Figure 1.12.2: Plots of forecasted GDP growth series produced by the four mod-

els against the actual GDP growth over the forecast evaluation period 2007Q1 to

2013Q2

Figure 1.12.2 presents the plots of the ŷ forecasts produced by the four
models, conditioning on the true values of the future explanatory variables
and the estimated parameters up to 2006Q4, against the actual y. It can
be seen that the GDP growth forecasts all track the actuals, though the dis-
crepancies between the predicted and the actual values tend to be in general
larger post-2009Q2. The forecasts produced by the four models also seem
to predict the big dip in 2009Q1 quite well, particularly the forecasts from
Model 1 and Model 2, but less so for Model 4. Although details of forecast
evaluation will be discussed in Chapter 4, we present some basic forecast
evaluation statistics here in order to illustrate the importance of the choice
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of regressors included in a forecast model. Specifically, Table 1.12.7 reports
the Root Mean Squared Forecast Error (RMSFE) and the Mean Absolute
Forecast Error (MAFE) associated with the forecasts. The top panel reports
static forecasts. The values of both RMSFE and MAFE show that Models
1 and 2 are comparable, while forecasts produced by Model 4 seem to be
the least accurate, with the value of both the RMSFE and MAFE being the
largest. Since survey data are not included in Model 4, this outcome pro-
vides indication that they do contain more useful information at the time
of recession. So excluding such a regressor penalizes the accuracy of the
forecasts.

Model 1 Model 2 Model 3 Model 4

Static forecasts

RMSFE 0.3839 0.3783 0.3949 0.4153
MAFE 0.3275 0.3316 0.3442 0.3642

Recursive forecasts

RMSFE 0.3600 0.3511 0.3559 0.3730
MAFE 0.2987 0.3067 0.3102 0.3174

Table 1.12.7: Forecast evaluations Models 1 - 4.

One important point worth mentioning about the above forecasting ex-
ercise is that for each model, the forecasts for the entire evaluation period
are computed using the coefficients from the regression estimated over the
estimation sample 1996Q1 to 2006Q4, even though the actual observation of
GDP growth is used for the forecast produced each period. That is, estima-
tion is done only once and there is no updating of the values of the estimated
parameters.
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Figure 1.12.3: Plots of the static and recursive one-step ahead forecasts of GDP

growth by the four models against the actual GDP growth over the evaluation period

2007Q1 to 2013Q2 (Key: YRFOREx is the series of one-step ahead recursive

forecast from Model x. YFOREx is the series of static forecast from Model x)

As we will discuss in Chapter 2, there is no reason to believe the relation-
ships between GDP growth and the regressors remain constant over time.
One way to compute forecasts by taking into account the possible chang-
ing relationships is to update the estimated parameters at each point in time
when a forecast is to be produced – as we did in the previous subsection. One
can re-estimate the forecasting model by including the up-to-date data when
a forecast is to be produced. For example, when computing the one-step
ahead forecast for 2007Q1, we estimate the model using data from 1996Q1
to 2006Q4. The one-step ahead forecast for 2007Q2 is then computed using
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the parameter estimated using data from 1996Q1 to 2007Q1, and so on. We
called this forecasting strategy recursive forecast. We now re-compute the
one-step ahead forecasts for the four models using the recursive forecasting
strategy.

Figure 1.12.3 shows the plots of the recursive forecasts alongside the static
forecasts against the actual series. We also re-compute the evaluation statis-
tics for these one-step ahead recursive forecasts, presented in the lower panel
of Table 1.12.7. Comparing these statistics with those presented in the top
panel, it can be seen that the forecast accuracy has generally been improved,
likely signaling instability in the relationship between GDP growth and the
explanatory variables during the crisis period.

1.12.2 Forecasting US GDP growth

In this empirical example, we illustrate the same procedures but focusing on
modeling and forecasting the US GDP growth series using both hard and soft
data as explanatory variables. For hard data, we use industrial production
(IPR), the consumer prices index (PR), and the S&P500 index (SR). For
soft data, we use the Michigan University consumer sentiment index for the
United States, downloaded from the St. Louis Federal Reserve Bank website
(SU). Soft and hard data are quarterly.5

We first consider the sample period that covers 1985Q1 to 2013Q4. As
mentioned in the case of the Euro area, the estimation sample should be as
long as possible, but also homogeneous when working under the assumption
of stable model parameters. As monetary policy in the United States changed
substantially in the early 1980s, and the phenomenon known as the Great
Moderation (a major reduction in the volatility of many macroeconomic vari-
ables) took place in the same period, we prefer to start our empirical analysis
in 1985, even though the time series for the variables that we consider are
available much earlier.

Figure 1.12.4 shows the plots of the above variables. It is clear from the
graph that all series exhibit a dip around the end of 2008 and the beginning
of 2009, corresponding to the worst quarters of the financial crisis.

5In general the St. Louis Fed provides an excellent source of United States macroeco-
nomic data such as the series used in this book, see https://fred.stlouisfed.org/.

https://fred.stlouisfed.org
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Figure 1.12.4: Quarterly US GDP growth, IP growth, S&P 500 returns, CSI

growth, CPI inflation.

Model estimation, parameter testing, and model/variable
selection

As in the previous example for Euro area GDP, our interest here is first to
illustrate the power of the regressors in explaining GDP growth, via signif-
icance tests on estimated parameters, as well as measures of model fit. We



i
i

i
i

i
i

i
i

1.12. EMPIRICAL EXAMPLES 45

proceed by estimating again a static linear regression model as in equation
(1.12.1), with the same three alternative sets of regressors.

In Table 1.12.8 we report some summary statistics related to model fit.
According to the R2 and adjusted R2, the best model is the first one. Other

Model 1 Model 2 Model 3

R2 0.533 0.522 0.508

R
2

(adjusted R2) 0.516 0.510 0.499

AIC 1.131 1.137 1.149
SC 1.250 1.232 1.220
HQ 1.180 1.175 1.178

Table 1.12.8: Full sample measures of fit

criteria, such as the AIC, SC, and HQ are not consistent. We know that the
lower is the value of the criteria the “better” is the model. The minimum for
AIC corresponds to Model 1. At the same time SC is minimized for Model 3
and HQ is lowest for Model 2. The differences are however small, so that we
do not expect major differences in the forecasting performance of the models.

Forecasting

The next step is forecasting. To evaluate the forecasting performance we
first split our sample period 1985Q1 to 2013Q4 into an estimation sample
that covers 1985Q1 to 2006Q4, and a forecast evaluation period that covers
2007Q1 to 2013Q4. Tables 1.12.9, 1.12.10, and 1.12.11 present the estimation
output of the models over the estimation sample.

Comparing these estimation results with those for the full sample, it can

be seen that the values of the R2 and R
2

are even more similar for three
models. According to R2 Model 1 is “better,” but R

2
prefers Model 3. This

conclusion is consistent with other criteria: AIC, SC, and HQ are lowest for
Model 3.

As discussed in previous examples, to take into account possible changes
in the coefficients we can use recursive forecasts, similar to the procedure
described in the previous example. To compare the forecasts we use again
two main criteria: RMSFE and MAFE, reported in Table 1.12.12. As we
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.579 0.088 6.586 0.000
IPR 0.310 0.049 6.328 0.000
SU 0.013 0.009 1.403 0.164
PR -0.015 0.095 -0.153 0.879
SR 0.003 0.009 0.313 0.755

R-squared 0.387 Mean dep var 0.778
Adjusted R-squared 0.357 S.D. dep var 0.493
S.E. of regression 0.395 Akaike IC 1.036
Sum squared resid 12.956 Schwarz IC 1.176
Loglikelihood -40.572 Hannan-Quinn 1.092
F-statistic 13.096 DW stat 2.028
Prob(F-statistic) 0.000

Table 1.12.9: Estimation output Model 1 for sample: 1985Q1 - 2006Q4

can see from the table below Model 3 has the highest value of RMSFE and
MAFE while Model 1 is best according to both criteria. Moreover, as is
the case for the Euro area, statistics associated with the recursive forecasts
are lower, suggesting also in this case the possibility of parameter instability
associated with the financial crisis.

Model 1 Model 2 Model 3

Static forecasts

RMSFE 0.547 0.541 0.549
MAFE 0.417 0.414 0.418

Recursive forecasts

RMSFE 0.524 0.529 0.546
MAFE 0.385 0.402 0.412

Table 1.12.12: Forecast evaluation statistics of static and recursive forecasts
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.569 0.058 9.827 0.000
IPR 0.310 0.049 6.376 0.000
SU 0.013 0.009 1.509 0.135
SR 0.003 0.009 0.306 0.761

R-squared 0.387 Mean dep var 0.778
Adjusted R-squared 0.365 S.D. dep var 0.493
S.E. of regression 0.393 Akaike IC 1.013
Sum squared resid 12.960 Schwarz IC 1.126
Loglikelihood -40.584 Hannan-Quinn 1.059
F-statistic 17.659 DW stat 2.026
Prob(F-statistic) 0.000

Table 1.12.10: Estimation output Model 2 for sample: 1985Q1 - 2006Q4

1.13 A hint of dynamics

Throughout this chapter we always aligned the timing of yt and Xt in the
regression equation

yt = α +Xtβ + εt (1.13.1)

For example in the GDP regressions we used series iprt, sut, prt, and srt which
were contemporaneous to the quarter t GDP growth we want to forecast.
This means that we have the regressors available when we forecast GDP. In
practice that may not be the case as there may be publication lags.

While we are entering into dynamic regression territory, we will provide
a simple example of how one can still use the classical regression model with
the following specification:

yt = α +Xt−1β + εt (1.13.2)

where we shift back the regressors from t to t−1. In Chapter 2 Section 2.6 we
will discuss data timing issues, and in Chapter 3 we will refer to the equation
similar to the one appearing above as the Leading Indicator model (see in
particular equation (3.2.6)). Shifting the regressors one period back implies
that the regressors are more likely available when performing one-step ahead
forecasts. This timing choice also reduces potential problems of endogeneity,
see Section 2.7 for details.
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.576 0.053 10.931 0.000
IPR 0.309 0.048 6.404 0.000
SU 0.015 0.008 1.912 0.059

R-squared 0.386 Mean dep var 0.778
Adjusted R-squared 0.372 S.D.dependent var 0.493
S.E. of regression 0.391 Akaike IC 0.992
Sum squared resid 12.974 Schwarz IC 1.076
Loglikelihood -40.633 Hannan-Quinn 1.026
F-statistic 26.726 DW stat 2.010
Prob(F-statistic) 0.000

Table 1.12.11: Estimation output Model 3 for sample: 1985Q1 - 2006Q4

1.13.1 Revisiting GDP forecasting

We refit the GDP growth prediction equations using the specification in
(1.13.1) instead of regression (1.12.1). To evaluate the forecasting perfor-
mance we split again the sample period 1985Q1 to 2013Q4 into an estima-
tion sample that covers 1985Q1 to 2006Q4, and a forecast evaluation period
that covers 2007Q1 to 2013Q4. Table 1.13.1 reports the estimation sample
measures of fit. Compared to the results in Table 1.12.8 we see an overall
degeneration of the model fits. That is not too surprising as the regression
model now relates next quarter’s GDP growth with current quarter IPR,
SU, PR, or SR as opposed to current GDP growth. Nevertheless, in relative
terms Model 1 stays the best overall in the new dynamic setting.

Model 1 Model 2 Model 3

R2 0.310 0.304 0.248

R
2

0.286 0.285 0.235

Table 1.13.1: Estimation sample measures of fit

In the contemporaneous quarter regression setting we learned from Table
1.12.12 that Model 1 remains the best one out-of-sample. That is no longer
the case in the new dynamic setting as the results reported in Table 1.13.2
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reveal. The more parsimonious Model 2, while inferior to Model 1 in-sample,
is the superior one out-of-sample according to both RMSFE and MAFE
criteria, whether using static or recursive forecasting schemes.

Model 1 Model 2 Model 3

Static forecasts

RMSFE 0.726 0.711 0.785
MAFE 0.515 0.492 0.528

Recursive forecasts

RMSFE 0.713 0.702 0.724
MAFE 0.502 0.476 0.485

Table 1.13.2: Forecast evaluation statistics of static and recursive forecasts

Figure 1.13.1 illustrates the forecast performance by plotting the recursive
out-of-sample 95% approximate confidence intervals and the realized growth
rate. We observe again the financial crisis quarter 2008Q4 where the realized
growth rate drops below the forecast interval.

1.13.2 Forecasting default risk

We focus on modeling and forecasting default risk as measured by the Bank
of America Merrill Lynch US High Yield Master II Option-Adjusted Spread
which we denote OAS.6 Unlike the previous two examples, we have data sam-
pled at a monthly frequency. As candidate regressors, we select the following
set of series: (a) the Chicago Board Options Exchange (CBOE) Volatility
Index, denoted VIX, (b) the surveys of consumers, University of Michigan,
consumer sentiment index, denoted by SENT, (c) the ISM Manufacturing:
purchasing managers index, PMI, and finally (d) the monthly returns, in
percentage points, of the S&P 500 Index.

We consider a sample from January 1998 to December 2015 – which
includes the Great Recession. Figure 1.13.2 plots all the aforementioned

6Details about the series can be found at https://research.stlouisfed.org/fred2/series/
BAMLH0A0HYM2.

https://research.stlouisfed.org/fred2/series
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Figure 1.13.1: Recursive GDP growth forecasts and 95% confidence intervals

Model 2

series – showing the unusual events following the Lehman bankruptcy in
September 2008. We start with the following four single regressor regressions:

• Model 1: OASt = α + β1 V IXt−1 + εt

• Model 2: OASt = α + β1 SENTt−1 + εt

• Model 3: OASt = α + β1 PMIt−1 + εt

• Model 4: OASt = α + β1 SP500t−1 + εt

The output for models 1 - 4 appears in Tables 1.13.3 through 1.13.6.
From the results we observe that previous month’s VIX index is the best
single predictor for default risk with a R2 of almost 67%. The VIX is a
forward-looking variable as it reflects the option market implied expectation
of 22-day ahead volatility of the S&P500 stock market index. In other words,
the V IXt−1 gives us the option market participant’s expectation at the end
of month t− 1 of next month’s – i.e., t - market volatility. Financial market
variables often have this forward-looking feature and therefore are popular
candidate regressors in a forecasting regression equation. This becomes even
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Figure 1.13.2: Monthly OAS, VIX, SENT, SP500, and PMI.

more appealing once we start adding the fact that such series are typically
available at weekly, daily, or even higher frequencies – a feature which will
be important once we cover mixed frequency regression models in Chapter
12.



i
i

i
i

i
i

i
i

52 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

Variable Coefficient Std. Error t-Statistic Prob.

C 0.054 0.310 0.175 0.861
VIX(-1) 0.280 0.014 20.549 0.000

R-squared 0.665 Mean dep var 6.008
Adjusted R-squared 0.663 S.D. dep var 2.792
S.E. of regression 1.621 Akaike IC 3.813
Sum squared resid 559.543 Schwarz IC 3.844
Loglikelihood -407.894 Hannan-Quinn 3.826
F-statistic 422.245 DW stat 0.566
Prob(F-statistic) 0.000

Table 1.13.3: Estimation output for Model 1

Variable Coefficient Std. Error t-Statistic Prob.

C 13.753 1.093 12.588 0.000
SENT(-1) -0.090 0.013 -7.178 0.000

R-squared 0.195 Mean dep var 6.008
Adjusted R-squared 0.191 S.D. dep var 2.792
S.E. of regression 2.512 Akaike IC 4.689
Sum squared resid 1343.743 Schwarz IC 4.720
Loglikelihood -502.074 Hannan-Quinn 4.702
F-statistic 51.520 DW stat 0.122
Prob(F-statistic) 0.000

Table 1.13.4: Estimation output for Model 2

The estimated slope for Model 1 has the anticipated sign, namely it is
positive – hence increased (expected) volatility implies higher default risk.
The PMI index, while not market-based, also has a forward-looking nature
as it is an indicator of the economic health of the manufacturing sector. It
is based on four major indicators: new orders, inventory levels, production
supplier deliveries, and the employment environment. It is therefore not sur-
prising that Model 3 also does well, albeit not as good as the VIX. The slope
coefficient is negative and significant in Model 3 – which is also anticipated
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Variable Coefficient Std. Error t-Statistic Prob.

C 26.267 1.414 18.579 0.000
PMI(-1) -0.389 0.027 -14.397 0.000

R-squared 0.493 Mean dep var 6.008
Adjusted R-squared 0.491 S.D. dep var 2.792
S.E. of regression 1.993 Akaike IC 4.226
Sum squared resid 845.780 Schwarz IC 4.257
Loglikelihood -452.306 Hannan-Quinn 4.239
F-statistic 207.259 DW stat 0.239
Prob(F-statistic) 0.000

Table 1.13.5: Estimation output for Model 3

Variable Coefficient Std. Error t-Statistic Prob.

C 6.108 0.180 34.009 0.000
SP500(-1) -0.220 0.040 -5.488 0.000

R-squared 0.124 Mean dep var 6.008
Adjusted R-squared 0.120 S.D. dep var 2.792
S.E. of regression 2.620 Akaike IC 4.773
Sum squared resid 1462.058 Schwarz IC 4.805
Loglikelihood -511.145 Hannan-Quinn 4.786
F-statistic 30.114 DW stat 0.263
Prob(F-statistic) 0.000

Table 1.13.6: Estimation output for Model 4

as increasing the health of the economy means lesser default risk. The two
other models 2 and 4, based on respectively consumer sentiment and stock
returns, perform relatively poorly in comparison. Note that both models also
feature negative slopes, again as expected.

We also consider all variables at once in the following regression - which
we label Model 5:

OASt = β0 + β1V IXt−1 + β2SENTt−1 + β3PMIt−1 + β4sp500t−1 + εt

According to the results reported in Table 1.13.7 all regressors are signifi-



i
i

i
i

i
i

i
i

54 CHAPTER 1. THE BASELINE LINEAR REGRESSION MODEL

Variable Coefficient Std. Error t-Statistic Prob.

C 15.899 1.413 11.251 0.000
VIX(-1) 0.183 0.014 12.697 0.000
SENT(-1) -0.048 0.007 -7.205 0.000
PMI(-1) -0.186 0.021 -8.772 0.000
SP500(-1) -0.044 0.021 -2.055 0.041

R-squared 0.798 Mean dep var 6.008
Adjusted R-squared 0.794 S.D. dep var 2.792
S.E. of regression 1.267 Akaike IC 3.335
Sum squared resid 337.300 Schwarz IC 3.413
Loglikelihood -353.483 Hannan-Quinn 3.366
F-statistic 207.239 DW stat 0.754
Prob(F-statistic) 0.000

Table 1.13.7: Estimation output for Model 5

cant, and the adjusted R2, almost 80%, is greater than any of the individual
regressor models 1 - 4.

We re-estimate all the regressions for a shorter sample from Jan. 1998
to Dec. 2007 and produce forecasts out-of sample for the period Jan. 2008
until Dec. 2015. We then compute the in-sample regression statistics and
the out-of-sample RMSFE for each of the regression models. The empirical
results appear in Table 1.13.8. The in-sample fits align again with the out-
of-sample performance. The findings suggest a Model 6, however, where we
drop the SENT regressor. The results appear in the lower panel of Table
1.13.8. We observe that the R2 remains roughly equal (and therefore the
adjusted one, not reported, increases) but that the model performs not as
well out-of-sample. The takeaway from this example is that while SENT
appears to be a borderline significant regressor in-sample, it helps reduce
forecasting errors out of sample. Part of that is explained by the fact that
the parameter estimate for the SENT regressor for the full sample, reported
in Table 1.13.7, is highly significant.
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Coefficient Std Error t-Statistic R2 RMSFE static
Models 1 - 4
C 0.799 0.437 1.831
VIX(-1) 0.222 0.020 11.067 0.509 2.040

C 7.159 1.964 3.646
SENT(-1) -0.019 0.021 -0.906 0.007 3.340

C 19.787 1.815 10.903
PMI(-1) -0.277 0.035 -7.963 0.350 2.620

C 5.457 0.186 29.401
SP500(-1) -0.156 0.044 -3.567 0.097 3.370

Model 5
C 11.868 1.924 6.168 0.628 1.450
VIX(-1) 0.172 0.022 7.818
SENT(-1) -0.025 0.014 -1.844
PMI(-1) -0.146 0.032 -4.632
SP500(-1) -0.064 0.030 -2.107

Model 6
C 10.667 1.829 5.831 0.617 1.820
VIX(-1) 0.160 0.021 7.543
PMI(-1) -0.164 0.030 -5.405
SP500(-1) -0.070 0.030 -2.333

Table 1.13.8: Default risk models: In-sample and out-of-sample results

1.14 Concluding remarks

The linear regression model reviewed in this chapter is the backbone of many
forecasting techniques. In the next chapters we will expand the basic regres-
sion setting discussed so far. First, mis-specification analysis will be dis-
cussed, followed by dynamic extensions of regression models. The latter will
also be a bridge towards time series models, both univariate and multivariate.
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Chapter 2

Model Mis-Specification

2.1 Introduction

When Assumptions 1.2.1 - LR1 - LR5 hold, we showed in Chapter 1 that
OLS estimators are consistent, efficient, and asymptotically normally dis-
tributed. In this chapter instead we will try to understand what happens
if each of these hypotheses is violated, how we can assess if the hypotheses
hold or not, and what we can do if they do not. In Sections 2.2 - 2.4 we
will consider residual heteroskedasticity and serial correlation, in Section 2.5
we will deal with parameter instability, while in Section 2.6 we will allow
the regressors to be correlated with the error term, in Sections 2.7, 2.8, and
2.9 we present examples based on, respectively, simulated and actual data.
In Section 2.10 we present some concluding remarks. As with the previous
chapter, more detailed presentations can be found, for example, in Hendry
(1995), Judge, Hill, Griffiths, Lütkepohl, and Lee (1988), Marcellino (2016),
Stock and Watson (2009), Wooldridge (2012), among others.

2.2 Heteroskedastic and correlated errors

The linear regression model with k explanatory variables can be written in
compact notation as

y
T×1

= X
T×k

β
k×1

+ ε
T×1

, (2.2.1)

57
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Assumption 1.2.1 LR2 is actually a combination of:

Assumption 2.2.1 (Linear Regression Assumptions). In the regression model
in equation (2.2.1):

LR2a The errors ε are homoskedastic, i.e., Var(εi) = σ2, i = 1, . . . , T,

LR2b The errors ε are uncorrelated, i.e., corr(εt, εt−j) = 0, j = 1, . . .

Suppose now that there is heteroskedasticity, i.e., Var(εi) = σ2
i , i = 1, . . .

,T. In words, this amounts to say that the error variance changes with the
different observations. For example, if yi is the volume of sales from a given
firm and the explanatory variable is the firm size, it is probable that the
variability of sales will increase with the firm size, which will be reflected
in an heteroskedastic error term. Similarly, consumption or investment’s
variability may rise with, respectively, disposable income or the profit level.
There can also be specific periods where the volatility of the shocks hitting
the economy increases, such as during financial crises.

The errors can also be correlated over time, i.e., corr(εt, εt−j) 6= 0. More
specifically, let us consider the case of first order serial correlation, εt =
ρεt−1 + ut. For example, if εt is a labor productivity shock, due to the in-
troduction of new technologies or to a legislative reform, typically it will
be positively correlated over time. Additionally, if we omit a relevant ex-
planatory variable which is also correlated across time, a part of its effect
on the dependent variable will show up in the error term, resulting in serial
correlation.

A simple way to formalize heteroskedasticity and serial correlation within
the linear model is by changing the representation of the error’s variance-
covariance matrix from σ2I to simply Ω, a T × T matrix that for the moment
we treat as known. For example, if errors are uncorrelated but their variance
changes across observations, Ω will be:

Ω =


σ2

1 0 . . . 0

0 σ2
2

...
...

. . . 0
0 . . . 0 σ2

T

 . (2.2.2)
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Instead, if the errors display first order serial correlation and εt = ρεt−1 +ut,

ut
iid∼ (0,σ2

u), then we have:

Ω = σ2
u/(1− ρ2)


1 ρ ρ2 . . . ρT−1

ρ 1 ρ
...

ρ2 ρ ρ2

...
. . . ρ

ρT−1 . . . ρ2 ρ 1

 . (2.2.3)

When Assumptions 2.2.1 - LR2a-LR2b are substituted with

Var(ε) = Ω, (2.2.4)

the resulting model is known as the generalized linear model.

Let us now examine what are the consequences of violating the assump-
tions of homoskedastic and uncorrelated errors for the properties of the OLS
estimator. First, it turns out that the OLS estimator is no longer efficient, as
there exists another unbiased estimator with a lower variance, which is called
the Generalized Least Squares (GLS) estimator. We will derive its formula-
tion later in the section. Second, β̂OLS is still consistent but the formula for
its variance covariance matrix requires modifications. Moreover, consistency
is lost when the model is dynamic and the errors are serially correlated, as
we will see in more details in the next section. Third, in general, the variance
estimator σ̂2

OLS = ε̂′ε̂/(T − k) will be biased and inconsistent, since it was
derived imposing Var(ε) = σ2I while in this case Var(ε) = Ω. Fourth, since
the formula for the variance of β̂OLS is no longer valid, the standard versions
of the confidence intervals and of the t− and F−tests, which rely on the
variance of β̂OLS, are no longer valid.

There are four types of remedies to the aforementioned problems.

1. Improve the model specification when there is evidence that there are
problems like omitted variables or model instability. For example, using
a dynamic rather than a static model, namely, allowing for lags of
the dependent variable as explanatory variables, typically reduces or
eliminates serial correlation problems. We will study dynamic models
in the next chapter.
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2. Make appropriate transformations of the variables so that the modified
model displays homoskedasticity, and possibly uncorrelated errors. For
example, working with variables in logarithms (when positive valued)
typically reduces the extent of the heteroskedasticity. Similarly, work-
ing with variables expressed in growth rates instead of levels can reduce
error autocorrelation.

3. Change the method to compute the variance estimator for β̂OLS. In-
deed, it is still possible to conduct appropriate inference based on β̂OLS
since it is in general consistent, but it is crucial to find a proper es-
timator for its variance. The Heteroskedasticity and Autocorrelation
Consistent (HAC) variance estimator exploits this fact (see e.g., White
(1980) and Section 2.3). Nevertheless, if the residuals properties are
related to other forms of model mis-specification, such as omitted vari-
ables or unaccounted parameter changes, then β̂OLS will be inconsistent
and using the HAC correction for its standard errors will not really solve
the problem.

4. Change the estimation method to GLS, as discussed in the next sub-
section. However, a similar comment on the effects of model mis-
specification as in the case of the HAC variance estimator applies.

2.2.1 The Generalized Least Squares (GLS) estimator
and the feasible GLS estimator

Since the error covariance matrix Ω is positive definite, there exists an in-
vertible matrix H such that

HΩH ′ = I.

Hence
Ω = H−1(H ′)−1 = (H ′H)−1

For example, in the case of heteroskedastic errors, with the covariance matrix
given by (2.2.2), the H matrix will have the following form:

H =


1/σ1 0 . . . 0

0 1/σ2
...

...
. . . 0

0 . . . 0 1/σT

 .
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If instead the errors display first order autocorrelation, their covariance ma-
trix is (2.2.3) and it is possible to show that H takes the form:

H =


√

1− ρ2 0 . . . 0

−ρ 1 0
...

0 −ρ 1 0
0 . . . −ρ 1

 .
Let us consider again the linear model (2.2.1):

y = Xβ + ε

where now Var(ε) = Ω. If we multiply both sides by H we obtain

Hy = HXβ +Hε

or

Ỹ = X̃β + ε̃ (2.2.5)

where

E(ε̃ε̃′) = HΩH ′ = I.

In practice, we have transformed the dependent and explanatory variables
such that model (2.2.5) features homoskedastic and uncorrelated errors, while
leaving the parameters β unchanged.

It is now possible to use OLS in the transformed model (2.2.5), hence
obtaining the GLS estimator:

β̂GLS = (X̃ ′X̃)−1X̃ ′Ỹ = (X ′Ω−1X)−1X ′Ω−1Y. (2.2.6)

Let us describe the properties of the GLS estimator:

1. β̂GLS is unbiased as:

E(β̂GLS) = E((X̃ ′X̃)−1X̃ ′Ỹ ) = β + E((X̃ ′X̃)−1X̃ ′E(ε̃)) = β.

2. The variance of β̂GLS is:

V ar(β̂GLS) = E(β̂GLS − β)(β̂GLS − β)′ = (X ′Ω−1X)−1.
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3. β̂GLS is efficient, being the unbiased linear estimator with the lowest
variance, as it is possible to show by simply applying the Gauss Markov
Theorem to the transformed model (2.2.5).

4. β̂GLS is consistent: it is unbiased and its variance goes to zero as the
number of observations goes to infinity.

5. The asymptotic distribution of β̂GLS is normal,

β̂GLS
a∼ N(β, (X ′Ω−1X)−1).

It is then possible to use the same inference methods as in the stan-
dard linear regression model, substituting β̂OLS with β̂GLS, using where
needed the variance of β̂GLS, and assuming the sample size is large
enough.

6. Finally, if Ω = σ2I, then β̂GLS = β̂OLS.

So far we have assumed that the variance covariance matrix of the errors,
Ω, is known, although this is practically never the case and Ω has to be
estimated. In particular, the GLS estimator would not be an actual estimator
if it was dependent on all the unknown parameters of Ω. The GLS estimator
where the Ω matrix is substituted by its estimator Ω̂ takes the name of
Feasible GLS (FGLS) estimator:

β̂FGLS = (X ′Ω̂−1X)−1X ′Ω̂−1Y.

Estimation of the Ω matrix is not simple, since in general it consists of
T (T + 1)/2 distinct unknown elements while the number of observation is
only T. For this reason, one needs to impose some a priori restrictions on Ω.
In the case of heteroskedastic errors, a common assumption one can make is
that the variance only takes two (or a limited number of) values, say σ2

1 and
σ2

2. Similarly, when the errors are serially correlated, one can assume a first
order structure, εt = ρεt−1 + ut, so that only ρ and σ2

u need to be estimated.

Let us take the case of heteroskedasticity. Assuming that the variance is
equal to σ2

1 in a first subsample of length T1 while it becomes σ2
2 in a second

subsample of length T2, we can estimate both σ2
1 and σ2

2 using the standard
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OLS formula applied separately in each subsample. The resulting Ω̂ will be:

Ω̂ =



σ̂2
1 . . . 0 0 . . . 0

. . .
...

...
0 . . . σ̂2

1 0 . . . 0
0 . . . 0 σ̂2

2 . . . 0
...

...
. . .

0 . . . 0 0 . . . σ̂2
2


(2.2.7)

In the case of serially correlated errors, one can estimate by OLS the
original regression model and use the resulting residuals ε̂t to estimate the
model ε̂t = ρε̂t−1 +ut. Then, the OLS estimators of ρ and Var(ut), ρ̂ and σ̂2

u,
can be used to build Ω̂ as:

Ω̂ =
σ̂2
u

1− ρ̂2


1 ρ̂ ρ̂2 . . . ρ̂T−1

ρ̂ 1 ρ̂ . . .
...

ρ̂2 ρ̂ ρ̂2

... ρ̂
ρ̂T−1 . . . ρ̂2 ρ̂ 1

 . (2.2.8)

Note that since we used a regression of y on X to obtain Ω̂, Ω̂ and ε are in
general correlated. This implies that the FGLS estimator is biased in small
samples, since

E
[
(X ′Ω̂−1X)−1X ′Ω̂ε

]
6= 0⇒ E(β̂FGLS) 6= β. (2.2.9)

Moreover, β̂FGLS is no longer a linear estimator, as y is also used for the
estimation of Ω̂, and it is not necessarily the minimum variance estimator.
However, β̂FGLS remains a consistent estimator, β̂FGLS → β, and asymptoti-
cally it has the same properties as β̂GLS (provided a consistent estimator for
Ω is used).

In terms of forecasting, it can be shown that the optimal (in the MSFE
sense) h-steps ahead forecast is

ŷT+h = xT+hβ̂GLS +W ′Ω−1ε̂, (2.2.10)

where W = E(εT+h, ε), which is a 1 × T vector containing as elements
E(εT+h, εt) ∀ t = 1, . . . , T, see, e.g., Granger and Newbold (1986, p. 191). For
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this formula to be applicable, Ω and W must be replaced by their (consistent)
estimators.

Hence, if E(εT+h, ε) = 0 (no correlation in the errors), the difference with
respect to the optimal forecast from Chapter 1 is only in the use of β̂GLS
instead of β̂OLS. Otherwise, we need to add an extra term to the forecast
(W ′Ω−1ε̂), since current errors matter, being correlated with future (unob-
served) errors.

2.3 HAC estimators

In this subsection we deal with the estimation of variances in settings where
we do not specify a (parametric) model for the process involved, often referred
to as Heteroskedasticity and Autocorrelation Consistent (HAC) variance es-
timators.

We consider two situations. The first situation is the estimation of Ω̂ with-
out imposing some parametric model for heteroskedasticity. The approach is
often called in econometrics White standard errors named after White (1980).
With heteroskedasticity, the regression errors εi are independent, but have
distinct variances σ2

i , i = 1, . . . , T. Then Ω = diag(σ2
1, . . . , σ

2
T ), and σ̂2

i can be
estimated with ε̂2

i , yielding Ω̂ = diag(ε̂2
1, . . . , ε̂

2
T ). It can then be shown that

using an expression for Var(β̂OLS) similar to (X ′X)−1X ′Ω̂X(X ′X)−1 instead
of σ̂2(X ′X)−1 yields White’s estimator, often referred to as a heteroskedas-
ticity consistent estimator. MacKinnon and White (1985) suggest various
small sample improvements, namely if we characterize Ω̂ = diag(ω̂2

1, . . . , ω̂
2
T ),

then the following estimators can be defined:

ω̂i =
T

T − k
ε̂2
i

ω̂i =
ε̂2
i

1− hi

ω̂i =
ε̂2
i

(1− hi)2
(2.3.1)

where hi is the ith diagonal element of the matrix X(X ′X)−1X ′.

For some applications – several considered later in the book – we are
interested in the unconditional variance Var(εt), where εt features autocorre-
lation of unknown form. In fact this analysis is often cast in a more general
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multivariate settings where ε is a vector (think of the errors for a system of
multiple equations). We will present the vector case, with the scalar εt being
a straightforward simplification. The generic procedure is usually referred to
as Heteroskedasticity and Autocorrelation Consistent (HAC) variance esti-
mation.

Let us define Γ̂j,T = (1/(T − j))
∑T

t=j+1 ε̂tε̂
′
t−j. Then, we can consider the

following estimator for var(εt), which we will denote by V̂T :

V̂T = Γ̂0,T +

[
T−1∑
j=1

wj,T (Γ̂j,T + Γ̂′j,T )

]
(2.3.2)

where wj,T is a weighting scheme, also known as kernel. Starting with ?,
Newey and West (1987), and ?, different choices for the weights w have been
suggested in the econometrics literature. Andrews (1991) provides a gen-
eral framework of choosing the weights by kernel functions with automatic
bandwidth selection.1 In particular, wj,T = k(j, bT ) with kernel functions typ-
ically of the Bartlett type (Bartlett (1955)), Parzen-type (Parzen (1957)) or
Quadratic Spectrum (QS) (Epanechnikov (1969), Priestley (1962), Andrews
(1991)). The bandwidth bT , is a positive valued parameter which determines
how many Γ̂j,T are included in the HAC estimator with the Bartlett and
Parzen kernels, whereas the kernel function determines their weights. An-
drews (1991) shows that the QS weights are optimal in a mean squared error
sense. An extensive Monte Carlo study reported in Newey and West (1994)
finds that the choice of the kernel function is not as critical as is the choice
of the bandwidth in determining the finite sample properties.

Consistency of the HAC estimator requires that bT tends to infinite as
sample size T grows. Andrews (1991) shows that the optimal bandwidth has
to grow at rates O(T 1/3) for Bartlett and O(T 1/5) for Parzen and QS. The
details of the kernel functions and bandwidth appear in the table below.

1The long run variance is equal to 2πf(0), i.e., 2π times the spectral density at frequency
zero. The estimation of spectral density has been considered in Parzen (1957) (scalar case)
and Hannan (1970) (multivariate case).



i
i

i
i

i
i

i
i

66 CHAPTER 2. MODEL MIS-SPECIFICATION

Bartlett, Parzen and Quadratic Spectral (QS) kernels

Kernel wj,T Optimal
Bandwith

Bartlett k(j, bT ) = max (1− aj, 0) aj = j/(1 + bT ) O(T 1/3)

Parzen k(j, bT ) =

{ 1− 6a2
j + 6a3

j for 0 ≤ aj ≤ 1/2
2(1− aj)3 for 1/2 < aj ≤ 1
0 otherwise

O(T 1/5)

QS k(j, bT ) = 25
12π2d2j

(
sin(mj)

(mj)
− cos(mj)

)
O(T 1/5)

dj = j/bT mj = 6πdj/5

Finally, it is often recommended to use a mixture of parametric models and
HAC estimators to obtain better estimates of V̂T (see e.g., Den Haan and
Levin (2000) and Section 6.3 for further discussion).

2.4 Some tests for homoskedasticity and no

correlation

We have seen that when the hypotheses on the errors in the linear regression
model are violated, many complications arise for the estimation procedures.
Hence, it is convenient to check the validity of the assumptions, and in this
section we will consider some tests for homoskedasticity and absence of cor-
relation.2 We will consider procedures that are implemented in standard
econometrics packages, such as Eviews, Matlab, and R or can be easily com-
puted.

The main problem is that the errors are unobservable. However, it is
possible to proxy them with the estimated residuals, although with due
caution. A first heuristic method to check for homoskedasticity is to plot
ε̂2
i , i = 1, . . . , T, where as usual we indicate with ε̂ the residuals of the OLS

2A more detailed analysis appears in standard econometric textbooks, such as Hendry
(1995), Judge, Hill, Griffiths, Lütkepohl, and Lee (1988), Stock and Watson (2009),
Wooldridge (2012), among others.
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regression, ε̂ = y - X ′β̂OLS. If the variability of ε̂2
i changes substantially over

time (or across observations) this might be a sign of heteroskedasticity.
There also exist more rigorous testing procedures, and we will now con-

sider first the Goldfeld-Quandt test, and then the Breusch-Pagan-Godfrey
and White tests for homoskedasticity.

The null hypothesis of the Goldfeld-Quandt test is that errors are ho-
moskedastic, namely, H0 : σ2

i = σ2. The alternative is H1 : σ2
i = cz2

i , c > 0,
that is to say that the variance increases with the explanatory variable z.
The test can be performed in three steps.

First, the sample observations (yi, xi), i = 1, . . . , T, are ranked according
to the values of zi, so that the lowest values of xi are in the first part of the
sample.

Second, the d central observations of the re-ordered sample are excluded
(e.g. 20% of the sample, or d = 0.2T ), and the remaining observations are
divided in two subsamples of size (T − d)/2.

Finally, for each subsample one computes the Residual Sum of Squares
RSS =

∑
ε̂2
i , and constructs the following ratio:

GQ =
RSS2

RSS1

, (2.4.1)

where RSSj refers to subsample j = 1 and 2. Assuming that all the other
hypotheses on the regression model hold, including normally distributed er-
rors, under the null hypothesis the test statistic GQ is distributed as F (p, p),
where p = [(T − d)/2]- k degrees of freedom, since both the numerator and
the denominator are distributed as two independent χ2

p. The intuition behind
the Goldfeld-Quandt test is that if the error variance is constant, the value
of the numerator and the denominator of (2.4.1) should be similar, hence the
statistic should fall within the acceptance region of the null distribution. On
the contrary, if the variance increases with zi, the test statistic should grow
in size and fall within the rejection region. The standard form of the test is
unilateral, therefore if one wants to assume that under H1 the variance de-
creases with the values of zi, one simply has to consider the slightly modified
test statistic RSS1/RSS2.

The Breusch-Pagan-Godfrey test for homoskedasticity assumes that the
null hypothesis is H0 : σ2

i = σ2. Under the alternative there is an unknown
relationship between the errors’ variance and one or a set of variables Z, i.e.
H1 : σ2

i = γ + δZi, where possibly Z = X. The test is conducted in the
following way.
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First, using the OLS residuals ε̂ one regresses the squared residuals on Z:

ε̂2
i = γ + δZi + vi. (2.4.2)

Second, one computes the Breusch-Pagan-Godfrey (BPG) test as:

BPG = TR2, (2.4.3)

where R2 is simply the coefficient of determination of regression (2.4.2), and
T is the sample size. Under the null hypothesis, and the basic assumptions
of the linear regression model, asymptotically BPG ∼ χ2

q, where q is the
dimension of Z. The intuition behind this test is that under the null, R2

should be quite low.
White’s homoskedasticity test assumes the null hypothesis H0 : σ2

i = σ2,
while the alternative is H1 : σ2

i = f(Xi, Zi), with f some unknown function.
The test goes as follows.

First, we run the regression (assuming for simplicity that X and Z are
scalar):

ε̂2
i = γ0 + γ1Xi + γ2Zi + γ3X

2
i + γ4Z

2
i + γ5XiZi + vi (2.4.4)

Then, similar to the BPG test, we compute the White’s statistic (W ) as: W=
TR2 for regression (2.4.4). Note that, in the event of multiple regressors or
elements in Z, we take all linear, quadratic and cross-product terms. Under
the null, the asymptotic distribution is again χ2

q, where q is the number of
regressors (other than the constant) in the above regression.

Let us consider now testing for no serial correlation in the errors. One
of the most famous testing procedures in econometrics is the Durbin-Watson
(DW ) test for no serial correlation. The null hypothesis isH0 : εt uncorrelated,
while the alternative is first order correlation, i.e. H1 : εt = ρ εt−1 + ut, ρ 6= 0.
The test statistic is based on the OLS residuals:

DW =

∑T
t=2(ε̂t − ε̂t−1)2∑T

t=1 ε̂
2
t

≈ 2− 2ρ̂. (2.4.5)

Hence 0 ≤ DW ≤ 4, with DW ≈ 2 under the null.
Despite its popularity, this test has many limitations. First, under the null

H0 the test statistic DW has a non-standard distribution, thereby forcing the
user to look at specifically tabulated critical vales. Second, it is not possible
to use it with dynamic specifications. Finally, the alternative hypothesis is
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too specific, as the user might be interested in detecting also serial correlation
of a order higher than one. Therefore, the DW statistic is often used as an
informal first check for model’s performance: when it substantially departs
from the value of 2 it is considered as a first sign of errors’ serial correlation.

An alternative method amending for such weaknesses is based on the
Lagrange Multipliers (LM) principle, see for example Spanos (1987) for tech-
nical details. The LM test, also called the Breusch-Godfrey test, is based
on the null hypothesis H0 : εt uncorrelated, while the alternative is H1 : εt
correlated up to order m, where m is user-specified. Defining

r̂j =

∑T
t=j+1 ε̂tε̂t−j∑T

t=1 ε̂
2
t

, (2.4.6)

for j = 1, . . . , m, the test statistic is:

LM = T

(
m∑
j=1

r̂2
j

)
. (2.4.7)

Under H0, LM is asymptotically distributed as χ2
m, assuming again that all

the other model assumptions hold. There is no fixed rule for the choice of m :
when there is no theoretical reason to assume something specific a priori, one
can try with different alternatives. Behind this test there is the argument
that, if errors are uncorrelated, also the residual sample autocorrelations
should be low, resulting in values of r̂j close to zero for j = 1, . . . , m. On the
other hand, if there is positive or negative autocorrelation in the errors, the
test statistic should be high; clearly this implies that the test is unidirectional.

2.5 Parameter instability

One of the biggest problems in econometrics, and in particular in forecast-
ing, is the assumption of stable model parameters. The presence of several
institutional modifications, changes in economic policy, introduction of new
products and production methods, the process of globalization, etc. are all
possible sources of parameter instability.

Moreover, also rare events like wars, terrorist attacks, commodities price
hikes, and financial market crashes could cause parameter instability, even
if only temporarily. Outliers, i.e., extreme values of either the dependent
variable or the regressors, can cause problems similar to parameter instability.
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In this section we will evaluate what happens in the context of the lin-
ear regression model when parameters may not be constant over time (or
across observations in the case of cross-sectional data), and what are the
implications for forecasting. Next, we will discuss simple tests and methods
to detect parameter instability, and the use of dummy variables as a remedy.
Models with time-varying parameters are considered in more details in the
third part of the book.

2.5.1 The effects of parameter changes

Let us reconsider equation (8.2.4) and allow for time-varying parameters:

yt = X1tβ1t +X2tβ2t + . . . Xktβkt + εt, (2.5.1)

Then, we have so far imposed the following:

Assumption 2.5.1 (Linear Regression Assumptions). The linear regression
model defined in equation (2.5.1) satisfies:

LR6 The parameters are stable across time, βit = βi ∀ i and t.

Let us consider now a specification where the dependent variable y de-
pends on k regressors contained in the matrix X and suppose that at time
T1 a potentially destabilizing event happens. To simplify notation we will
denote a sample by its end-point, i.e. the sample ending with T1 will simply
be denoted by observations t ∈ T1. The second sample is running from t =
T1 + 1, . . . , T has T2 observations and the elements t ∈ T2. The model can
be rewritten as:

yt = Xtβ1 + ε1t t = 1, . . . , T1 or t ∈ T1, (2.5.2)

yt = Xtβ2 + ε2t t = T1 + 1, . . . , T or t ∈ T2, (2.5.3)[
ε1t

ε2t

]
iid∼ N

([
0
0

]
,

[
σ2

1IT1 0
0 σ2

2IT2

])
. (2.5.4)

Let us suppose that, by mistake, we assume that the parameters are
constant, that is to say:

yt = Xtβ + ut ∀ 1 ≤ t ≤ T, (2.5.5)

ut
iid∼ N(0, σ2

u).
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Then, it can be easily shown that the OLS estimators β̂ and σ̂2
u are biased

and inconsistent.
The implications of unaccounted parameter instability for forecasting are

also important. The use of inconsistent parameter estimators, such as β̂, to
construct forecasts of future values of y is clearly suboptimal.

The presence of parameter instability in the forecast sample is also prob-
lematic. To illustrate this point, let us assume that T1 is the estimation
sample and T2 the forecast sample. Abstracting from parameter estimation
issues and assuming that future values of Xt are known, the optimal forecast
made in T1 for yt over t ∈ T2 is

ŷt = Xtβ1.

The actual values are instead:

yt = Xtβ2 + ε2t,

so that the forecast errors are:

et = Xt(β2 − β1) + ε2t.

Therefore, the larger the change in β the larger the forecast error (and the
MSFE). A similar point holds if the parameters change during the forecast
sample rather than at its start. Empirically, parameter change is one of the
major sources of forecast failure.

In summary, both for parameter estimation and for forecasting, it is cru-
cial to assess whether the model parameters are stable, and if not, to take
proper measures.

2.5.2 Simple tests for parameter changes

In order to build an appropriate testing procedure, let us consider the fol-
lowing sets of hypotheses:

H ′0 : β1 = β2 , H ′′0 : σ2
1 = σ2

2, (2.5.6)

H ′1 : β1 6= β2 , H ′′1 : σ2
1 6= σ2

2. (2.5.7)

and where H0 = H ′0 ∪ H ′′0 . It is convenient to consider two separate cases,
according to whether the number of observations in the second subsample
period T2 is greater or smaller than the number or regressors k.
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Case 1: T2 > k

In this case it is possible to estimate both models (2.5.5) on the whole
set of observations, and the two models (2.5.2) and (2.5.3) in the respective
subsamples T1 and T2. The result will be three sets of residuals and the
respective residuals sum of squares (RSS), denoted by RSST , RSST1 , and
RSST2 .

The Chow test for the null hypothesis H ′0 : β1 = β2|H ′′0 is

CH1 : (
RSST −RSST1 −RSST2

RSST1 +RSST2
) · T − 2k

k
∼
H0

F (k, T − 2k), (2.5.8)

where T = T1 + T2 and the rejection region is unilateral. Behind this test
there is the argument that if parameters are stable, then RSST will probably
be similar to RSST1+ RSST2 , while in the case of instability we expect that
RSST > RSST1 +RSST2 .

It is important to stress that the null hypothesis for CH1 is built on the
simplifying assumption that the variance remains constant across the two
subsamples, actually as we have seen it is H ′0 : β1 = β2|H ′′0 . If this was not
the case, then the test would by biased towards rejection of the null β1 =
β2 because RSST would be greater than RSST1 + RSST2 by construction.
Hence, it is very important also to make sure that the variance remains
constant across subsamples. Therefore, we would like to test:

H ′′0 : σ2
1 = σ2

2 against H ′′1 : σ2
1 < σ2

2. (2.5.9)

The test statistic is now

CH2 =
σ̂2

2

σ̂2
1

=
RSST2
RSST1

T1 − k
T2 − k

∼
H′′0

F (T2 − k, T1 − k). (2.5.10)

Since it can be shown that CH1 and CH2 are independent, it is convenient
to first use CH2 to verify the variance stability and then to apply CH1 to
assess the regression parameters’ stability. For further details, see e.g. Judge,
Hill, Griffiths, Lütkepohl, and Lee (1988, p. 363).

Note that the null of the CH2 test is the same as the null of the ho-
moskedasticity tests we analyzed in the previous section. Hence, it is possi-
ble to apply those same tests also in this context. On top of that, once we
find evidence of heteroskedasticity, it is always possible to try to apply some
model transformation which amends for this problem, as we did for the GLS
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estimator. For example, in model (2.5.2)-(2.5.3) this transformation could
simply consist in dividing the variables by σ1 in the first subsample and by
σ2 in the second one (or by their sample estimators σ̂1 and σ̂2). It would
be then safe to apply the CH1 test and assess parameters’ stability in the
transformed model.

Case 2: T2 < k

In this case there are not enough degrees of freedom to estimate model
(2.5.3). The null H ′0 : β1 = β2|H ′′0 must then be tested through a different
test, which is:

CH3 :
(
y2 −X2β̂1

)′ [I +X2(X ′1X1)−1X ′2]
−1

ε̂′1ε̂1

(
y2
T2x1

−X2β̂1

)
T1 − k
T2

∼
H0

F (T2, T1 − k).

This time the rejection region is in the right tail of the distribution. Here, y2

- X2β̂1 is the forecast error resulting from the use of X2β̂1 to predict y2, and
actually it is the optimal predictor in the case in which X2 is known while
the model parameters are not. On the other hand, the term([

I +X2 (X ′1X1)
−1
X ′2

]−1

/ε̂′1ε̂1

)
(T1 − k)

is an estimator of the forecast errors’ covariance matrix. If the null hypothesis
holds, forecast errors are small, and so is the test statistic CH3, while the
opposite happens if parameters change in the subsample T2.

It is also possible to rewrite the CH3 test in terms of residuals sum of
squares as:

CH3 =

(
RSST −RSST1

RSST1

)
T1 − k
T2

∼
H0

F (T2, T1 − k). (2.5.11)

When T2 < k there is an appropriate test for testing variance stability, i.e.
H ′′0 : σ2

1 = σ2
2 against H ′′1 : σ2

1 < σ2
2. The test statistic is now

CH4 :

(
y2 −X2β̂1

)′ (
y2 −X2β̂1

)
σ̂2

1

a∼
H′′0

χ2(T2). (2.5.12)
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The rationale is that since the numerator is an estimator for T2σ
2
2 when

the parameters are stable, under H ′′0 the statistic CH4 should roughly be
equal to the size of the second subsample T2. Note that both the numerator
and denominator of CH4 are based on β̂1, hence they are not independent.
Therefore, the distribution of CH4 is not F -shaped as before, but under the
null hypothesis it is asymptotically behaves as a chi-square which is written
as

a∼
H0

χ2(k), with k the degrees of freedom.

Finally, all the Chow tests we have discussed require the specification of
the date of the parameter change. If this is not known with certainty, we can
compute the tests for a set of possible candidate break dates, and then take
the maximum (or supremum) of the resulting set of statistics. Unfortunately,
the max-Chow test does not have a standard distribution, so that the proper
critical values must be tabulated using simulation methods, see for example
Andrews (1993) and Andrews and Ploberger (1994). Moreover, while the
procedures we have discussed so far allow for a single break point, similar
tests are available for multiple break points, possibly at unknown dates, see
e.g., Bai and Perron (1998), (2003a), (2003b), Rossi (2012), and Section 2.5.5
for more details and references.

2.5.3 Recursive methods

An easier alternative to sophisticated versions of the Chow tests in the pres-
ence of unknown break points is recursive estimation, which can be helpful
in determining if and when there is a break. The general form of the recur-
sive OLS estimator underlying the recursive forecasts we have discussed in
Chapter 1 is:

β̂t =

(
X̄ ′t
k×t
X̄t

)−1

X̄ ′t yt
t×1

t = T0, T0 + 1, . . . ., T (2.5.13)

where T0 > k and the matrices X̄ ′t and vectors yt contain the first t observa-
tions for the regressors X and the dependent variable y. The corresponding
estimator for the variance of β̂t is

var
(
β̂t

)
= σ̂2

t

(
X̄ ′t
k×t
X̄t

)−1

(2.5.14)

with
σ̂2
t = (yt − X̄tβ̂t)

′(yt − X̄tβ̂t)/(T − k). (2.5.15)
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Plotting the recursive estimators of the parameters β̂t, t = T0, T0 + 1,
. . . , T with their confidence bands can prove useful in detecting potential
parameter instability. If β is constant over time, then β̂t should quickly
settle down to a common value. Conversely, if for example the true model
was (2.5.2) and (2.5.3), then we would expect to see β̂t starting very close to
β1 and, after having trespassed t = T1 + 1, to get closer and closer to β2. The
point in time when the change starts to be evident is a good candidate as
the date of the structural change, when no a priori information is available.

Small changes in model parameters or changes happening at the beginning
or at the end of the sample are much more difficult to detect with these type
of methods (as well as with more sophisticated procedures).

Formal tests for parameter instability can be computed from the one-step
ahead recursive residuals, which correspond to one-step ahead forecast errors,
given by:

ε̃t =
(
yt −Xtβ̂t−1

)
= εt +Xt(β − β̂t−1) (2.5.16)

with

β̂t−1 =

(
X̄t−1
k×(t−1)

X̄t−1

)−1

X̄ ′t−1 yt−1
(t−1)×1

(2.5.17)

and
σ̃2
t = V ar(ε̃t) = (1 +Xt(X̄

′
t−1X̄t−1)−1X ′t)σ

2. (2.5.18)

The standardized recursive residuals can be defined as:

ω̃t = ε̃t/σ̃t, t = k + 1, . . . , T (2.5.19)

Brown, Durbin, and Evans (1975) propose a CUSUM statistic:

CUSUMt =
t∑

j=k+1

ω̃j
σ̃ω,T

(2.5.20)

where σ̃2
ω,T = (T −k)−1

∑T
t=k+1(ω̃t− ω̄)2. Under the null hypothesis that βk+1

= . . . = βT , CUSUMt has mean zero and variance that is proportional to
t− k − 1.3 The CUSUMSQ statistic is defined as:

CUSUMSQt =

∑t
j=k+1 ω̃

2
j∑T

j=k+1 ω̃
2
j

(2.5.21)

3Ploberger and Krämer (1992) show that the CUSUM statistic can be computed with
OLS instead of recursive residuals.
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Under the null of parameter stability, the CUSUMSQt statistic has an
asymptotic χ2(t) distribution.

Finally, it is worth noting that even a single outlier may result into a
change in the recursive estimator and, more importantly, in a large recursive
residual and therefore affect CUSUM type statistics.

2.5.4 Dummy variables

Once the presence of parameter instability or outliers is detected, one of
the simplest remedies we can put forth is augmenting the linear model with
specific binary variables, which are usually called dummy variables. These
are variables which take value zero for the whole sample except during the
periods of structural change or for outlying observations, when they are set
equal to one.

To illustrate the use of dummy variables, let us take as a reference a simple
model for the aggregate consumption function and assume that a negative
shock like a war, a credit crunch or simply an increase of pessimism takes
place. We want to show how to take into account these negative events in
the consumption function, through dummy variables.

The basic consumption model is

ct = β1 + β2inct + εt,

where c indicates consumption and inc income. Let us insert a dummy
variable Dt taking value one during credit crunch times and zero for the
remaining part of the sample. There are three possible ways in which the
dummy variable can be inserted in the model:

M1: Structural change in autonomous consumption

ct = β1 + αDt + β2inct + εt

M2: Structural change in the marginal propensity to consume

ct = β1 + β2inct + γDtinct + εt

M3: Structural change in both the autonomous consumption and in the
marginal propensity to consume

ct = β1 + αDt + β2inct + γDtinct + εt
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We focus on model M3 which has a more general form and accounts
for structural changes in both the intercept and slope of the consumption
function. Another formulation for model M3 is:

ct =

{
β1 + β2inct + εt, t /∈ credit crunch
γ1 + γ2inct + εt, t ∈ credit crunch (2.5.22)

where γ1 = β1 + α and γ2 = β2 + γ. With this formulation we want to stress
that the use of dummy variables as additional regressors in the basic model
ultimately results in specifying a model with time-varying parameters.

Let us now turn the attention to a permanent structural change. Let
us assume, for example, that at time t0 there is a permanent shift in the
marginal propensity to consume. The model could then be specified as

ct = β1 + β2inct + β3(inct − inct0)Dt + εt (2.5.23)

Dt =

{
1 if t ≥ t0
0 if t < t0

(2.5.24)

In this case there are no discontinuities in expected consumption, as in t0 we
have

β1 + β2inct0 = β1 − β3inct0 + β2inct0 + β3inct0 (2.5.25)

Using dummy variables, we can also rewrite model (2.5.2)-(2.5.3) as a
single equation. Assuming that the error variance is constant, it is:

yt = β1Xt + γ2DtXt + εt, (2.5.26)

with β2 = β1 + γ2 and

Dt =

{
1 if t > T1

0 if t ≤ T1
(2.5.27)

It can be shown that an F−test for the null hypothesis γ2 = 0 in (2.5.26) is
exactly equivalent to the CH1 test in (2.5.8). Under the null, the F−statistic
has an F (k, T−2k) distribution, since the model has 2k regressors k of which
are being tested for significance.

When the variance is also changing across sub-periods

Var (εt) =

{
σ2

1, if t ≤ T1

σ2
2, if t > T1

(2.5.28)
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the model (2.5.26) can be reformulated as

yt/((1−Dt)σ1 +Dtσ2) = β1Xt/((1−Dt)σ1 +Dtσ2) + γ2DtXt/

((1−Dt)σ1 +Dtσ2) + ut (2.5.29)

where ut = εt/((1 − Dt)σ1 + Dtσ2), Var(ut) = 1. As a consequence, model
(2.5.29) embeds a structural change in the variance, despite having ho-
moskedastic errors.

So far we have used binary dummy variables that were meant to cap-
ture instantaneous structural changes, for example from β1 to β2. When the
structural change is more gradual, but its shape is still known, dummies can
take more general forms, such as

Dt =

{
1/(1 + exp(µt) if t ≥ t0
0 if t < t0

(2.5.30)

In more complex models, this gradual structural change may be driven by a
specific regressor, as for example in

Dt =

{
1/(1 + exp(µZt)) if Zt ≥ Z0

0 if Zt < Z0
(2.5.31)

In these cases, the model becomes non-linear and a proper estimation method
is required, typically non-linear least squares (NLS). Models of this type will
be considered in the third part of the book.

In case our sample contains multiple outliers or breaks, it is possible to
amend their effects by adding a dummy variable for each outlier or break,
even if the extent of multicollinearity increases with the number of added
dummies.

As a final remark, we note that the use of dummy variables assumes that
both the date of the break and the shape of parameter change are known.
When this is not the case, more general modeling tools are needed. We will
introduce models with general patterns of parameter time variation in Part
III of the book.

2.5.5 Multiple breaks

The dummy variables in the previous subsection assumed that the break-
points were known. What if we neither know how many breaks there are nor
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when they occur (if there is at least one breakpoint)? We describe now a
procedure proposed by Bai and Perron (1998) to determine the number of
breaks and their location. We consider a standard multiple linear regression
model as in equation (8.2.4) estimated over a sample of T observations:

yt = X1tβ1 +X2tβ2 + ...Xktβk + εt.

Suppose now that among the regressors, X1t . . . , Xkt we identify a k1-
dimensional set Xc

t which is not subject to potential structural change,
whereas the remainder k2-dimensional set called Zt might be affected by
parameter instability, where k = k1 + k2. If all the regressors are considered
then Xt = Zt, and the test procedure will apply to all variables. In some
cases we might only consider that the parameter associated to a particular
regressor (say Xjt - possibly the intercept) is changing through time, in which
case we isolate it into Zt with k2 = 1.

We have a sample of size T periods and consider m potential breaks,
producing m + 1 sample segments with stable parameters which we will call
for convenience regimes. For the observations Tj, Tj + 1 . . . , Tj+1 − 1 in
regime j we have the regression model

yt = Xc
t β + Ztαj + εt, (2.5.32)

for regimes j = 0, . . . , m. The above equation is characterized by: (1) a set
of breakpoints Tm = T1, . . . , Tm, and (2) a set of corresponding parameters
θm (β, α0 . . . , αm). Consider the LS minimization for a given m across all
possible breakpoints Tm and associated parameter vector θm. This means
solving a least squares problem that can be numerically quite involved as the
number of comparison models increases rapidly in both the sample size T
and the number of breaks m.4

One procedure proposed by Bai and Perron (1998) is a test for equality
of the αj across regimes, or put differently the null hypothesis of no breaks
against the alternative of m breaks. More specifically, we consider the null
hypothesis H0 : α0 = . . . = αm and the associated F−statistic:

Fm(α̂) =
1

T

(
T − (m+ 1)k2 − k1

mk2

)
(Rα̂)′(RV̂ (α̂)R′)−1(Rα̂) (2.5.33)

4Practical algorithms for computing the global optimizers for multiple breakpoint mod-
els are outlined in Bai and Perron (2003a).
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where α̂ = (α̂0 . . . , α̂m) and (Rα̂)′ = (α′0 − α′1, . . . , α′m−1 − α′m) and V̂ (α̂) is
the estimated variance matrix of α̂.

So far we assumed that the number of breaks m is pre-specified. In cases
where m is not known, we may test the null of no structural change against
an unknown number of breaks up to some upper-bound m∗. This type of
testing is sometimes termed double maximum since it involves optimization
both for a given m and across various values of the test statistic for m ≤ m∗.
The resulting statistics is sometimes referred to as supFm.

In all cases, we are dealing with non-standard asymptotic distributions,
whether it is for the Fm or SupFm statistics. Bai and Perron (2003b) provide
critical value and response surface computations for various trimming param-
eters (minimum sample sizes for estimating a break), numbers of regressors,
and number of breaks.

2.6 Measurement error and real-time data

This section is devoted to analyzing the consequences for OLS estimation
when Assumption 1.2.1 - LR3 is violated, namely, the explanatory variables
X are stochastic and not distributed independently of ε. We will also discuss
reasons why independence may fail, focusing on the case of real-time data
that is relevant in a forecasting context. By real-time data we refer to a
situation where an indicator is at first published in preliminary form, with
subsequent revisions being released. For example, GDP for quarter T can
be released in preliminary form (so called flash estimates) as soon as 30
days into the next quarter T + 1 and updated frequently thereafter up to
several years later (see e.g., Ghysels, Horan, and Moench (2017) for details).
When nowcasting (see Chapter 12) and short term forecasting is involved,
econometricians will generally use the information available at the time of
forecasting. Hence, the econometrician is bound to use real-time data.

Let us assume that E(ε|X) 6= 0, so that ε and X are correlated. Then,
the OLS estimator for β is biased:

E(β̂) = β + Ef(ε,X)[(X
′X)X ′ε] = β + Ef(x)[(X

′X)X ′]Ef(ε|X)(ε|X) 6= β,

where f(ε,X) denotes the joint density of the regressors and the error term,
whereas f(ε) and f(ε|X) are, respectively, the marginal and conditional den-
sities. Furthermore, both β̂ and σ̂2 are inconsistent. Inconsistency results
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from the fact that plim(X ′ε/T ) 6= 0 in the following expressions, where plim
denotes the limit in probability:

β̂ = β + (X ′X)−1X ′ε = β +

(
X ′X

T

)−1
X ′ε

T

T→∞→ β + (Σ−1
XX)plim

X ′ε

T
6= β,

σ̂2 =
ε̂′ε̂

T − k
=
ε′[I −X(X ′X)X ′]ε

T − k

=

[
ε′ε

T
+
ε′X

T

(
X ′X

T

)−1
X ′ε

T

]
T

T − k

T→∞→ σ2 + plim
ε′X

T
(Σ−1

XX)plim
X ′ε

T
6= σ2.

A typical condition causing the violation of Assumption 1.2.1 - LR3 is the
presence of measurement error in the regressors. This is a common occurrence
in economics, as the theoretical definition of a variable and its empirical
counterpart are seldom perfectly matched. Typical examples include the
natural rate of unemployment, potential output, and expectations in general.
Even the most commonly used variables like GDP and the inflation rate are
difficult to measure exactly. And data revisions is another possible source of
measurement error.

Let us illustrate the issue using the following example. The model is:

y = Xβ + ε with Cov(X, ε) = 0 (2.6.1)

but the observed regressors are

X∗ = X + v,

where v represents the measurement error and has the following properties:

E(v) = 0 , V ar(v) = σ2
vI , Cov(X, v) = 0 , Cov(ε, v) = 0. (2.6.2)

We can think of X as the final release of a given variable and of X∗ as a
preliminary release. For example, GDP is one among many macroeconomic
variables that are released in preliminary form and then revised in subsequent
releases.
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If we rewrite the regression model in terms of observable variables we
have:

Y = X∗β + ε− vβ = X∗β + u,

so that Cov(X∗, u) 6= 0 and the OLS estimator for β, β̂ = (X∗′X∗)−1X∗′y,
is not consistent.

Let us now assess what happens when the dependent variable y is mea-
sured with error (v), while the regressors are independent of (or at least
uncorrelated with) the error term. Let us suppose that

y∗ = y + v, (2.6.3)

with
E(v) = 0, V ar(v) = σ2

v , Cov(X, v) = 0, Cov(ε, v) = 0.

The model cast in terms of observables is now

y = y∗ − v = Xβ + ε or y∗ = Xβ + ε+ v.

Since Cov(X, ε + v) = 0, the OLS estimator, β̂ = (X ′X)−1X ′y∗, remains
consistent. However, its variance increases to (σ2

u + σ2
v)E(X ′X)−1, resulting

in a loss of efficiency.
Another relevant case where the regressors can be correlated with the

error term is when in dynamic models the errors are correlated across time.
We will consider this situation in the next chapter.

2.7 Instrumental variables

Given the above discussion, we need to find an estimator that amends the loss
of consistency of the OLS estimator when the regressors are correlated with
the error term. Let us assume there exist q variables Z with the following
properties:

plim Z ′ε/T = 0, (2.7.1)

plim Z ′X/T = ΣZX ,

plim Z ′Z/T = ΣZZ .

These properties require the variables Z to be (at least asymptotically) un-
correlated with the error term, while being correlated with the k explana-
tory variables X and having an asymptotic second order moments matrix.
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Variables with these properties are called Instrumental Variables (IV). The
number of instrumental variables, q, must be at least equal to the number of
regressors correlated with the error term. Let us suppose for simplicity that
q = k.

The IV estimator has the following formulation:

β̂IV = (Z ′X)
−1
Z ′y.

We can easily derive the estimator β̂IV as follows. Let us multiply by Z ′ both
sides of the model

y = Xβ + ε,

obtaining:
Z ′y = Z ′Xβ + Z ′ε.

If we assume that (2.7.1) also holds in finite samples, so that Z ′ε = 0, we
have

Z ′y = Z ′Xβ̂IV ⇒ β̂IV = (Z ′X)
−1
Z ′y.

This is an example of method of moments estimator, in the sense that β̂IV is
obtained by imposing a population moment restriction (namely E(z′tεt) = 0,
with zt the set of instruments for t) that has the empirical counterpart Z ′ε
= 0.5 The properties of β̂IV are the following:

• β̂IV is consistent:

β̂IV = (Z ′X)
−1
Z ′y = β + (Z ′X)

−1
Z ′ε

= β +

(
Z ′X

T

)−1(
Z ′ε

T

)
T→∞→ β + Σ−1

ZX
· 0 = β.

• Its asymptotic variance is:

V ar
(
β̂IV

)
= E

[(
β̂IV − β

)(
β̂IV − β

)′]
= E

[
(Z ′X)

−1
Z ′εε′Z (Z ′X)

−1
]
T→∞→ σ2

T
Σ−1
ZXΣZZΣ−1

ZX .

• The asymptotic distribution of β̂IV is given by:
√
T
(
β − β̂IV

)
a∼ N(0, σ2Σ−1

ZXΣZZΣ−1
ZX).

5See for example Hansen (1982) and Hall (2005) for more elaborate discussions about
method of moment estimators.
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It is important to note that V ar(β̂IV ) decreases if ΣZX grows in size.
Hence, we prefer instruments highly correlated with the regressors X (and
not with the error ε) since this increases the precision of the IV estimator.
Clearly, the challenge is always finding such instruments.

It is also worth pointing out that V ar(β̂IV ) ≥ V ar(β̂OLS).6 Hence, if
the regressors are correlated with the error, β̂OLS is inconsistent while β̂IV
is consistent. However, if the regressors are uncorrelated with the error,
β̂OLS is more efficient than β̂IV (which remains consistent). Therefore, in
order to select the most appropriate estimator, we would like to test the null
hypothesis of no correlation between the regressors and the error term.

We can use the following statistic, proposed by Hausman (1978) and
known as the Hausman test:

H = (β̂IV − β̂OLS)′(V ar(β̂IV )− V ar(β̂OLS))−1(β̂IV − β̂OLS)
a∼
H0

χ2(k).

Intuitively, under the null hypothesis the two estimators will be very similar
in large samples, since they are both consistent, while under the alternative
hypothesis they will be different since β̂OLS is not consistent. Hence, the test
is one-sided.

The use of the IV estimator is not so common in a forecasting context,
while it is widespread for structural analysis (possibly after some general-
izations, typically referred to as generalized method of moments estimators,
GMM). A possible explanation is that, even if β̂OLS is inconsistent, it still
minimizes the sum of squared residuals. Since the latter is usually related to
the sum of squared forecast errors, β̂OLS could still produce a good MSFE.
However, when structural models are used for forecasting, sometimes IV re-
lated parameter estimators (such as the two-stage least square estimator,
TSLS) are adopted.

2.8 Examples using simulated data

In Chapter 1 we considered the baseline linear regression models estimated
by OLS, measures of model fit, parameter tests, and forecasting properties.
We know that OLS estimators are BLUE (best linear unbiased estimator)
if the conditions of the Gauss-Markov theorem (GMT) are satisfied. The
following are the conditions:

6Where the inequality holds in a matrix sense, meaning that the difference between
V ar(β̂IV ) and V ar(β̂OLS) is a positive semi-definite matrix.
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F-statistic 7.577 Prob.F(1,198) 0.006
Obs*R-squared 7.372 Prob. Chi-Sq(1) 0.007
Scaled explained SS 5.715 Prob. Chi-Sq(1) 0.017

Variable Coefficient Std.Error t-Statistic Prob.

C 82.648 7.625 10.839 0.000
X 3.669 1.333 2.753 0.006

R-squared 0.037 Mean dep var 85.882

Table 2.7.1: Breusch-Pagan-Godfrey homoskedasticity test

• Linearity: the dependent variable is assumed to be a linear function of
the variables in the model.

• Homoskedasticity and lack of correlation: the error term has constant
variance (V ar(εt) = σ2) and is uncorrelated (Cov (εi, εj) = 0 for i 6= j).

• No collinearity: the regressors are not perfectly collinear (the rank of
X ′X is full)

In addition, the errors are required to be normally distributed for the OLS
estimators to have a finite sample normal distribution, which also justifies the
finite sample distribution of the t− and F−statistics. Furthermore, model
parameters are implicitly assumed to be stable over time, and the regressors,
when stochastic, to be uncorrelated with the error term.

We will check whether these conditions are satisfied in the basic static
regression model used in the simulated example of Chapter 1, and propose
remedies when they are not. Given the DGP used to simulate the data
(reported in Chapter 1), we a priori expect several assumptions to be violated.

Homoskedasticity To test the null hypothesis of homoskedasticity, we
perform two tests: the Breusch-Pagan-Godfrey (BPGT) test and the White
test (WT), described in the previous sections. Under the alternative hypoth-
esis of BPGT, the variance of the residuals depends on the values of the
independent variables. The outcome of the test, described in Table 2.7.1,
leads to rejection of the null hypothesis for the BPGT test. Table 2.8.1 also



i
i

i
i

i
i

i
i

86 CHAPTER 2. MODEL MIS-SPECIFICATION

presents the output for the WT test and, in line with BPGT, we can reject
the null hypothesis.

F-statistic 4.304 Prob.F(2,197) 0.015
Obs*R-squared 8.373 Prob. Chi-Sq(2) 0.015
Scaled explained SS 6.491 Prob. Chi-Sq(2) 0.039

Variable Coefficient Std.Error t-Statistic Prob.

C 73.928 11.489 6.435 0.000
X2 0.270 0.266 1.015 0.312
X 3.537 1.339 2.642 0.009

R-squared 0.042 Mean dep var 85.882

Table 2.8.1: White heteroskedasticity test
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Series: Residuals
Sample 102 301
Observations 200

Mean      -1.21e-15
Median  -0.586246
Maximum  23.65967
Minimum -17.73993
Std. Dev.   9.290531
Skewness   0.264298
Kurtosis   2.581939

Jarque-Bera  3.784911
Probability  0.150701

Figure 2.8.1: Normality test: Histogram

No Serial Correlation The next step is to check if the residuals are not
serially correlated. There are two main diagnostic tests that can be used,
as we noted earlier in this chapter: the Durbin-Watson (DW) statistic and
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F-statistic 18.882 Prob. F(4,194) 0.000
Obs*R-squared 56.045 Prob. Chi-Sq(4) 0.000

Variable Coefficient Std.Error t-Statistic Prob.

ALPHA(1) -0.003 0.572 -0.005 0.996
ALPHA(2) -0.032 0.101 -0.314 0.754
RESID(-1) 0.492 0.072 6.807 0.000
RESID(-2) 0.097 0.080 1.213 0.227
RESID(-3) -0.025 0.081 -0.306 0.760
RESID(-4) -0.087 0.073 -1.190 0.235

R-squared 0.280 Mean dep var -0.000

Table 2.8.2: Breusch-Godfrey LM test

the Breusch-Godfrey Lagrange Multipliers (LM) test. The null hypothesis
of the Durbin-Watson test is no serial correlation, the alternative is first
order correlation, i.e., H1 : εt = ρεt−1 + ut, ρ 6= 0. The DW statistic is
reported in the estimation output by default, shown in Table 1.11.1, and in
this case it is equal to 0.9545, much lower than the theoretical value under the
null hypothesis, which is 2. This provides informal support against the null
hypothesis, meaning that the evidence suggests the errors are autocorrelated.
The LM test permits one to choose the serial correlation order under the
alternative hypothesis. The results of the LM test, using a lag order equal to
4, reported in Table 2.8.2, suggest to reject no correlation, in line with the
DW statistic.

Normality Some descriptive information about normality of the error term
is provided by the histogram of the residuals. The resulting graph is displayed
in Figure 2.8.1. The figure also reports descriptive statistics on the residu-
als, and the Jarque-Bera (JB) statistic for the null hypothesis of normality
against a generic alternative of non normality of the errors. Both the his-
togram and the JB test do not suggest to reject the null hypothesis of normal
residuals (at the usual significance levels). Moreover, the estimated values of
the residual skewness and kurtosis are, respectively, 0.2643 and 2.5819, close
to the theoretical values of 0 and 3 for a standard normal variable.
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Parameter Stability An underlying assumption of the linear regression
model is parameter stability. To test whether the model parameters are
constant for the whole estimation sample against the alternative of a break
in a specific date, we can apply the Chow breakpoint or the Chow forecast
tests, depending on whether or not the break date is such that we can re-
estimate the model in both the pre- and the post-break samples (see the
theory part for more details). Moreover, we can compute a set of recursive
statistics, based on the recursive residuals, the one-step ahead forecast errors,
and the recursive coefficients. These are particularly useful when the break
date is unknown.

We start with the Chow breakpoint test, which evaluates whether there
is significant difference between the sum of squared residuals obtained from
the full sample, and adding the sum of squared residuals from the pre- and
post-break samples. We consider three possible alternative breakpoints, cor-
responding to t = 151 or t = 201 or t = 251.

All the three test outcomes, reported in Table 2.8.3, lead to rejection of
the null hypothesis at the 5% confidence level.

Chow Breakpoint Test: 151
Equation Sample: 102 301
F-statistic 12.536 Prob.F(2,196) 0.000
Log likelihood ratio 24.074 Prob. Chi-Sq(2) 0.000
Wald Statistic 25.071 Prob. Chi-Sq(2) 0.000
Chow Breakpoint Test: 201
Equation Sample: 102 301
F-statistic 27.779 Prob.F(2,196) 0.000
Log likelihood ratio 49.912 Prob. Chi-Sq(2) 0.000
Wald Statistic 55.558 Prob. Chi-Sq(2) 0.000
Chow Breakpoint Test:251
Equation Sample: 102 301
F-statistic 14.526 Prob.F(2,196) 0.000
Log likelihood ratio 27.643 Prob.Chi-Sq(2) 0.000
Wald Statistic 29.051 Prob. Chi-Sq(2) 0.000

Table 2.8.3: Chow breakpoint tests

To illustrate the implementation of the Chow forecast statistic, let us
assume that we want to test for a break at observation 301 (so that we have
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only one observation in the second subsample and we are in the case T2 < k).
The outcome is reported in Table 2.8.4. For example, the EViews software
reports two test statistics for the Chow forecast test. The first one is the
F−statistic, which is based on comparing the residuals sum of squares of
the full sample and the first subsample, as shown in equation (2.5.11). The
second test statistic is the Likelihood Ratio (LR) test that compares the
maximum log likelihood function from the basic model and the same model
augmented with a dummy for each observation in the post-break sample.
The LR test statistic is asymptotically χ2 distributed with degrees of freedom
equal to the number of dummies. It turns out that stability at the end of the
estimation sample (observation 301) is rejected at the 10% significance level.

Test predictions for observations from 301 to 301
Value df Probability

F-statistic 3.714 (1, 197) 0.055
Likelihood ratio 3.735 1 0.053

Table 2.8.4: Chow forecast test

The main criticism of the Chow tests is that the breakpoint should be
known in advance. When this is not a realistic assumption, we can either
implement more sophisticated procedures that also estimate the most likely
break date (for example the Andrews (1993) and Bai and Perron (1998)
tests), or we can use recursive methods.

When we implement Bai-Perron sequential test to determine the optimal
breaks in a model regressing Y on the breaking variables C and X we find
the results reported in Table 2.8.5.7

The Bai-Perron test detects breaks in the intercept for observations 146,
207, 237, 268. At the same time the null hypothesis of no breaks in X is
rejected for observations 146, 176, 207, 237, 268. In this case we know the
DGP and the fact that there is a single break in observation 201, so that
the outcome of the Bai and Perron test is incorrect, likely due to the rather
short sample available and size of the break.

The graphs of the recursively computed OLS estimates of the model pa-
rameters are displayed in Figure 2.8.2, with observations starting from 101

7Bai-Perron tests of 1 to m globally determined breaks. Break selection have the
following settings: Highest significant, Trimming 0.15, Max. breaks 5, Sig. level 0.05.
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Figure 2.8.2: Recursive estimation
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since for the simulated data we skip the first 100 generated data points).
In the presence of parameter instability, there should be significant time-
variation in the plots. Indeed, we observe some relevant movement for both
recursively estimated coefficients.

Variable Coefficient Std. Error t-Statistic Prob.

102-145 – 44 obs
C 4.523 1.212 3.733 0.000
X 0.701 0.193 3.622 0.000
146-175 – 30 obs
C 0.841 1.452 0.579 0.563
X 0.750 0.256 2.931 0.004
176-206 – 31 obs
C 3.990 1.462 2.730 0.007
X 1.368 0.264 5.185 0.000
207-236 – 30 obs
C 9.152 1.516 6.038 0.000
X 1.800 0.277 6.496 0.000
237-267 – 31 obs
C 10.900 1.558 6.999 0.000
X 1.926 0.291 6.616 0.000
268-301 – 34 obs
C 3.302 1.360 2.428 0.016
X 2.360 0.237 9.946 0.000

Table 2.8.5: Bai and Perron breakpoint test

Dummy variables An easy way to model structural breaks or parameter
instability is by introducing dummy variables. From the DGP, we know that
the model parameters indeed change after t = 200. The recursive analysis
and Bai-Perron tests did not spot this date. But since we know the DGP we
can define a dummy variable whose value is 0 when t < 201 and 1 afterwards.
We then add the dummy to the starting model, which becomes:

y = α0 + β1D + α1x+ β2Dx+ u,
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Coefficient Std. Error t-Statistic Prob.

ALPHA(0) 3.673 0.837 4.390 0.000
BETA(1) 3.221 1.187 2.714 0.007
ALPHA(1) 0.884 0.141 6.279 0.000
BETA(2) 1.316 0.208 6.320 0.000

R-squared 0.571 Mean dep var 6.695
Adjusted R-squared 0.564 S.D. dep var 12.560
S.E. of regression 8.290 Akaike IC 7.088
Sum squared resid 13468.600 Schwarz IC 7.154
Log likelihood -704.768 Hannan-Quinn 7.114
F-statistic 86.940 DW stat 1.029
Prob(F-statistic) 0.000

Table 2.8.6: Model with dummy variable

Forecasting Method
Static Recursive

RMSFE 10.1278 9.6421
MAFE 8.3141 7.9382

Table 2.8.7: Forecasting performance model with dummy variable

so that we can control for a change in both the intercept and the coefficient
of x.

Estimation results, presented in Table 2.8.6, indicate that both β1 and β2

are statistically significant at the 5% level.

Since we know the DGP, we can also check if the estimated coefficients
are significantly different from the true parameter values. The results are as
follows:

• For α(0), t−stat = 3.6728−1
0.8366

= 3.19, for α(1), t−stat = 0.8841−1
0.1408

= −0.82

• For β(1), t− stat = 3.2213−1
1.1869

= 1.87, for β(2), t− stat = 1.3156−1
0.2082

= 1.52
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Figure 2.8.3: Dummy regression: Simple and recursive forecasts vs forecast
of the simple OLS regression

Hence, at the 5% confidence level, the last three parameters are not different
from the true values, but the first one is. This is likely due to the remaining
mis-specification of the model.

The final step is the forecast computation and evaluation. As in the
previous chapter, we use 102 - 301 as estimation sample and 302 - 501 as
forecast sample. We want to assess the effects of ignoring the parameter
break on the model forecasting performance. The forecasts from the models
with and without the dummies are presented in Figure 2.8.3, while Table
2.8.7 reports the RMSFE and MAFE. It turns out that the dummies do not
improve forecasts and this is due to the fact that mis-specification is still
present, since as we know the DGP features dynamic effects.
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2.9 Empirical examples

In Chapter 1, we have used the Euro area GDP example to illustrate the
estimation, parameter testing, model selection based on model fit, and some
variable selection procedures. We also showed the impact of the choice of
indicator variables on forecast accuracy. As discussed at the beginning of
this chapter, the estimation of the models in Chapter 1 is based on a set of
assumptions. It is important for these assumptions to hold, as otherwise, the
OLS estimators will no longer be consistent and efficient. This, in turn, can
result in less accurate forecasts produced by a mis-specified model.

2.9.1 Forecasting Euro area GDP growth

Using again the Euro area GDP example, we now illustrate the use of some
mis-specification tests, discuss how to improve the specification, and consider
the forecasting performance of the improved models.

F-statistic 0.798 Prob. F(3,66) 0.499
Obs*R-squared 2.451 Prob. Chi-Sq(3) 0.484
Scaled explained SS 1.930 Prob.Chi-Sq(3) 0.587

Variable Coefficient Std.Error t-Statistic Prob.

C 0.075 0.013 5.617 0.000
IPR 0.009 0.010 0.851 0.398
SU -0.005 0.005 -0.976 0.333
SR 0.002 0.002 1.283 0.204

R-squared 0.035 Mean dep var 0.080

Table 2.9.1: Breusch-Pagan-Godfrey test for heteroskedasticity.

Homoskedasticity Let us focus on the Model 2 formulation for Euro area
GDP growth that, from Chapter 1, is:

yt = β0 + β1iprt + β2sut + β3srt + εt,

and consider the full sample period 1996Q1 to 2013Q2. The estimation re-
sults were reported in Table 1.12.2, and we now proceed with testing for
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homoskedasticity of the residuals. The Breusch-Pagan-Godfrey test output
is shown in Table 2.9.1. The null hypothesis is H0 : σ2

i = σ2, i.e., homoskedas-
ticity, against the alternative that there is an unknown relationship between
the error variance and one or a set of regressors (or function thereof).

F-statistic 0.510 Prob.F(9,60) 0.861
Obs*R-squared 4.977 Prob. Chi-Sq(9) 0.836
Scaled explained SS 3.920 Prob. Chi-Sq(9) 0.917

Variable Coefficient Std.Error t-Statistic Prob.

C 0.058 0.022 2.710 0.009
IPR 0.009 0.018 0.486 0.629
IPR2 0.000 0.006 0.021 0.983
IPR*SU -0.001 0.010 -0.120 0.905
IPR*SR 0.000 0.004 0.086 0.932
SU -0.004 0.008 -0.471 0.639
SU2 0.001 0.002 0.696 0.489
SU*SR -0.001 0.001 -0.667 0.507
SR 0.002 0.003 0.708 0.482
SR2 0.000 0.000 1.103 0.275

R-squared 0.071 Mean dep var 0.080

Table 2.9.2: White test for heteroskedasticity.

Under the null hypothesis, the statistic follows a χ2 distribution with as
many degrees of freedom as the number of regressors in the test equation.
The null hypothesis cannot be rejected at 1%, 5%, and 10% significance lev-
els, indicating no heteroskedasticity in the residuals. Table 2.9.2 presents the
output of the White test. The null hypothesis of the White test is the same
as that of the Breusch-Pagan-Godfrey test. The test equation can be formu-
lated as regressing the squared residuals on all the regressors and, possibly, all
their cross-products. Our example here includes all possible cross-products.
The White test statistic is also reported as Obs*R-squared and it is asymp-
totically distributed as χ2 with as many degrees of freedom as the number of
parameters in the test equation except the constant. Once again, the null hy-
pothesis of homoskedasticity cannot be rejected at conventional significance
levels.
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F-statistic 3.664 Prob.F(2,64) 0.031
Obs*R-squared 7.191 Prob. Chi-Sq(2) 0.028

Variable Coefficient Std.Error t-Statistic Prob.

C 0.002 0.035 0.051 0.960
IPR -0.015 0.028 -0.520 0.605
SU 0.005 0.014 0.333 0.740
SR -0.002 0.005 -0.346 0.731
RESID(-1) 0.230 0.124 1.858 0.068
RESID(-2) 0.199 0.133 1.493 0.140

R-squared 0.103 Mean dep var 0.000

Table 2.9.3: Serial correlation LM test with m = 2

F-statistic 4.439 Prob.F(3,63) 0.007
Obs*R-squared 12.214 Prob. Chi-Sq(3) 0.007

Variable Coefficient Std.Error t-Statistic Prob.

C 0.003 0.034 0.090 0.929
IPR -0.029 0.028 -1.035 0.305
SU 0.013 0.014 0.883 0.381
SR -0.003 0.005 -0.612 0.542
RESID(-1) 0.180 0.122 1.476 0.145
RESID(-2) 0.165 0.130 1.267 0.210
RESID(-3) 0.301 0.128 2.340 0.022

R-squared 0.174 Mean dep var 0.000

Table 2.9.4: Breusch-Godfrey serial correlation LM test with m = 3

No Serial Correlation We now move on to investigate the absence of se-
rial correlation in the residuals of Model 2. The diagnostic tests we consider
are the Durbin-Watson (DW) test and the Breusch-Godfrey LM test. The
null hypothesis of the Durbin-Watson test is no correlation, against the al-
ternative of first order correlation, i.e., H1 : εt = ρεt−1 + ut, ρ 6= 0. The DW
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test statistic is reported in the estimation output by default and, from Table
1.12.2, it is 1.433661, a borderline value. While the DW test is for testing
serial correlation of first order under the alternative, higher order correlation
can be allowed by the LM test. Tables 2.9.3 and 2.9.4 present the LM test
with correlation of orders 2 and 3. The reported statistic (Obs*R-squared),
is computed as T times R2 from the test equation and it is asymptotically
χ2
m distributed, where m = 2 or m = 3 in our case. The null hypothesis is re-

jected by both tests at the 5% significance level, indicating that the residuals
are serially correlated. Hence, the model does not fully capture the dynamic
evolution of the dependent variable, and adding some lagged regressors could
improve the model specification, as we will see in the next chapter.

Normality Normality of the errors, though not required for the OLS es-
timators to be BLUE, is necessary for them to have a normal distribution
in finite samples, and for the t− and F−statistics to have, respectively, a
t−Student and F distribution in finite samples. Moreover, as we discussed,
violation of normality can be due to outliers and structural breaks, which
affect more severely the OLS estimators.

To assess whether normality holds, we can start by plotting an histogram
of the Model 2 residuals. Figure 2.9.1 reports the required histogram and a set
of statistics on the residuals of Model 2. Specifically, there is also the Jarque-
Bera statistic for the null hypothesis of normal errors, whose distribution is
χ2(2), and the corresponding p-value. It turns out that the null hypothesis
of normality cannot be rejected at conventional significance levels.

Parameter stability Continuing with Model 2, we now illustrate some
procedures, including the Chow breakpoint test, the Chow forecast test, and
some recursive methods that look into the recursive residuals, the one-step
ahead forecast errors, and the recursive estimators of the coefficients. We
proceed by first using the Chow breakpoint test, which requires to specify
the assumed break date and then to estimate Model 2 over the entire sample
period, and then separately for the pre- and post-break subsamples. The
test statistic is based on whether there is significant difference in the sum of
squared residuals obtained over the full sample and that obtained by sum-
ming the RSS over the two subsamples. In principle, we should first test
that the error variance does not change over the two subperiods, but since
we did not reject homoskedasticity we take the variance to be constant. We
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illustrate the use of this test by investigating whether parameter instability
or structural breaks exist in two occasions within our full sample period:
the early 2000s economic recession that affected the European Union mostly
around 2001 - 2002, and the recent 2007/2008 financial crisis. Specifically, we
carry out three separate tests for single breakpoints in, respectively, 2001Q1,
2001Q2, and 2007Q3.
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Series: Residuals
Sample 1996Q1 2013Q2
Observations 70
Mean       2.22e-17
Median  -0.018580
Maximum  0.722292
Minimum -0.633967
Std. Dev.   0.284140
Skewness   0.144000
Kurtosis   2.771743
Jarque-Bera  0.393884
Probability  0.821238

Figure 2.9.1: Histogram of the errors in Model 2

Tables 2.9.5 and 2.9.6 present the two tests for whether there is a struc-
tural change in the parameters in 2001. The CH1 test statistic, see equation
(2.5.8), has an F distribution. The null hypothesis of the Chow breakpoint
test is H ′0 : β1 = β2 | H”

0 , meaning no break or structural change in the pa-
rameters at the specific date. At the 5% significance level, the null hypothesis
of no break in 2001Q1 cannot be rejected, but the hypothesis of no break
at 2001Q2 can be rejected. Hence, we have evidence that the relationship
between Euro Area GDP growth and the indicators in Model 2 has changed
before and after 2001Q2. Table 2.9.7 presents the same test but with 2007Q3
as the break date. The outcome shows a clear rejection of no breakpoint also
at that time.
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F-statistic 2.045 Prob. F(4,62) 0.099
Log likelihood ratio 8.674 Prob. Chi-Sq(4) 0.070
Wald Statistic 8.179 Prob. Chi-Sq(4) 0.085

Table 2.9.5: Chow breakpoint test: Breakpoint in 2001Q1

F-statistic 3.513 Prob. F(4,62) 0.012
Log likelihood ratio 14.301 Prob. Chi-Sq(4) 0.006
Wald Statistic 14.053 Prob. Chi-Sq(4) 0.007

Table 2.9.6: Chow breakpoint test: Breakpoint in 2001Q2

F-statistic 7.617 Prob. F(4,62) 0.000
Log likelihood ratio 27.980 Prob. Chi-Sq(4) 0.000
Wald Statistic 30.467 Prob. Chi-Sq(4) 0.000

Table 2.9.7: Chow breakpoint test: Breakpoint in 2007Q3

In the above Chow breakpoint tests, the number of observations in the
post-break subsample (T2) is larger than the number of parameters k. How-
ever, when the latter is larger than the former, there are not enough degrees
of freedom for estimation. In these situations, we can use the Chow forecast
test, as discussed in section 2.5.

Value df Probability
F-statistic 3.115 (4,62) 0.021
Likelihood ratio 12.819 4.000 0.012

Table 2.9.8: Chow Forecast Test: Breakpoint in 2012Q3.

Suppose we are interested in whether there is a breakpoint in 2012Q3,
close to the end of our full sample. Let us examine two versions of test statis-
tics for the Chow forecast test. The first is the F−statistic that compares the
residuals sum of squares of the full sample and the first subsample, as shown
in equation (2.5.11). The second is the LR test that compares the maximum
log likelihood function from the basic model and a model augmented with
one dummy for each post-break observations. The LR test statistic is asymp-
totically χ2 distributed with as many degrees of freedom as the number of
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added dummy variables. The outcome of the tests, shown in Table 2.9.8,
leads to rejection of the null of no break in 2012Q3 at the 5% level.

Variable Coefficient Std.Error t-Statistic Prob.

1996Q1 - 1998Q3 – 11obs
C 0.499 0.104 4.777 0.000
IPR 0.431 0.147 2.930 0.005
SU -0.037 0.048 -0.759 0.452
SR -0.023 0.010 -2.371 0.022
1998Q4 - 2001Q1 – 10obs
C 0.840 0.135 6.212 0.000
IPR -0.045 0.131 -0.344 0.732
SU 0.082 0.051 1.602 0.116
SR 0.008 0.011 0.743 0.461
2001Q2 - 2004Q2 – 13obs
C 0.280 0.063 4.461 0.000
IPR 0.251 0.126 1.998 0.052
SU -0.027 0.034 -0.773 0.444
SR 0.011 0.009 1.307 0.198
2004Q3 - 2008Q1 – 15obs
C 0.341 0.122 2.793 0.008
IPR 0.390 0.142 2.745 0.009
SU 0.022 0.037 0.599 0.552
SR 0.002 0.011 0.222 0.825
2008Q2 - 2010Q4 – 11obs
C -0.051 0.094 -0.544 0.589
IPR 0.273 0.034 7.992 0.000
SU 0.016 0.034 0.462 0.646
SR -0.015 0.017 -0.893 0.376
2011Q1 - 2013Q2 – 10obs
C 0.044 0.081 0.537 0.594
IPR 0.280 0.079 3.541 0.001
SU 0.005 0.030 0.162 0.872
SR 0.000 0.012 0.036 0.972

Table 2.9.9: Estimation output of Model 2 with breaks detected with the Bai
and Perron breakpoint test.
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Figure 2.9.2: Plot of recursive residuals with ±2 × s.e. confidence bounds.

The Chow-type tests provide indication of whether structural changes in
parameters have occurred at a specific point in time. The major criticism of
such tests is that prior knowledge about the break dates is required. In some
cases, such as the recent financial crisis, it is perhaps possible to pinpoint
relatively precise dates when breaks are likely. However, there is also a need
for tests that allow for the detection of structural changes without a pre-
specified break date.

Bai and Perron (1998) describe procedures for identifying the multiple
breaks. When we implement the Bai-Perron sequential test to determine the
optimal breaks in Model 2, we find the results reported in Table 2.9.9.8 The
Bai-Perron test detects breaks in 1998Q4, 2001Q2, 2004Q3, 2008Q2, and
2011Q1.

As an alternative, recursive estimation can provide useful information, as
we now illustrate again taking Model 2 as an example. We plot the recursive
residuals in Figure 2.9.2, together with the plus and minus 2 times standard
error bands. Evidence of parameter instability is found when the recursive

8Bai-Perron tests of 1 to m globally determined breaks Break selection have the fol-
lowing settings: Highest significant, Trimming 0.15, Max. breaks 5, Sig. level 0.05.
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Figure 2.9.3: One-step forecast test

residuals are outside the bands. From the plot, the main deviations are in
2000Q1, soon after the introduction of the euro, and 2012Q3, though the
residuals are mostly negative after 2007 which is also worrying as the model
systematically over-estimates GDP growth.

Next we compute the one-step forecast test, which is simply a plot of
the recursive residuals as in Figure 2.9.2, together with the points whose
associated p-value is less than the 15% significance level. Based on the plot
in Figure 2.9.3, and assuming a 5% significance level, evidence of parameter
instability can be detected in 2000Q1, 2008Q2, 2009Q3, and 2012Q3.

Finally, we consider the recursively estimated coefficients, labeled as C(1)
to C(4) in Figure 2.9.4, corresponding to the coefficients of the constant
term, IP growth, growth in the ESI, and stock returns, respectively. In the
presence of parameter instability, there should be significant variation in the
evolution of the estimators. We observe some more marked changes prior
to 2002, but this could be just due to the small sample available. There is
also some movement around 2008Q3 and 2008Q4, in coincidence with the
financial crisis.
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Figure 2.9.4: Plots of recursive coefficients alongside the ±2 × s.e. confidence
bounds

Dummy variables As discussed in section 2.5, one way to accommodate
structural breaks (or correct for outliers) is to include dummy variables in the
model. Here we illustrate the use of these dummies, and then examine their
impact on the forecast accuracy. The parameter stability analysis provided
evidence for some possible breaks since the second half of 2007, in coincidence
with the financial crisis and the resulting the Euro area recession, and around
2000 - 2001, soon after the introduction of the euro and corresponding to the
early 2000s recession. We therefore create two dummy variables. The first,
called dEA cri

t , has the value of 1 for the period 2007Q2 to 2013Q1, and 0
otherwise. The second, called d2000s

t , has the value of 1 for the period 2000Q1
to 2001Q4, and 0 otherwise. We then re-estimate Model 2 by adding these
two dummies. More precisely, Model 2.1 contains the independent variables
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in Model 2 plus the dummy for the Euro area crisis. Model 2.2 corresponds
to Model 2 plus the dummy for the early 2000s recession.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.375 0.040 9.271 0.000
IPR 0.301 0.025 11.812 0.000
SU -0.021 0.013 -1.568 0.122
SR 0.006 0.005 1.196 0.236
Dea -0.302 0.071 -4.278 0.000

R-squared 0.841 Mean dep var 0.350
Adjusted R-squared 0.831 S.D. dep var 0.629
S.E. of regression 0.259 Akaike IC 0.202
Sum squared resid 4.347 Schwarz IC 0.362
Log likelihood -2.060 Hannan-Quinn 0.266
F-statistic 85.767 DW stat 1.792
Prob(F-statistic) 0.000

Table 2.9.10: Estimation output of Model 2.1

The mathematical presentations of Models 2.1 and 2.2 are as follows:

Model 2.1 : yt = α0 + β0iprt + γ0sut + λ0srt + η0d
EA cri
t + εt

Model 2.2 : yt = α0 + β0iprt + γ0sut + λ0srt + η1d
2000s
t + εt

Our final forecasting specification, Model 2.3, is Model 2 with the dummies
for both the financial crisis and the early 2000s recession:

Model 2.3 : yt = α0 + β0iprt + γ0sut + λ0srt + η0d
EA cri
t + η1d

2000s
t + εt

The estimation outputs of these two models using the entire sample are
presented in Tables 2.9.10, 2.9.11, and 2.9.12. It turns out that both dummies
are significant at the 5% level in Models 1 and 2, but only the crisis dummy
remains significant in Model 3. Interestingly, the inclusion of the dummies in
Model 2.3 has brought down the significance of both the survey data and the
stock returns compared to Model 2 (when no break dummies are included).
Such findings could be seen as an indication that part of the significant
explanatory power of the survey data and the stock returns are coming from
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the fact that they are useful in picking up some impact of the crisis on GDP
growth.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.247 0.037 6.705 0.000
IPR 0.314 0.028 11.302 0.000
SU -0.022 0.015 -1.487 0.142
SR 0.009 0.005 1.906 0.061
D2000s 0.224 0.111 2.016 0.048

R-squared 0.808 Mean dep var 0.350
Adjusted R-squared 0.796 S.D. dep var 0.629
S.E. of regression 0.284 Akaike IC 0.389
Sum squared resid 5.243 Schwarz IC 0.550
Log likelihood -8.619 Hannan-Quinn 0.453
F-statistic 68.334 DW stat 1.462
Prob(F-statistic) 0.000

Table 2.9.11: Estimation output of Model 2.2

We could also add interaction dummies in Model 3, to allow for a change
not only in the intercept but also in the coefficients of the other explanatory
variables. However, when we do this, the interaction dummies are not sig-
nificant, perhaps due to the rather short estimation sample. The results are
not reported here, but we find that none of the intersections has coefficient
significantly different from zero at the 5% confidence level.

We now move on to illustrate whether the inclusion of dummies can
improve forecast accuracy. In Chapter 1, the estimation sample ended in
2006Q4 while the forecast evaluation period began in 2007Q1. To high-
light the impact on forecast accuracy of the dummies we use here 1996Q1 to
2010Q4 as estimation sample, leaving the last 10 quarters between 2011Q1
and 2013Q2 as the new forecast evaluation period.

It turns out that the dummy dEA cri
t is highly significant, the dummy

d2000s
t is not. Model 2.3 has a better in-sample fit than Model 2, and smaller

values of all three reported information criteria, though the differences are
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not large.
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Figure 2.9.5: Plot of forecasted GDP growth produced by Model 2 and by
Model 2.3 alongside the actual GDP growth.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.381 0.043 8.883 0.000
IPR 0.302 0.027 11.156 0.000
SU -0.023 0.015 -1.536 0.130
SR 0.006 0.005 1.349 0.183
Dea -0.291 0.084 -3.473 0.001
D2000s 0.085 0.100 0.847 0.401

R-squared 0.868 Mean dep var 0.414
Adjusted R-squared 0.855 S.D. dep var 0.644
S.E. of regression 0.245 Akaike IC 0.119
Sum squared resid 3.238 Schwarz IC 0.328
Log likelihood 2.442 Hannan-Quinn 0.201
F-statistic 70.847 DW stat 1.965
Prob(F-statistic) 0.000

Table 2.9.12: Estimation output of Model 2.3
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Next, we perform a forecasting exercise using these two models for the
newly defined forecast evaluation period, with results shown in Figure 2.9.5.
It is clear from the graph that overall the forecasts from Model 2.3 track
the outturn better than the forecasts from Model 2, particularly for the
dips in 2011Q2 and 2012Q4. To further confirm this finding, we compute
the RMSFE and the MAFE. Table 2.9.13 compares the forecast evaluation
statistics, confirming the superiority of Model 2.3 and the importance of
allowing for parameter change when forecasting.

Model 2 Model 2
with dummies

RMSFE 0.412 0.326
MAFE 0.375 0.247

Table 2.9.13: Forecast evaluation statistics: Model 2 without and with dum-
mies (Model 2.3)

2.9.2 Forecasting US GDP growth

In Chapter 1, we used the US GDP data to illustrate the estimation, param-
eter testing, model selection based on model fit, and variable selection proce-
dures. We have also shown the impact of the choice of indicator variables on
forecast accuracy. We now assess whether the assumptions underlying OLS
estimation of the models in Chapter 1 are satisfied, following the same steps
as in the previous examples and focusing on Model 2, which is:

yt = β0 + β1iprt + β2sut + β3srt + εt.

The full sample covers the period from 1985Q1 to 2013Q4. The estimation
results are shown in Table 2.9.14.
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.469 0.044 10.713 0.000
IPR 0.312 0.034 9.195 0.000
SU 0.007 0.007 0.979 0.330
SR 0.013 0.007 1.833 0.070

R-squared 0.523 Mean dep var 0.657
Adjusted R-squared 0.510 S.D. dep var 0.600
S.E. of regression 0.420 Akaike IC 1.137
Sum squared resid 19.763 Schwarz IC 1.232
Log likelihood -61.951 Hannan-Quinn 1.176
F-statistic 40.919 DW stat 2.033
Prob(F-statistic) 0.000

Table 2.9.14: Estimation output for Model 2

F-statistic 0.572 Prob. F(3,112) 0.635
Obs*R-squared 1.751 Prob. Chi-Sq(3) 0.626
Scaled explained SS 1.593 Prob. Chi-Sq(3) 0.661

Variable Coefficient Std.Error t-Statistic Prob.

C 0.176 0.025 7.023 0.000
IPR 0.003 0.019 0.158 0.875
SU -0.001 0.004 -0.369 0.713
SR -0.004 0.004 -0.931 0.354

R-squared 0.015 Mean dep var 0.170

Table 2.9.15: Breusch-Pagan-Godfrey heteroskedasticity test
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F-statistic 0.697268 Prob. F(9,106) 0.7100
Obs*R-squared 6.484 Prob. Chi-Sq(9) 0.691
Scaled explained SS 5.901 Prob. Chi-Sq(9) 0.750

Variable Coefficient Std.Error t-Statistic Prob.

C 0.172 0.039 4.395 0.000
IPR2 0.003 0.011 0.266 0.791
IPR ∗ SU 0.004 0.003 1.200 0.233
IPR ∗ SR -0.003 0.003 -1.017 0.311
IPR -0.009 0.024 -0.380 0.705
SU2 -0.000 0.000 -1.044 0.299
SU ∗ SR 0.001 0.001 0.889 0.376
SU -0.005 0.005 -0.927 0.356
SR2 0.000 0.000 0.262 0.793
SR 0.001 0.005 0.201 0.841

R-squared 0.056 Mean dep var 0.170

Table 2.9.16: White heteroskedasticity test

Chow Breakpoint Test: 2001Q1
CH(1) 3.264 Prob. F(4,108) 0.014
CH(2) 0.999 Prob. F(47,61) 0.496
Chow Breakpoint Test: 2001Q2
CH(1) 3.139 Prob. F(4,108) 0.017
CH(2) 0.977 Prob. F(46,62) 0.528
Chow Breakpoint Test: 2007Q3
CH(1) 4.025 Prob .F(4,108) 0.004
CH(2) 1.055 Prob. F(21,87) 0.410
Chow Breakpoint Test: 2007Q4
CH(1) 4.314 Prob. F(4,108) 0.003
CH(2) 1.120 Prob. F(20,88) 0.345

Table 2.9.17: Chow breakpoint test



i
i

i
i

i
i

i
i

110 CHAPTER 2. MODEL MIS-SPECIFICATION

Homoskedasticity The Breusch-Pagan-Godfrey test output is shown in
Table 2.9.15, while the output of the White test is presented in Table 2.9.16.
It is clear that the null hypothesis of homoskedasticity cannot be rejected by
both tests.

No Serial Correlation We now investigate the absence of serial correla-
tion in the residuals for Model 2. The diagnostic tests we consider here are
the Durbin-Watson (DW) test and the Breusch-Godfrey LM test. The DW
statistic is 2.033324, close to the theoretical value under the null of uncorre-
lated residuals. The LM tests confirm the same findings - we skip the details
here.

Parameter stability Continuing with Model 2, we now consider proce-
dures to detect possible parameter instability. These include, as we have
seen, the Chow breakpoint test, the Chow forecast test, and some recursive
procedures that look into the recursive residuals, the one-step ahead forecast
errors, and the recursively estimated coefficients.

As a first step, we implement the Chow breakpoint test to examine
whether there was a breakpoint in, respectively, 2001Q1, 2001Q2, 2007Q3,
and 2007Q4. Table 2.9.17 presents the results for the CH(1) and CH(2)
statistics. At the 5% significance level, the null hypothesis of no break in the
regression coefficients is rejected for each tested break date using the CH(1)
statistic, while according to the CH(2) statistic there is no evidence of a
break in the error variances.

To test for breaks without exogenously setting up the breakpoint data
we use the Bai-Perron test. Results of the test are described in Table 2.9.18.
The Bai-Perron test detects breaks at 5 dates: 1989Q4, 1996Q2, 2000Q3,
2004Q4, and 2009Q1. Breaks in the intercept term are detected for all of
these dates. The hypothesis of no breaks in IPR can be rejected for observa-
tions 1996Q2, 2004Q4, 2009Q1. The Bai-Perron test also indicates a break
for SR in 2004Q4.

In the above Chow breakpoint tests, the number of observations in the
post-break subsample (T2) is larger than the number of parameters k. How-
ever, when the latter is larger than the former, there are not enough degrees
of freedom for estimation and we need to use the Chow forecast test, as
discussed in Section 2.5.2.
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Variable Coefficient Std. Error t-Statistic Prob.

1985Q1 - 1989Q3 – 19obs
C 0.963 0.139 6.940 0.000
IPR 0.045 0.117 0.382 0.703
SU -0.019 0.027 -0.677 0.500
SR -0.017 0.015 -1.147 0.254
1989Q4 - 1996Q1 – 26obs
C 0.328 0.122 2.680 0.009
IPR 0.416 0.094 4.441 0.000
SU 0.012 0.012 0.989 0.325
SR 0.002 0.022 0.072 0.943
1996Q2 - 2000Q2 – 17obs
C 1.005 0.251 4.001 0.000
IPR 0.185 0.165 1.121 0.265
SU -0.076 0.040 -1.881 0.063
SR -0.007 0.026 -0.274 0.785
2000Q3 - 2004Q3 – 17obs
C 0.604 0.088 6.832 0.000
IPR 0.248 0.100 2.487 0.015
SU 0.017 0.022 0.757 0.451
SR 0.023 0.019 1.180 0.241
2004Q4 - 2008Q4 – 17obs
C 0.397 0.094 4.227 0.000
IPR 0.045 0.099 0.456 0.650
SU 0.001 0.012 0.053 0.958
SR 0.077 0.018 4.327 0.000
2009Q1 - 2013Q4 – 20obs
C 0.286 0.092 3.118 0.002
IPR 0.251 0.057 4.430 0.000
SU 0.004 0.014 0.283 0.778
SR 0.008 0.019 0.403 0.688

Table 2.9.18: Bai-Perron breakpoint test

Suppose we are interested in whether there is a breakpoint in 2012Q3,
close to the end of our full sample. The results for the Chow forecast tests,
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CH(3) and CH(4) appearing in equations (2.5.11) and (2.5.12), are respec-
tively 0.704589 (p-value 0.6465) and 4.536486 (p=value 0.6045). Both of
them suggest no rejection of the null of no break in 2012Q3, at the 5% sig-
nificance level.

We can also examine a recursive residual plot, as shown in the top left
panel of Figure 2.9.6. The plus and minus 2 times standard error bands are
also plotted in the figure. Evidence of parameter instability is found in the
case when the recursive residuals are outside the stand error bands. From
the plot, there is evidence for possible parameter instability in the beginning
of the 1990s, 2000Q1, 2004Q1, 2007Q2, and 2010Q3.

Next we compute the one-step forecast test (top right graph in Figure
2.9.6). The points shown in the bottom part of the plots indicate rejection
of the null hypothesis of parameter stability at the 15% significance level.
Using instead a 5% significance level, evidence of parameter instability can
be detected in the same quarters spotted above, i.e., in the beginning of the
1990s, 2000Q1, 2004Q1, 2007Q2, and 2010Q3.

The last set of plots produces recursive coefficients. For all four coef-
ficients we observe significant variation before 1990, with a rather stable
behavior afterwards.

Dummy variables As discussed in Section 2.5, one way to accommodate
structural breaks (and/or correct for outliers) is to include dummies in the
model. Here we first illustrate the use of these dummies, and then we exam-
ine their impact on the forecast accuracy . We introduce dummy variables
corresponding to the recent financial crisis (2007Q4 - 2009Q2), as well the
early 2000s recession (2000Q1 - 2001Q4). We re-estimate Model 2 by adding
these two dummies separately. Model 2.1 contains the independent variables
in Model 2 plus the dummy for the financial crisis. Similarly, Model 2.2
consists of Model 2 plus the dummy for the early 2000s recession. They are:

Model 2.1 : yt = α0 + β0iprt + γ0sut + λ0srt + η0d
fincris
t + εt

Model 2.2 : yt = α0 + β0iprt + γ0sut + λ0srt + η1d
2000s
t + εt

The estimation output of these two models is omitted. The dummy vari-
ables are insignificant in both models, implying that the other explanatory
variables seem sufficient to capture the drop in GDP growth in the two re-
cessions.
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Figure 2.9.6: Recursive estimation Model 2 for US GDP growth
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We now proceed and examine whether the inclusion of dummies can im-
prove forecast accuracy. Note that our original estimation sample ends at
2006Q4, while the forecast evaluation period begins 2007Q1. In order to see
the impact on forecast accuracy of the inclusion of the financial crisis dummy,
we define the new estimation sample as 1985Q1 to 2010Q4, leaving the last
10 quarters between 2011Q1 and 2013Q2 as the new forecast evaluation pe-
riod. Our forecasting model is simply Model 2 augmented with the dummies
for the financial crisis, labeled as model 2.3 as in the previous example:

Model 2.3 : yt = α0 + β0iprt + γ0sut + λ0srt + η0d
EA cri
t + η1d

2000s
t + εt

The estimation output (not reported) of Model 2.3 reveals that both
dummy variables are insignificant. Yet, comparing Model 2 (cf. Table 2.9.14)
with 2.3, it turns out that the latter has a better in-sample fit than Model

2, namely model 2.3 has larger values of R2 and R
2
, and smaller values of

AIC and HQ criteria.9 Finally, also for this example we perform a one-step
ahead recursive forecasting exercise, to see if there emerges any improve-
ment in accuracy related to the use of the dummy variables. The evaluation
statistics for the one-step ahead recursive forecasts and simple forecasts are
presented in Table 2.9.19. Overall, there seems to be no major improvement
in forecasting after the introduction of the dummy variables, although both
RMSFE and MAFE decrease slightly

2.9.3 Default risk

We revisit the regression models estimated in the previous chapter using the
sample from Jan. 1998 to Dec. 2015. In particular we estimate the following:

OASt+1 = β0 + β1V IXt + εt+1

OASt+1 = β0 + β1SENTt + εt+1

OASt+1 = β0 + β1PMIt + εt+1

OASt+1 = β0 + β1sp500t + εt+1

OASt+1 = β0 + β1V IXt + β2SENTt + β3PMIt + β4sp500t + εt+1

The Durbin-Watson statistics are respectively DW1 = 0.5660, DW2 = 0.1219,
DW3 = 0.2390, DW4 = 0.2634, and DW5 = 0.7541. Hence, in all cases

9The values for Model 2.3 are respectively: R2 : 0.575632, Adjusted R2 : 0.553980,
Akaike IC: 1.118512 and Schwarz criterion: 1.271073.
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Model 2 Model 2.3

Static Forecasts
RMSFE 0.522 0.519
MAFE 0.422 0.419

Recursive Forecasts
RMSFE 0.531 0.528
MAFE 0.419 0.416

Table 2.9.19: Forecast evaluation statistics from the simple forecast for Model
2 and for Model 2 with dummy variables and one-step ahead recursive fore-
casts of Model 2 and Model 2 with dummies

the null of no autocorrelation is rejected. Similarly, when we look at the
Breusch-Pagan-Godfrey test to check for the presence of heteroskedasticity
we find: BPG1 = 58.60, p-value ≈ 0, BPG2 = 17.90, p-value = 0.00002,
BPG3 = 24.76, p-value ≈ 0, BPG4 = 7.65, p-value = 0.006, BPG5 = 37.06,
p-value ≈ 0. This means that there is also evidence for the presence of
heteroskedasticity.

Next, we construct a dummy variable Dt equal to one during the period
Jan. 2008 until Dec. 2009 and estimate the regressions using the full sample
of data ending in 2015:

OASt+1 = β0 + β1V IXt + β2Dt + εt+1

OASt+1 = β0 + β1SENTt + β2Dt + εt+1

OASt+1 = β0 + β1PMIt + β2Dt + εt+1

OASt+1 = β0 + β1sp500t + β2Dt + εt+1

and

OASt+1 = β0 + β1V IXt + β2Dt + β3V IXt ×Dt + εt+1

OASt+1 = β0 + β1SENTt + β2Dt + β3SENTt ×Dt + εt+1

OASt+1 = β0 + β1PMIt + β2Dt + β3PMIt ×Dt + εt+1

OASt+1 = β0 + β1sp500t + β2Dt + β3sp500t ×Dt + εt+1

The results appear in Tables 2.9.20 and 2.9.21. The results are easy to
summarize, as the parameter estimates associated with the dummy variables
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Models 1 - 4 Coefficient t-Statistic Prob. R2 Adjusted R2

C 0.7544 2.586 0.01
(0.2918) [0.7355] [1.026] [0.31]

VIX(-1) 0.233 17.082 0.00 0.73 0.73
(0.0137) [0.0404] [5.784] [0.00]

DUMMY 2.6355 7.493 0.00
(0.3517) [1.0737] [2.455] [0.01]

C 8.2971 7.126 0.00
(1.1643) [2.0298] [4.088] [0.00]

SENT(-1) -0.0327 -2.505 0.01 0.39 0.38
(0.0131) [0.0256] [-1.281] [0.20]

DUMMY 4.6191 8.185 0.00
(0.5643) [2.9572] [1.562] [0.12]

C 21.2224 15.121 0.00
(1.4035) [3.3970] [6.247] [0.00]

PMI(-1) -0.2991 -11.315 0.00 0.61 0.60
(0.0264) [0.0639] [-4.678] [0.00]

DUMMY 3.3139 7.846 0.00
(0.4223) [1.1226] [2.952] [0.00]

C 5.5208 36.435 0.00
(0.1515) [0.4189] [13.179] [0.00]

SP500(-1) -0.1808 -5.568 0.00 0.45 0.45
(0.0320) [0.0609] [-2.966] [0.00]

DUMMY 5.1032 11.285 0.00
(0.4522) [2.7140] [1.880] [0.06]

Table 2.9.20: Default risk models augmented with dummies – Intercept.
Square brackets are HAC estimator corrected standard errors and t-statistics
using pre-whitening (1 lag) and Newey-West estimator (12 lags)

are highly significant. Hence, the crisis period indicators are relevant in
explaining the changes in OAS. Using the Chow test and January 2008 as
a potential break point, the null hypothesis of no structural break is also
rejected for all model specifications.

Facing the fact that the errors feature autocorrelation and heteroskedas-
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Models 1 - 4 Coefficient t-Statistic Prob. R2 Adjusted R2

C 1.6136 5.142 0.00

(0.3138) [0.6596] [2.446] [0.02]

VIX(-1) 0.1904 12.725 0.00 0.77 0.77

(0.0150) [0.0379] [5.017] [0.00]

DUMMY -1.9445 -2.192 0.03

(0.8870) [1.2098] [-1.607] [0.11]

VIX(-1) × DUMMY 0.160 5.561 0.00

(0.0289) [0.0425] [3.773] [0.00]

C 7.2609 6.497 0.00

(1.1175) [1.8078] [4.017] [0.00]

SENT(-1) -0.0210 -1.674 0.10 0.46 0.45

(0.0125) [0.0213] [-0.986] [0.33]

DUMMY 28.2095 6.144 0.00

(4.5911) [10.750] [2.624] [0.01]

SENT(-1) × DUMMY -0.3587 -5.173 0.00

(0.0693) [0.1468] [-2.443] [0.02]

C 17.0234 11.028 0.00

(1.5436) [3.0382] [5.603] [0.00]

PMI(-1) -0.2197 -7.548 0 0.65 0.65

(0.0291) [0.0549] [-4.003] [0.00]

DUMMY 17.4956 6.435 0.00

(2.7187) [4.7411] [3.690] [0.00]

PMI(-1) × DUMMY -0.2966 -5.273 0.00

(0.0563) [0.0911] [-3.255] [0.00]

C 5.4843 36.876 0.00

(0.1487) [0.5109] [10.734] [0.00]

SP500(-1) -0.1226 -3.393 0.00 0.48 0.47

(0.0361) [0.0405] [-3.024] [0.00]

DUMMY 4.9813 11.215 0.00

(0.4441) [1.8399] [2.707] [0.01]

SP500(-1) × DUMMY -0.2321 -3.218 0.00

(0.0721) [0.0927] [-2.505] [0.01]

Table 2.9.21: Default risk models augmented with dummies – Slope. Square
brackets are HAC estimator corrected standard errors and t-statistics using
pre-whitening (1 lag) and Newey-West estimator (12 lags).
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ticity, we should be worried about the standard errors – and therefore t-
statistics reported in Tables 2.9.20 and 2.9.21. There are in fact two sets of
standard errors and t-statistics reported in both tables, namely the OLS ones
in curly brackets and those obtained with a HAC variance estimator (recall
discussion in Section 2.3). Since the Durbin-Watson statistics suggest that
the temporal dependence might be persistent (given the values close to zero
for the statistic), it is often recommended to use a mixture of parametric
models and HAC estimators to obtain better estimates of V̂T (see Section
6.3 for further discussion). The standard errors and t-statistics reported in
Tables 2.9.20 and 2.9.21 are based on pre-whitening (1 lag) and Newey-West
estimator (12 lags). With the modified statistics, we do observe some dif-
ferences in Table 2.9.20. It appears that the sentiment index is no longer
significant, nor is the dummy in Model 2. The latter is also the case with
the Model 4 dummy. Looking at the results in Table 2.9.21 we see that the
sentiment index does become significant during the financial crisis, i.e., the
interaction dummy with the sentiment index remains significant with the
HAC corrected standard errors, although the index itself is insignificant.

2.10 Concluding remarks

Model mis-specification tests are a key ingredient in the formulation of fore-
casting models. In this chapter we reviewed a battery of tests that are
commonly applied in a regression setting, together with possible remedies,
such as the use of dummy variables. One has to keep in mind that many of
the tests and remedies discussed in this chapter also apply to more complex
models - such as those studied in later chapters of this book.
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Chapter 3

The Dynamic Linear
Regression Model

3.1 Introduction

In the previous chapters we have considered forecasting with the linear re-
gression model, mostly assuming that past values of the endogenous and
exogenous variables are not relevant regressors. However, due to the sluggish
adjustment of most macroeconomic variables, often the past provides useful
information about the future. Hence, we will now analyze forecasting with
the dynamic linear regression model.

The chapter is structured as follows. In Section 3.2 we provide a classi-
fication of dynamic models and briefly describe their economic rationale. In
Section 3.3 we discuss estimation and testing. Section 3.4 deals with specifi-
cation issues. Section 3.5 presents forecasting in the context of the dynamic
linear regression model. Section 3.6 illustrates the techniques using simu-
lated data and Section 3.7 using actual data. Concluding remarks appear in
Section 3.8.

Additional details on the topics covered in this chapter can be found,
e.g., in Hendry (1995), Stock and Watson (2009), Wooldridge (2012), among
others.

119
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3.2 Types of dynamic linear regression

models

Dynamic linear models are a particularly relevant class of econometric mod-
els, where the entire set of regressors is allowed to have a time dependent
structure. Many economic phenomena can be described through a dynamic
linear regression model. Notable examples are consumption patterns char-
acterized by micro consumer behavior or staggered wage-setting from the
macro side. Moreover, optimal monetary policy rules implemented by cen-
tral banks imply that the target interest rate has to be adjusted gradually,
resulting into a positive correlation between interest rates at different points
in time. Similarly, aggregate macro variables like consumption and invest-
ment are generally quite persistent, and financial variables like share prices
are generally best described by their past behavior. In what follows, we will
try to provide a basic taxonomy of dynamic linear models, before dealing
with estimation, inference, and diagnostics issues.

The most general specification for a dynamic linear model is the au-
toregressive distributed lags model (ARDL). In the ARDL(p,q) model the
dependent variable, y, is allowed to depend on p lags of itself (yt−1, . . . , yt−p),
the autoregressive component, and q lags of the regressors xt (xt−1, . . . , xt−q),
the distributed lag component. The simplest specification is the ARDL(1,1)
model with a single explanatory variable:

yt = β0 + β1xt + β2xt−1 + α1yt−1 + εt, εt
iid∼ (0, σ2

ε). (3.2.1)

Now we will consider a variety of commonly used models that originate
from (3.2.1) once some restrictions are imposed on the model parameters.
Generalizations to higher order dynamics and more explanatory variables
are straightforward, see e.g., Hendry (1995) for more details.

Static regression: α1 = β2 = 0 =⇒ yt = β0 + β1xt + εt (3.2.2)

This is the simplest type of interaction that we can see in economics, but
clearly it can only be used when the relationship between the dependent
and independent variable is static, as in most of the cases we saw in the
previous chapters. There are many economic models formulated by means of
static equations, such as the Keynesian consumption function or the entire
structure of the IS-LM model. Additional examples are the Purchasing Power
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Parity (PPP) relationship or some of the no arbitrage conditions for financial
markets. Basically, the majority of static equations in economic theory are
long-run relationships, while the short-run adjustment process towards these
long-run equilibria is always more cumbersome to model and it generally
requires the specification of a dynamic model.

It is important to note that if the restrictions in equation (3.2.2) are vio-
lated, and in particular if α1 6= 0, then we are omitting a relevant lagged re-
gressor, resulting into residual autocorrelation and possibly also heteroskedas-
ticty and non-normality.

AR(1) model : β1 = β2 = 0⇒ yt = β0 + α1yt−1 + εt (3.2.3)

In the autoregressive model of order one (AR(1)) the variability of the de-
pendent variable y is explained by its lagged value only. This is the simplest
example of a time series model, whose thorough study appears in the second
part of the book. A notable example of an AR(1) model is generated by
some theories of efficient capital markets: if this assumption holds, then the
price of a financial asset at time t must be equal to its price at time t − 1
plus an error. This amounts to setting α = 1 in equation (3.2.3), yielding
what is typically called a random walk model:

Random walk model: βi = 0, i = 0, 1, 2 α1 = 1⇒ yt = yt−1 + εt (3.2.4)

We will see in the second part of the book that the restriction α1 = 1 plays
a crucial role in time series models, as it completely changes the dynamic
behavior of the dependent variable and the properties of standard estimation
and testing methods.

Differenced model : α1 = 1, β1 = −β2 ⇒ ∆yt = β0 + β1∆xt + εt (3.2.5)

In the model in first differences, where ∆yt = yt - yt−1 and ∆xt = xt - xt−1, it is
the change in y at time t to be explained by the change in x. This formulation
has many applications in economics, as there are many variables displaying
trending behavior and using model (3.2.5) allows to net out the effects of
such trends. Furthermore, since for logarithmic variables the first difference
in general approximates well the growth rate of the variable itself (when
growth is small to modest), the model (3.2.5) is useful to explain relationships
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like the one linking the growth rate of consumption to the growth rate of
disposable income.

Leading indicator model : α1 = β1 = 0⇒ yt = β0 + β2xt−1 + εt (3.2.6)

The leading indicator model is based on the assumption that the regressor
x is a leading indicator for y, and that at time t it is more readily available
than y itself. As an example, if our goal is to predict the GDP growth rate
we could use an index of consumers confidence or an interest rate spread
as leading indicators. Both of them generally fall during a recession and
increase during an expansion, helping to predict the business cycle turning
points and also GDP growth, and are more timely available than GDP itself.
Another example of a leading indicator for GDP growth can be a commodity
price index, which can signal in advance the arrival of supply shocks.

Distributed lag model: α1 = 0⇒ yt = β0 + β1xt + β2xt−1 + εt (3.2.7)

The distributed lag (DL) model has been widely used in the literature since
it enables capturing the effect of adjustment costs and other types of fric-
tions that typically also have a dynamic structure and do not impact only
instantaneously on y.

A useful generalization of model (3.2.7) consists in introducing a (possi-
bly) infinite number of lags for the independent variable. For example, the
geometric distributed lags model (GDL) has the following specification:

yt = α + β(xt + ωxt−1 + ω2xt−2+...) + εt 0 < ω < 1, (3.2.8)

= α + β
∞∑
i=0

ωixt−i + εt.

Here we have an exponential decay structure of the weights, and the long-
run multiplier for the effect of a change in x on y amounts to β

∑∞
0 ωi =

β/(1 − ω). Consequently, the closer is ω to one, the greater the difference
between the long-run multiplier and the impact multiplier β. The mean lag
response instead is calculated as

Mean lag =

∑∞
0 iβωi∑∞
0 βωi

=
ω/(1− ω)2

1/1− ω
=

ω

1− ω
.
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If, for example, ω = 0.5 then mean lag equals one, implying that half of the
total change induced in y by a change in x occurs in the first period after
the change in x.

The GDL model (3.2.8) can also be rewritten as:

yt − ωyt−1 = α(1− ω) + βxt + εt εt = εt − ωεt−1 (3.2.9)

Hence, if we set β = β0 and ω = α1 then (3.2.9) becomes a special case of
model ARDL(1,1) in equation (3.2.1). We will see in Chapter 12 that DL
models play an important role for modeling mixed frequency data.

Partial adjustment model: β2 = 0⇒ yt = β0 + β1xt + α1yt−1 + εt (3.2.10)

The partial adjustment model takes its name from the procedure which en-
ables to derive it. Let us suppose that y has a target level, indicated by y∗

and given by
y∗t = α′ + β′xt + ε′t, (3.2.11)

where y∗t could be for example the baseline interest rate set by the central
bank, or the profit maximizing level of production for a given firm. We
assume that y cannot be instantaneously modified to reach the target y∗t due
to technical reasons or transaction costs. We then have

yt − yt−1 = γ(y∗t − yt−1) 0 < γ < 1. (3.2.12)

The closer γ is to 1, the faster the adjustment of yt to y∗t . Moreover, if we
substitute (3.2.11) in (3.2.12) we obtain

yt = γα′︸︷︷︸
β0

+ γβ′︸︷︷︸
β1

xt + (1− γ)︸ ︷︷ ︸ yt−1+

α1

γε′︸︷︷︸
εt

, (3.2.13)

which is a specification similar to (3.2.9).

Error correction model β1 + β2 + α1 = 1⇒
∆yt = β0 + β1∆xt + (1− α1)(yt−1 − xt−1) + εt (3.2.14)

The Error Correction Model (ECM) is a widely used specification in modern
econometrics as it allows to describe the dynamic behavior of many economic
relationships, and it will be described in greater details later on, in Chapter 7.
The intuition behind it is that in the long-run y and x are moving together,
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so that deviations of y from x cannot persist over time and will gradually
be evaporate. As a consequence, y, and possibly also x, change not only due
to changes in the exogenous variable x but also as a consequence of changes
in the deviations from the long-run equilibrium y − x. For example, if y
represents a short term interest rate and x a long term one, in the long run
the spread should be constant, but in the short run there can be deviations
due to the shocks hitting the economy.

Dead start model : β1 = 0⇒ yt = β0 + β2xt−1 + α1yt−1 + εt (3.2.15)

In the dead start model the independent variable x has no contemporaneous
effects on y. If we model the dynamics of x as

xt = γ0 + γ1xt−1 + α2yt−1 + vt, (3.2.16)

then the two equations (3.2.15) and (3.2.16) considered jointly give rise to
the so called Vector Autoregressive (VAR) model, which is the multivari-
ate equivalent of the autoregressive model (3.2.3), is well known in modern
econometrics, and will be analyzed in details in Chapters 6 and 8.

Autoregressive errors model :

α1β1 + β2 = 0⇒ yt = γ0 + β1xt + ut, ut = α1ut−1 + εt (3.2.17)

The autoregressive errors model is a special case of an AD(1,1) model with
a non-linear restriction on the parameters, which is commonly know as a
Common Factor Restriction (COMFAC), namely α1β1 + β2 = 0. This is a
model that we have considered in some details in Chapter 2, when discussing
of serial correlation in the errors and possible remedies for it. If one esti-
mates a static model and there is evidence of some error autocorrelation, it
is advisable not to use a static model with correlated errors and instead to
extend the model by means of a dynamic (ARDL-type) specification, unless
the COMFAC restriction holds. In fact, if the COMFAC restriction does
not hold, which is empirically often the case, the parameter estimators in the
static model with AR errors are biased and inconsistent. Instead, the param-
eter estimators in the AD(1,1) model remain unbiased and consistent even
though the COMFAC restriction holds, though they are less efficient than
those resulting from estimating the, in this case, proper model in (3.2.17).
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3.3 Estimation and testing

As a first step for the estimation of dynamic models, we need to discuss
the conditions under which the OLS estimator remains valid. We already
know from Chapter 1 that a requirement for the OLS estimator to be BLUE
is that the independent variables and the errors are independent or at least
uncorrelated: Will this assumption still hold in dynamic linear models? Intu-
itively, the answer seems to be negative, since lagged values of the dependent
variable now appear among the regressors.

Let us analyze this issue in greater details. Consider the AR(1) model
for simplicity:

yt = α1yt−1 + εt. (3.3.1)

By substituting for yt−1 we obtain:

yt = α2
1yt−2 + α1εt−1 + εt.

By iterating this backward substitution we have:

yt = εt + α1εt−1 + α2
1εt−2 + α3

1εt−3 + . . .

By defining xt = (yt−1, yt−2, yt−3, . . . )
′ and et = (εt, εt−1, εt−2, . . . )

′, it is evi-
dent that xt and et are not independent. Hence, in general, the OLS estimator
will be biased.

However, it is possible to show that if the errors of the dynamic model
are uncorrelated, then the OLS estimator for the parameters of the dynamic
model remains consistent and asymptotically normal. On the other hand,
when the errors are correlated and the lagged dependent variable appears
among the regressors, the conditions for consistency of the OLS estimator
are violated.

For example, let us consider the AR(1) model (3.3.1) and assume that
the errors evolve according to:

εt = et − ωet−1. (3.3.2)

where et is
iid∼ (0, σ2

e). In this case yt−1 is correlated with εt−1, hence we need
to find some valid instruments for yt−1 and use an instrumental variable (IV)
estimator (as introduced in Chapter 2), which will be consistent for the model
parameters.
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After proper parameter estimators are available, inference can be carried
out by means of t or F statistics. Strictly speaking, these statistics only
have an asymptotic justification, related to the limiting normal distribution
of the OLS estimators. Hence, rather than using their finite sample t− and
F−distributions, it is better to rely on their asymptotic distribution. For
example, for testing q hypotheses on the model parameters, instead of using
an F−statistic we should use qF

a∼
H0

χ2(q).1

3.4 Model specification

Model specification is similar to the problem of variable selection in the
context of the linear regression model, examined in Chapter 1.

Hypothesis testing can be applied for model specification in what is called
a general to specific specification search. Hypothesis tests can be sequentially
applied to verify whether subsequent lags are significant. For example, start-
ing with an ARDL(p,p) model, it is possible to test whether yt−p and xt−p are
both insignificant (their associated coefficients are not statistically different
from zero). If the null is not rejected, then one considers an ARDL(p-1,p-1)
model and tests the significance of yt−p+1 and xt−p+1. The tests stop when
one finally rejects the null.

In order to find the initial lag length p, a few considerations are useful. If
p is too high with respect to the “true” data generating process, there will be
multicollinearity problems among the regressors and loss of efficiency in the
estimates. On the other hand, if p is lower than in the “true” data generating
process, the estimates will be inconsistent. A criterion to select p could be
based on the data frequency, e.g., p = 4 for quarterly data and p = 12 for
monthly data, combined with a check for no mis-specification of the initial
ARDL(p,p) model.

As discussed in Chapter 1, it is important to stress that the iterative
procedures involved in sequential testing are statistically quite complex, since
the statistics used in the different steps are correlated, which makes it difficult
to evaluate their overall size and power. Hence, they need to be used with
caution, being an empirical short-cut rather than a rigorously formalized
procedure. An automated procedure based on shrinkage, such as LASSO or

1We refer the reader to standard econometric textbooks such as Hendry (1995), Stock
and Watson (2009), Wooldridge (2012), for further discussion.
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LARS, could also be applied in this context, in particular when the starting
model has a large number of regressors, see again Chapter 1.

An alternative approach to model selection is based on information cri-
teria (IC). Information criteria combine a measure of the model goodness of
fit with a penalty accounting for the number of parameters. A general form
for an information criterion is

log(σ2) + g(k, T ), (3.4.1)

where σ2 is (an estimator of) the model error variance and g(k, T ) is a func-
tion of the number of parameters (k) and observations (T ). Adding more
parameters improves the model fit but is penalized because it decreases effi-
ciency. Hence, in the case of the ARDL(p,p) model, one should compute an
IC for any value j = 1, . . . , p and select the value j∗ that minimizes the IC,
so as to find a good compromise between goodness of fit and parsimony.

The most widely used information criteria are:

Akaike information criterion (AIC): g(k, T ) = 2k/T
Schwarz information criterion (BIC): g(k, T ) = k log(T )/T

Hannan-Quinn information criterion (HQ): g(k, T ) = 2k log log(T )/T

It can be shown that, under rather mild conditions, some of these criteria
select the correct model with probability approaching one when T goes to
infinity.2 This is true for example for the BIC and HQ, but not for AIC.
However, it is not possible to provide a uniformly valid ranking for the ap-
propriateness of these criteria in finite samples, so that in applications a
comparison of alternative IC can be useful. See Lütkepohl (2007) for addi-
tional details and derivations.

Finally, also within the dynamic linear regression modeling framework,
it is crucial to verify that the hypotheses underlying the model hold. Di-
agnostic tests on the estimated errors, like those we have discussed in the
context of the linear regression model for the hypotheses of no autocorrela-
tion, homoskedasticity, linearity, and normality, are still applicable in this
more general context, though they only have an asymptotic justification.
However, the Durbin-Watson test should not be used, since it only applies to
static specifications. Furthermore, parameter stability tests and the formula-
tion of the dummy variables also need to be properly modified to account for

2The Schwarz information criterion is sometimes referred to as SC, or SIC. Most often
it is called BIC because of its roots in Bayesian analysis.
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the dynamic structure. For example, in an AR(1) model an impulse dummy
that takes the value of 1 in period t and zero elsewhere will have an impact
not only on yt but also on yt+1 and all subsequent periods (though gener-
ally decreasing over time), contrary to the effects in a static model that are
limited to period t.

3.5 Forecasting with dynamic models

Let us illustrate forecasting with dynamic models using the ARDL(1,1) spec-
ification:

yt = β0xt + β1xt−1 + α1yt−1 + εt, εt
iid∼ (0, σ2

ε).

To start with, we make the additional assumption that α1 = 0, so that the
model simplifies to ARDL(0,1):

yt = β0xt + β1xt−1 + εt.

If we now group xt and xt−1 into zt = (xt, xt−1) and the parameters into β
= (β0, β1)′, we can rewrite the model as

yt = ztβ + εt.

At this point, we can use exactly the same reasoning as in the linear regression
model of Chapter 1 to show that the optimal (in the MSFE sense) forecast
for yT+h is

ŷT+h = zT+hβ̂, (3.5.1)

where β̂ is the OLS estimator of β. If the future values zT+h are unknown,
they too should be replaced by forecasts.

Let us now add yt−1 back, and write the ARDL(1,1) model as

yt = ztβ + α1yt−1 + εt.

The optimal one-step ahead forecast is simply

ŷT+1 = zT+1β̂ + α̂1yT .

For the two-steps ahead forecast, we would have

ŷT+2 = zT+2β̂ + α̂1yT+1,
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but yT+1 is unknown. Therefore, we replace it with its conditional expecta-
tion given all the available information up to period T, which coincides with
ŷT+1. Hence, the optimal forecast for yT+2 is

ŷT+2 = zT+2β̂ + α̂1ŷT+1,

and the optimal h-steps ahead forecast is

ŷT+h = zT+hβ̂ + α̂1ŷT+h−1. (3.5.2)

The forecast error is
eT+h = yT+h − ŷT+h. (3.5.3)

Assuming that both zT+h and the parameters are known, so that there is not
estimation uncertainty, we can write

eT+h = α1(yT+h−1 − ŷT+h−1) + εT+h = α1eT+h−1 + εT+h. (3.5.4)

Therefore, the presence of an autoregressive component in the model creates
correlation in the h-steps ahead forecast error. If in (3.5.4) we replace eT+h−1

with its expression we obtain

eT+h = α2
1eT+h−2 + α1εT+h−1 + εT+h.

Repeated substitution then yields

eT+h = αh−1
1 εT+1 + ...+ α1εT+h−1 + εT+h, (3.5.5)

since eT+h = 0 for h ≤ 0, which is an alternative representation for the
dependence in eT+h. We will see in Chapter 5 that the model in (3.5.5) is a
moving average model of order h− 1, MA(h− 1).

From (3.5.5) we can easily derive that

E(eT+h) = 0,

Var(eT+h) = (1 + α2
1 + ...+ α

2(h−1)
1 )σ2

ε .

If the parameters are unknown, as well as future values of the x, then the
forecast error becomes

eT+h = (zT+hβ − ẑT+hβ̂) + (α1yT+h−1 − α̂1ŷT+h−1) + εT+h

= zT+h(β − β̂) + (zT+h − ẑT+h)β̂ + (α1 − α̂1)yT+h−1

+α̂1eT+h−1 + εT+h (3.5.6)
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The expression for the variance of the forecast error becomes more complex,
see e.g., Lütkepohl (2007) for a precise derivation in a related context. Intu-
itively, the variance increases due to parameter estimation uncertainty, and
uncertainty on the future values of the x. Note that there remains serial
correlation in the forecast errors.

To conclude, if we make the additional assumption that the error terms
εt are normally distributed, and the parameters and future values of x are
known, then it follows that(

yT+h − ŷT+h√
Var(eT+h)

)
∼ N(0, 1),

which implies
yT+h ∼ N(ŷT+h,Var(eT+h)). (3.5.7)

As in the context of the linear regression model, the latter expression
can be used to compute density and interval forecasts of yT+h. Parameter
estimation and the use of forecasts for future unknown values of the x make
the density more complex, but the formula above remains asymptotically
valid, with a proper expression for Var(eT+h).

3.6 Examples with simulated data

The simulated data examples we considered in the first two chapters are based
on the assumption that there are no lagged dependent variables, i.e., the
model is static. But tests for no serial correlation rejected the null hypothesis,
so that model re-specification is needed and the natural choice is to add
lagged variables to the set of regressors. Hence, we now search for the best
dynamic model specification, and build forecasts based on it, using the same
dataset as in previous chapters.

We focus on the following set of equations:

yt = α1 + β1Dt + α2xt + β2Dtxt + γy1yt−1

+ . . .+ γypyt−p + γx1xt−1 + ...+ γxmxt−m + εt

where p = 0, 1, 2 is the number of lags for y, and m = 0, 1, 2 is the number
of lags of the independent variable x, so that the most general model for y
is an ARDL(2,2). We also include the dummy variable, Dt, which is equal
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to 0 for observations from 101 to 201 and 1 otherwise. According to the
analysis in Chapter 2 the dummy variable is significant. We estimate all the
models and then select the specification with the lowest Akaike Information
Criterion (AIC) and Schwarz Information Criterion (SC).

Table 3.6.1 sums up the information criteria for all the model specifica-
tions tested:

Model AIC Schwarz

DGP22 2.968 3.100
DGP12 2.959 3.075
DGP21 2.967 3.083
DGP11 2.958 3.057
DGP10 4.536 4.619
DGP01 5.906 5.989
DGP20 3.794 3.893
DGP02 4.950 5.049

Table 3.6.1: Dynamic model: Model selection

According to Table 3.6.1, the ARDL(1,1) is selected by both information
criteria. This model actually coincides with our DGP:

y = α1 + β1Dt + α2xt + β2Dtxt + γy1yt−1 + γx1xt−1 + εt

where y = ln(Y ) from Chapter 1.
Table 3.6.2 presents the estimation output. All the coefficients are sta-

tistically significant (at the 1% confidence level). Also, we can not reject the
hypothesis that each coefficient is equal to its actual value in the DGP, and
the R2, is equal to 99.9%, while the Durbin-Watson statistic indicates that
there is no serial correlation in the residuals.

The final step of the analysis is forecasting, and as in the examples of the
previous chapters we take 301 - 501 as the forecast sample. Since the model
is dynamic, in this case static and dynamic forecasts will differ. The former
are a set of one-step ahead forecasts, while the latter are forecasts for periods
T+1 until T+h, where h =200. We also consider one-step ahead recursive
forecasts, for the same forecast period. Table 3.6.3 compares the forecasting
performance indicators for the two types of forecasts. In comparison to the
forecast results in Chapter 2 we see a vast improvement. Also noteworthy is
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Coefficient Std. Error t-Statistic Prob.

ALPHA(1) 1.030 0.109 9.408 0.000
BETA(1) 0.920 0.155 5.954 0.000
ALPHA(2) 0.969 0.018 54.381 0.000
BETA(2) 1.005 0.026 38.020 0.000
GAMMA-Y(1) 0.496 0.008 59.533 0.000
GAMMA-X(1) 0.494 0.018 27.499 0.000

R-squared 0.993 Mean dep var 6.695
Adjusted R-squared 0.993 S.D. dep var 12.560
S.E. of regression 1.046 Akaike IC 2.958
Sum squared resid 212.418 Schwarz IC 3.057
Log likelihood -289.812 Hannan-Quinn 2.998
F-statistic 5695.113 DW stat 2.219
Prob(F-statistic) 0.000

Table 3.6.2: DGP model estimation

Forecasting Method
Static Recursive

RMSFE 1.109 0.966
MAFE 0.865 0.761

Table 3.6.3: One-step ahead ARDL(1,1) forecasting performance

the fact that the S.E. of the regression reported in Table 3.6.2 is very close
to the RMSFE reported in Table 3.6.3 – a consequence of the fact that the
parameter estimates are extremely precise.

3.7 Empirical examples

Section 1.13 introduced a hint of dynamics by lagging the dependent vari-
ables. We now consider the rich class of dynamic regression models intro-
duced in this chapter and re-examine the empirical examples studied in Chap-
ter 1.
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3.7.1 Forecasting Euro area GDP growth

The empirical examples using Euro-area GDP we considered in the previous
chapters are based on simple linear regression without any lagged dependent
or independent variables. If lagged variables have significant explanatory
power but are excluded from the model, a likely impact will be that the
omitted dynamics will appear in the errors that will be serially correlated as
a result. Indeed, the tests we ran in the previous chapter rejected the null of
serially uncorrelated errors. The inclusion of lagged variables helps capture
the dynamics.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.180 0.046 3.922 0.000
Y(-1) 0.287 0.116 2.473 0.016
IPR 0.261 0.034 7.696 0.000
IPR(-1) -0.012 0.049 -0.250 0.803
SU -0.009 0.017 -0.539 0.592
SU(-1) -0.019 0.017 -1.115 0.269
SR 0.006 0.005 1.238 0.220
SR(-1) 0.007 0.005 1.384 0.171

R-squared 0.838 Mean dep var 0.350
Adjusted R-squared 0.820 S.D. dep var 0.629
S.E. of regression 0.267 Akaike IC 0.304
Sum squared resid 4.422 Schwarz IC 0.561
Log likelihood -2.656 Hannan-Quinn 0.407
F-statistic 45.809 DW stat 2.138
Prob(F-statistic) 0.000

Table 3.7.1: ARDL Model 1

We augment Model 2 presented in the previous empirical examples with
lagged dependent and independent variables yielding ARDL-type models.
We estimate two ARDL representations based on the indicator variables in-
cluded in Model 2 using our full sample that covers 1996Q1 to 2013Q2. The
first model, referred to as ARDL Model 1, includes the first lags of all vari-
ables, including the dependent variable. The results are presented in Table
3.7.1.
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First of all, not all lagged terms included in the ARDL Model 1 are sig-
nificant. Unlike its contemporaneous value, the lagged IP growth does not
appear to have much explanatory power. The contemporaneous change of
ESI also does not appear to be significant. We tried out a few alterna-
tive specifications based on reducing the ARDL Model 1, using information
criteria to select the appropriate model. The outcome is ARDL Model 2,
presented in Table 3.7.2, which includes the contemporaneous IP growth,
the first lag of GDP growth, first lag of both the growth of ESI, and stock
returns.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.187 0.039 4.747 0.000
Y(-1) 0.273 0.065 4.174 0.000
IPR 0.262 0.027 9.827 0.000
SU(-1) -0.025 0.012 -2.000 0.050
SR(-1) 0.008 0.005 1.673 0.099

R-squared 0.834 Mean dep var 0.350
Adjusted R-squared 0.823 S.D. dep var 0.629
S.E. of regression 0.264 Akaike IC 0.245
Sum squared resid 4.538 Schwarz IC 0.405
Log likelihood -3.568 Hannan-Quinn 0.309
F-statistic 81.465 DW stat 2.099
Prob(F-statistic) 0.000

Table 3.7.2: ARDL Model 2

The values of all information criteria reported in Table 3.7.2 are lower
for the ARDL Model 2 compared to those for the ARDL Model 1 in Table

3.7.1. In addition, the R
2

is slightly higher. This implies that the ARDL
Model 2 has a better in-sample fit compared to the ARDL Model 1. This
gain in a model fit is achieved by excluding from the model contemporaneous
values of the change in ESI and the stock return, while still retaining the first
lag of both variables. This, in turns, implies the lagged values of these two
variables are more informative than their contemporaneous values. In fact,
if we compare these results with those of Model 2 presented in Table 3.7.2,
we can see the impact of the inclusion of dynamics into the model. There
is not only an improvement of the model fit, but also an improvement in
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terms of capturing dynamics. The reported DW test statistics for testing
first order serial correlation in both Tables 3.7.1 and 3.7.2 suggest that the
null hypothesis of no serial correlation cannot be rejected. It means that
inclusion of the lagged variables helps to capture dynamics that were present
in the model errors without lagged terms, i.e., Model 2 in Chapter 2. Indeed,
the Breusch-Godfrey serial correlation LM test results reported in Tables
3.7.3 and 3.7.4 show that the null hypothesis of no serial correlation up to
order 2 cannot be rejected.

F-statistic 1.293 Prob. F(2,60) 0.282
Obs*R-squared 2.891 Prob. Chi-Square(2) 0.236

Variable Coefficient Std.Error t-Statistic Prob.

C -0.103 0.093 -1.106 0.273
Y(-1) 0.384 0.325 1.184 0.241
IPR -0.011 0.035 -0.325 0.747
IPR(-1) -0.116 0.106 -1.094 0.279
SU 0.009 0.018 0.523 0.603
SU(-1) 0.007 0.018 0.389 0.699
SR -0.001 0.005 -0.207 0.836
SR(-1) -0.004 0.006 -0.650 0.518
RESID(-1) -0.481 0.366 -1.315 0.193
RESID(-2) 0.004 0.164 0.022 0.982

R-squared 0.041 Mean dep var 0.000
Adjusted R-squared -0.102 S.D. dep var 0.253
S.E. of regression 0.266 Akaike IC 0.319
Sum squared resid 4.239 Schwarz IC 0.641
Log likelihood -1.180 Hannan-Quinn 0.447
F-statistic 0.287 DW stat 2.063
Prob(F-statistic) 0.976

Table 3.7.3: Breusch-Godfrey serial correlation LM test for ARDL Model 1

Forecasting with dynamic models To see whether accommodating dy-
namics in the model can improve predictive accuracy, we perform a forecast-
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ing exercise using the ARDL Model 2. In addition, we also include in the
forecasting model the dummy variables we created for the example in Chap-
ter 2, i.e., the dummies capturing the impact of the Euro area crisis and the
early 2000s recession.

F-statistic 0.662 Prob. F(2,63) 0.519
Obs*R-squared 1.441 Prob. Chi-Square(2) 0.486

Variable Coefficient Std.Error t-Statistic Prob.

C -0.005 0.042 -0.109 0.914
Y(-1) 0.012 0.075 0.154 0.878
IPR -0.004 0.027 -0.155 0.877
SU(-1) -0.002 0.013 -0.121 0.904
SR(-1) 0.000 0.005 0.036 0.971
RESID(-1) -0.060 0.146 -0.409 0.684
RESID(-2) 0.135 0.134 1.002 0.320

R-squared 0.021 Mean dep var 0.000
AdjustedR-squared -0.073 S.D. dep var 0.256
S.E. of regression 0.266 Akaike IC 0.281
Sum squared resid 4.445 Schwarz IC 0.506
Log likelihood -2.840 Hannan-Quinn 0.370
F-statistic 0.221 DW stat 2.025
Prob(F-statistic) 0.969

Table 3.7.4: Breusch-Godfrey serial correlation LM test for ARDL Model 2

We compare the forecast accuracy of this model against that of Model 2
and Model 2.3. The estimation sample we consider here is 1996Q1 to 2010Q4.
The forecast evaluation period is therefore 2011Q1 to 2013Q2. We first re-
estimate the ARDL Model 2 for this estimation period and in addition add
the dummies as used in Model 2.3. Table 3.7.5 presents the estimation output
for the ARDL Model 2 with those dummies, and note that there is evidence
that the Euro crisis dummy matters again, judging by the t statistics.
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.333 0.055 6.049 0.000
Y(-1) 0.108 0.074 1.462 0.150
IPR 0.254 0.026 9.928 0.000
SU(-1) -0.014 0.013 -1.062 0.293
SR(-1) 0.009 0.005 1.853 0.070
D EA -0.251 0.089 -2.828 0.007
D 2000S 0.101 0.096 1.046 0.300

R-squared 0.874 Mean dep var 0.414
Adjusted R-squared 0.860 S.D. dep var 0.644
S.E. of regression 0.241 Akaike IC 0.102
Sum squared resid 3.080 Schwarz IC 0.346
Log likelihood 3.942 Hannan-Quinn 0.198
F-statistic 61.369 DW stat 2.268
Prob(F-statistic) 0.000

Table 3.7.5: ARDL Model 2 with dummies

Model 2 Model 2 ARDL Model 2
with dummies with dummies

Static forecasts

RMSFE 0.413 0.326 0.297
MAFE 0.376 0.248 0.236

Recursive forecasts

RMSFE 0.398 0.332 0.290
MAFE 0.363 0.256 0.236

Table 3.7.6: Forecast evaluation statistics: 2011Q1 through 2013Q2
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Model 2 Model 2 ARDL Model 2
with dummies with dummies

Static forecasts

RMSFE 0.413 0.326 0.297
MAFE 0.376 0.248 0.236

Recursive forecasts

RMSFE 0.398 0.332 0.290
MAFE 0.363 0.256 0.236

Table 3.7.7: Forecast evaluation statistics: 2011Q1 through 2013Q2

Table 3.7.7 presents the forecast evaluation statistics of the three models.
Comparing the ARDL Model 2 with dummies in Table 3.7.5 with Model 2
in Table 1.12.5, we note that the former has better in-sample fit as it has
smaller values of information criteria, as well as (adjusted) R2. The ARDL
Model 2 is also preferred to Model 2.3 in Table 2.9.12 as two out of three
reported information criteria of the former have smaller values, though the
differences are small.

Table 3.7.7 shows the forecast evaluation statistics of these three models
computed over the period 2011Q1 to 2013Q2, it is clear that the ARDL
Model 2, having included the lagged terms, outperforms the other two models
whether the forecasts are static or recursive. We also note that there is very
little difference between static and recursive forecasts, at least for the ARDL
Model 2 with dummies.

3.7.2 Forecasting US GDP growth

We estimate two alternative ARDL representations with dummy variables
for Great Recession and the recession of the early 2000s based on the same
indicator variables included in Model 1, using our full sample that covers
1985Q1 to 2013Q4. The first model, named ARDL Model 1, includes the
first lags of all variables, including the dependent variable. The results are
presented in Table 3.7.8. We can see that none of the lagged variables is
significant, as well as dummy variables. However, as we will see the ARDL
model will yield some gains in forecasting. Note also the considerable increase



i
i

i
i

i
i

i
i

3.7. EMPIRICAL EXAMPLES 139

Variable Coefficient Std.Error t-Statistic Prob.

C 0.498 0.074 6.694 0.000
Y(-1) -0.033 0.098 -0.335 0.738
IPR 0.322 0.064 5.005 0.000
IPR(-1) -0.020 0.057 -0.347 0.729
SU 0.006 0.007 0.832 0.407
SU(-1) -0.010 0.007 -1.353 0.179
SR 0.010 0.008 1.217 0.226
SR(-1) 0.004 0.008 0.540 0.591
Dfincris -0.309 0.276 -1.122 0.265
D2000s 0.069 0.170 0.408 0.684

R-squared 0.539 Mean dep var 0.657
Adjusted R-squared 0.500 S.D. dep var 0.600
S.E. of regression 0.424 Akaike IC 1.206
Sum squared resid 19.094 Schwarz IC 1.443
Log likelihood -59.951 Hannan-Quinn 1.302
F-statistic 13.775 DW stat 1.943
Prob(F-statistic) 0.000

Table 3.7.8: Estimation output: ARDL Model 1 with dummy variables
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.532 0.068 7.799 0.000
Y(-1) -0.050 0.086 -0.577 0.565
IPR 0.308 0.054 5.668 0.000
SU(-1) -0.011 0.007 -1.585 0.116
SR(-1) 0.007 0.008 0.848 0.399
Dfincris -0.503 0.256 -1.967 0.052
D2000s 0.000 0.167 0.001 1.000

R-squared 0.521 Mean dep var 0.657
Adjusted R-squared 0.495 S.D. dep var 0.600
S.E. of regression 0.427 Akaike IC 1.192
Sum squared resid 19.833 Schwarz IC 1.359
Log likelihood -62.156 Hannan-Quinn 1.260
F-statistic 19.777 DW stat 1.852
Prob(F-statistic) 0.000

Table 3.7.9: Estimation output: ARDL Model 2 with dummy variables

in (adjusted) R2 in comparison to Table 1.13.1, and the fact that the F -
test for model non-significance strongly rejects the null hypothesis. This
suggests that the outcome of the t-tests could be due to collinearity among
the regressors.

The next step is to present a simplified version of Model 1, called ARDL
Model 2 (see Table 3.7.9), which includes the contemporaneous IP growth,
the first lag of GDP growth, the first lag of both the growth of CSI and
stock returns. The estimation output shows that the dummy indicator for
the Great Recession is significant while again none of the lagged variables
are. Comparing the ARDL Models 1 and 2, the values of the AIC, SC, and
HQ criteria are lower for the latter. At the same time the values of R2 and

R
2

are modestly higher for Model 1. Hence, the ranking of the two models
is not clear-cut. As an illustration, we will now continue our analysis with
forecasting based on the ARDL Model 1, though the forecasts for the ARDL
Model 2 are rather similar.
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Model 2 Model 2 ARDL Model 1
with dummies with dummies

Static Forecasts

RMSFE 0.522 0.519 0.512
MAFE 0.422 0.419 0.397

Recursive Forecasts

RMSFE 0.531 0.528 0.520
MAFE 0.419 0.416 0.389

Table 3.7.10: Forecast evaluations: 2011Q1 through 2013Q4

Forecasting with dynamic models We compare the forecast accuracy
of the ARDL Model 1 against Model 2 and Model 2.3 of Chapter 2. The
estimation sample we consider here is 1985Q1 to 2010Q4, while the forecast
evaluation period is 2011Q1 to 2013Q4. We first re-estimate ARDL Model 1
over this estimation period and then we compute the relevant forecast eval-
uation statistics. We consider forecasts generated by three different model
specifications:

• ARDL Model 1 with dummies

• Model 2

• Model 2 with dummy variables

The forecasting evaluation results are reported in Table 3.7.10. In terms
of RMSFE and MAFE, ARDL Model 1 with dummies shows the best fore-
casting performance, although the gains from adding lagged explanatory vari-
ables are minor. The upper panel covers static forecasts. We also investigate
in the lower panel whether recursively updating the estimated parameters in
the forecasting models can improve accuracy. The results show that ARDL
Model 1 with dummies has better forecasting performance in the case of re-
cursive forecasting as well. Yet, the gains are again rather modest compared
to the models discussed in Chapter 2.
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3.7.3 Default risk

In the third and final example we face a situation quite different from the
previous case. The forecast gains resulting from including lagged dependent
variables in forecasting models for US GDP growth were modest at best.
With default risk the situation is quite different. Building further on the
analysis in Chapter 1 we consider the following models:

• ARDL Model 1: OASt = α + β1 OASt−1 + β2 V IXt−1 + εt

• ARDL Model 2: OASt = α + β1 OASt−1 + β2 SENTt−1 + εt

• ARDL Model 3: OASt = α + β1 OASt−1 + β2 PMIt−1 + εt

• ARDL Model 4: OASt = α + β1 OASt−1 + β2 SP500t−1 + εt

We will call the models ARDL Models 1 – 4, by analogy with the labels
used in Section 1.13. We re-estimate all the regressions again for the sample
from Jan. 1998 to Dec. 2007 and produce forecasts out-of sample for the
period Jan. 2008 until Dec. 2015. We then compute the in-sample regression
statistics and the out-of-sample RMSFE for each of the regression models.
The results are reported in Table 3.7.11. We observe vast improvements in
model fit. For example, the R2 more than quadruples in ARDL Models 2 and
4, involving respectively SENTt and SP500t, in comparison to the findings
reported in Tables 1.13.4 and 1.13.6. The other two models feature less dra-
matic, but nevertheless substantial improvements. Model 4 has the highest
adjusted R2, the lowest BIC, and the lowest Hannan-Quinn IC. Therefore,
Model 4 presents the best in-sample fit. Yet, Model 3, based on PMI appears
the have the best out-of-sample RMSFE. An important observation to make
is that the parameter estimates for the lagged dependent regressors are quite
close to one. A more subtle observation is that the Durbin-Watson statis-
tics for the models reported in section 1.13 are all close to zero. All of this
may lead us to think about using a differenced model appearing in equation
(3.2.5) for the purpose of inference. This is a topic which will be addressed
in Chapter 5.

3.8 Concluding remarks

The dynamic regression models discussed in this chapter lead naturally to
time series models which will be discussed starting with Chapter 5. Many
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ARDL Coefficient Std Error t-Stat R2 RMSFE BIC HQIC
Models 1-4 static

C -0.108 0.200 -0.540
OAS(-1) 0.856 0.039 21.743 0.93 0.559 408.27 398.01
VIX(-1) 0.046 0.015 3.106

C 0.179 0.647 0.782
OAS(-1) 0.959 0.027 35.287 0.92 0.541 417.77 407.51
SENT(-1) 0.001 0.006 0.171

C 0.970 1.142 0.850
OAS(-1) 0.942 0.033 28.346 0.92 0.537 417.43 407.17
PMI(-1) 0.019 -0.002 -0.605

C 0.517 0.148 3.499
OAS(-1) 0.923 0.021 43.934 0.94 0.609 383.75 373.49
SP500(-1) -0.085 0.014 -6.111

Table 3.7.11: Default risk models: In-sample and out-of-sample results

econometric models involve lagged dependent variables, either because they
appear to be better at forecasting or economic theory suggests a dynamic
relationship. It is therefore a key topic of interest explored in this chapter.
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Chapter 4

Forecast Evaluation and
Combination

4.1 Introduction

In the previous three chapters we have discussed how to obtain forecasts
from various types of linear regression models, possibly based on different
information sets and different selections of indicators. In the next chapters
we will consider forecasting using even more sophisticated models. And there
are also a variety of alternative forecasts available, e.g., those produced by
private banks, central banks, governments, and international organizations.
Often all of these forecasts have the same target variable, e.g., GDP growth
or inflation in a given country, or sales for a particular company.

Given this abundance of competing forecasts, in this chapter we try to
answer the following questions:

(i) How “good,” in some sense, is a particular set of forecasts?

(ii) Is one set of forecasts better than another one?

(iii) Is it possible to get a better forecast as a combination of various fore-
casts for the same variable?

To address (i) we define some key properties a good forecast should have
and discuss how to test them. For (ii) we introduce some basic statistics to
assess whether one forecast is equivalent or better than another with respect

145
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to a given criterion (generally, the MSFE). For (iii) we discuss how to com-
bine the forecasts and why the resulting pooled forecast can be expected to
perform well.

These topics have been extensively studied in the econometrics literature.
More details can be found, e.g., in Clements and Hendry (1998) about fore-
cast evaluation, in Clark and McCracken (2013) about forecast comparison,
and in Timmermann (2006) about forecast combination. Elliott and Tim-
mermann (2016) provide a more rigorous and exhaustive treatment of these
topics.

The chapter is structured as follows. In Section 4.2 we discuss forecast
unbiasedness and efficiency, and the related testing procedures. In Section
4.3 we focus on fixed event forecasts. In Section 4.4 we introduce tests for pre-
dictive accuracy and in Section 4.5 forecast comparison tests. In Section 4.6
we consider forecast combination and in Section 4.7 forecast encompassing.
Section 4.8 deals briefly with the evaluation, comparison and combination of
density forecasts. Sections 4.9 and 4.10 present examples based on, respec-
tively, simulated and actual data. Section 4.11 provides concluding remarks.

4.2 Unbiasedness and efficiency

Forecast unbiasedness and forecast efficiency are two basic properties a good
prediction should have. The former is related to the fact that the optimal
forecast under a MSFE loss function is the conditional expectation of the
variable, so that it should be Et(yt+h) = ŷt+h|t, where Et(·) is the conditional
expectation given information at time t. A consequence of unbiasedness is
that the expected value of the forecast error should be equal to zero, implying
that on average the forecast should be correct.

Efficiency is instead related to the efficient use of the available informa-
tion, in the sense that the optimal h-steps ahead forecast error should be at
most correlated of order h − 1, and uncorrelated with available information
at the time the forecast is made. When this is not the case, the forecast can
be improved upon, typically by a more careful specification of the forecasting
model.

Inefficient forecasts can still be unbiased, and biased forecasts can be
efficient. For example, if yt is a random walk, namely,

yt = yt−1 + εt,
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and we use as a forecast
ỹt+h|t = yt−g,

then ỹt+h|t is unbiased but not efficient. Similarly, if yt is a random walk with
drift, namely,

yt = a+ yt−1 + εt,

and we use as a forecast
ỹt+h|t = yt,

then ỹt+h|t is biased but efficient.1

In order to test whether a forecast is unbiased, let us consider the regres-
sion

yi+h = α + βŷi+h|i + εi+h, i = T, ..., T +H − h, h < H (4.2.1a)

where h is the forecast horizon and T + 1, ..., T + H the evaluation sample.
The forecasts ŷi+h|i are recursively updated in periods i = T, . . . , T + H
- h. When (α = 0, β = 1), ŷi+h|i is an unbiased forecast of yi+h, as can be
observed by taking expectations in (4.2.1a). This condition is not necessary
because unbiasedness only requires

α = (1− β)E(ŷi+h|i). (4.2.1b)

The sufficient condition (α = 0, β = 1) can be tested by a “robust”
F−test, where the fact that εi+h is in general autocorrelated (at least) of
order h − 1 is taken into account in the derivation of the HAC variance
covariance matrix of the estimators of the parameters, as we have seen in
Chapter 2 for the case of a regression model with correlated errors. The
necessary condition (4.2.1b) is equivalent to τ = 0 in the regression:

ei+h = yi+h − ŷi+h|i = τ + εi+h,

which can be tested with a robust version of the t−test.
Note that (α = 0, β = 1) also implies that the forecast and forecast errors

are uncorrelated. Actually, (4.2.1a) can be rewritten as

ei+h = α + (β − 1)ŷi+h|i + εi+h,

1In both cases, the target variable and the forecast are cointegrated. Hence, unbi-
asedness, efficiency, and cointegration (in the case of integrated target variable) are all
necessary but not sufficient conditions for a good forecast. Integration and cointegration
are discussed in more details in Chapters 5 and 7, respectively.
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so that

E(ŷi+h|iei+h) = αE(ŷi+h|i) + (β − 1)E(ŷi+h|i) + E(ŷi+h|iεi+h︸ ︷︷ ︸
=0

) = 0.

In this sense (α = 0, β = 1) also guarantees that the forecasts cannot be
used to “reduce” the forecast error, and therefore it is also a condition that
relates to efficiency of the forecasts, i.e., to full exploitation of the available
information.

Moreover, when (α = 0, β = 1), we have that

var(yi+h) = var(ŷi+h|i) + var(ei+h),

implying that the volatility of the variable should be larger than that of the
(optimal) forecast, the more so the larger the variance of the forecast error.

The coefficient of determination (R2) from 4.2.1a can also be used as an
indicator of the forecast quality, with good forecasts associated with high
R2. However, one should also consider that persistent variables are easier
to forecast than volatile variables, given that their past is a useful leading
indicator.

A second requirement for a good forecast (usually called weak efficiency)
is that ei+h is correlated, across time, at most of order h - 1, which implies
that no lagged information beyond h−1 can explain the forecast errors. This
property can be assessed by fitting a moving average model of order h − 1,
MA(h−1), to the h-steps ahead forecast error and testing that the resulting
residuals are white noise.2

A third requirement for a good forecast (strong efficiency) is that γ = 0
in the regression

ei+h = γ′zi + εi+h,

where zi is a vector of potentially relevant variables for explaining the fore-
cast errors. If the h−step ahead forecasts are strongly efficient, no indicators
available when the forecasts were formulated can improve them and therefore
explain the h−step ahead forecast error.3 Note that in this case the observa-

2As an alternative, an ARMA(p, q) model (presented in Chapter 5) can be fitted, and
the non-significance of AR terms, and of MA terms higher than h− 1, tested.

3It is also worth noting parenthetically that if the target variable is non-stationary I(1),
a topic covered in Chapter 7, then a further natural requirement is that yi+h and ŷi+h|i
are cointegrated, possibly with cointegrating vector equal to (1,−1). Both features can
be tested using standard procedures from the cointegration literature, see e.g., Johansen
(1995) or Chapter 7.
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tions on the dependent variable ei+h are realizations of a set of h-steps ahead
forecast errors, namely, ei+h = yi+h - ŷi+h|i.

To conclude, note that with a different loss function the conditions for a
good forecast are different. For example, if underpredicting is more costly
than overpredicting, then the expected value of the optimal forecast error
will be negative. In particular, Granger (1999) has shown that the first
derivative of the loss function (which is a linear function of the forecast error
with MSFE loss) should have mean zero and be uncorrelated both over time
and with variables available when making the forecast, see e.g., Artis and
Marcellino (2001) for an application and Elliott and Timmermann (2016) for
a detailed treatment.

4.3 Evaluation of fixed event forecasts

So far we have considered forecasts for period T +h made in period T where
T progressively increases, namely, {ŷi+h|i} for i = T, . . . , T + H − h. As an
alternative, we can consider {ŷτ |τ−h}, h = 1, 2, . . . i.e., forecasts for a fixed
target value (yτ ) made at different time periods that become closer and closer
to τ. The {ŷτ |τ−h} are known as fixed event forecasts. For example, for an
AR(1) process, it is

ŷτ |τ−h = ρhyτ−h.

The properties of fixed events forecasts were studied by, e.g., Clements (1997).
Let us decompose the forecast error as:

eτ |τ−h = yτ − ŷτ |τ−h = vτ |τ−h+1 + vτ |τ−h+2 + ...+ vτ |τ , (4.3.1)

where

vτ |J = ŷτ |J − ŷτ |J−1, ŷτ |τ = yτ , J = τ − h+ 1, . . . , τ. (4.3.2)

For the AR(1) example, it is

vτ |J = ρτ−JεJ,

and
eτ |τ−h = ρh−1ετ−h+1 + ...+ ετ .

In this context, unbiasedness requires that

E(eτ |τ−h) = 0, ∀ τ − h.
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For weak efficiency, the following should hold:

E(eτ |τ−h|vτ |τ−h, ..., vτ |1) = 0, ∀ τ − h,

i.e., the forecast error at τ − h is uncorrelated with all previous forecast
revisions up to τ − h. This condition is equivalent to

E(vτ |τ−h|vτ |τ−h−1, ..., vτ |1) = 0, ∀ τ − h

i.e., the forecast revision at time τ−h is independent of all previous revisions
up to τ − h− 1. These conditions also imply that

ŷτ |J − ỹτ |J−1 = ρ(τ−J)εJ , (4.3.3)

i.e., the evolution of the fixed event forecasts should follow a random walk,
or the forecast revisions should be white noise, which are easily testable
hypotheses.

Strong efficiency can be defined as the lack of explanatory power for vτ |J
of variables z included in the information set for period J . This property can
be assessed as we have seen in the previous section, namely, by regressing
vτ |J on zJ and testing for the non-significance of zJ .

4.4 Tests of predictive accuracy

Tests of predictive accuracy compare an estimate of the forecast error vari-
ance obtained from the past residuals with the actual MSFE of the forecasts.
Hence, they only provide a measure of how well the model performs in the
future relative to the past. But they are often applied and reported in em-
pirical analysis, so that it is worth analyzing them. They can be based on
several testing principles, and we will focus on Wald-type tests.

As we will see in more detail in Chapter 5, if yt admits the Wold MA(∞)
representation:

yt = ψ(L)εt,

then the h− step ahead minimum MSFE predictor is

ŷT+h|i =
∞∑
J=h

ψJεT+h−J ,
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with associated forecast error

eT+h =
h−1∑
J=0

ψJεT+h−J ,

where ψ0 = 1.
We can group the errors in forecasting (yT+1, ..., yT+h) conditional on

period T in
eh = ψεh, (4.4.1)

where eh = (eT+1, ..., eT+h)
′, εh = (εT+1, ..., εT+h)

′ and

ψ =



1 0 . . . . . . 0 0
ψ1 1 . . . . . . 0 0
ψ2 ψ1 . . . . . . 0 0
...

...
. . .

...
...

...
...

. . . 1 0
ψh−1 ψh−2 . . . . . . ψ1 1


.

If we define
Φh = E(ehe

′
h) = ψE(εhε

′
h)ψ

′ = σ2
εψψ

′,

and if the appropriate model over [1, ..., T ] remains valid over the forecast
horizon and ε ∼ N, then

Q = e′hΦ
−1
h eh ∼ χ2(h),

where Φ−1
h = σ−2

ε (ψ−1)′ψ−1.
Writing the autoregressive (AR) approximation of the Wold representation
(see again the next chapter for details) as

ϕ(L)yt = εt, ϕ(L) = ψ(L)−1,

we also have
εh = ϕeh, ϕ = ψ−1,

Φ−1
h = σ−2

ε ϕ′ϕ.

We can therefore rewrite the statistic Q as

Q =
e′hϕ

′ϕeh
σ2
ε

=
ε′hεh
σ2
ε

=
1

σ2
ε

h∑
J=1

ε2
T+J .
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Given that εT+J is also the one-step ahead forecast error in forecasting yT+J ,
we see that Q can be written as a sum of these errors.

An operational version of the test is therefore:

Q̂ =
1

σ̂2
ε

h∑
J=1

e2
T+J |T+J−1 ∼ F (h, T − p),

where p is the number of parameters used in the model and eT+J |T+J−1

indicates for clarity the one-step ahead forecast error.

4.5 Forecast comparison tests

After having discussed how to evaluate a given forecast, we now consider
how to compare alternative predictions. The most common approach is to
rank them according to the associated loss function, typically the MSFE or
MAFE. However, these comparisons are deterministic, i.e., it is evaluated
whether one MSFE is larger than the other but not whether their difference
is statistically significant. We will now consider two tests for the hypothesis
that two forecasts are equivalent, in the sense that the associated loss differ-
ence is not statistically different from zero. Additional and more advanced
methods are surveyed, e.g, in West (2006) and Clark and McCracken (2013),
including methods for the comparison of more than two models.

The first test we consider is due to Granger and Newbold (1986), and it is
also known as the Morgan-Granger-Newbold test since it is related to earlier
work by Morgan. It requires the forecast errors to be zero mean, normally
distributed, and uncorrelated. If we indicate by e1 and e2 the forecast errors
from the competing models, the test is based on the auxiliary variables:

u1,T+J = e1,T+J − e2,T+J , u2,T+J = e1,T+J + e2,T+J . (4.5.1)

It is

E(u1u2) = MSFE1 −MSFE2,

so that the hypothesis of interest is whether u1 and u2 are correlated or not.
The proposed statistic is

r√
(H − 1)−1(1− r2)

∼ tH−1,
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where (1) tH−1 a Student t distribution with H − 1 degrees of freedom, (2)
H is the length of the evaluation sample and

r =

∑H
1 u1,T+i u2,T+i√∑H

1 u
2
1,T+i

∑H
1 u

2
2,T+i

.

The second test is due to Diebold and Mariano (1995). It relaxes the
requirements on the forecast errors and can deal with the comparison of
general loss functions. Let us define the Diebold-Mariano test - statistic as

DM = H1/2

∑H
j=1 dj/H

σd
= H1/2 d

σd
, (4.5.2)

where
dj = g(e1j)− g(e2j),

g is the loss function of interest, e.g., the quadratic loss g(e) = e2 or the
absolute loss g(e) = |e|, e1 and e2 are the errors from the two competing
forecasts, and σ2

d is the variance of d. In order to take into account the serial
correlation of the forecast errors, the latter can be estimated as

σ̂2
d =

(
γ0 + 2

h−1∑
i=1

γi

)
with γk = H−1

H∑
t=k+1

(dt − d)(dt−k − d),

where h is the forecast horizon, so that for h = 1 there is no correlation
and the standard formula for variance estimation can be used. Diebold and
Mariano (1995) suggested other alternative estimators for σ2

d.
Under the null hypothesis that E(d) = 0, the statistic DM has an asymp-

totic standard normal distribution. Note that when DM is positive the loss
associated with the first model is larger than that for the second one.

Harvey, Leybourne, and Newbold (1998) suggested a modified version of
the DM statistic,

HLN =

(
H + 1− 2h+H−1h(h− 1)

HH

)1/2

DM,

to be compared with critical values from the Student t distribution with H−1
degrees of freedom, in order to improve the finite sample properties of the
DM test.
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When the models underlying the forecasts under comparison are nested,
for example an AR(1) and an AR(2), then the asymptotic distribution of
the DM test becomes non-standard and a functional of Brownian motions.
A simple solution in this case is the use of rolling rather than recursive
estimation, see Giacomini and White (2006) for details. More sophisticated
methods are also available, see Clark and McCracken (2013). Finally, see
also Diebold (2015) for some further insightful discussions of the DM test.

4.6 The combination of forecasts

When alternative models or forecasts are available, rather than selecting one
of them we could combine them, constructing a pooled forecast. We will
now discuss why pooling can work well and analyze some simple methods for
forecast combination.

Let us assume that two forecasts ŷ1 and ŷ2 are available for the same
target y, with associated forecast errors e1 and e2. We want to construct the
combined (linear) forecast

ŷc = αŷ1 + (1− α)ŷ2, (4.6.1)

where the weights can be chosen in order to minimize the MSFE of ŷc, and
we are assuming that ŷ1 and ŷ2 are unbiased and their relationship with y is
constant over the forecast period. From 4.6.1 we have

ec = y − ŷc = αe1 + (1− α)e2 (4.6.2)

so that

MSFEc = α2MSFE1 + (1− α)2MSFE2

+ 2α(1− α)ϕ(MSFE1MSFE2)1/2
(4.6.3)

where ϕ is the correlation coefficient between e1 and e2.
The optimal pooling weights, the minimizers of 4.6.3, are (see e.g., Granger

and Newbold (1986)):

α∗ =
MSFE2 − ϕ(MSFE1MSFE2)1/2

MSFE1 +MSFE2 − 2ϕ(MSFE1MSFE2)1/2
,

which yields

MSFE∗c =
MSFE1MSFE2 (1− ϕ2)

MSFE1 +MSFE2 − 2ϕ(MSFE1MSFE2)1/2
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and
MSFE∗c ≤ min(MSFE1,MSFE2),

where equality holds if either ϕ2 = MSFE1/MSFE2 (i.e., e2 = e1 + u) or
ϕ2 = MSFE2/MSFE1 (i.e., e1 = e2 + u), which implies that ŷ1 or ŷ2 is the
optimal forecasts.

If the forecast errors are uncorrelated (ϕ = 0), α∗ only depends on the
relative size of MSFE1, and MSFE2, which are commonly used weights in
empirical applications even with correlated errors.

In practice α is not known and must be estimated. An easier way to
obtain an estimate of α is to run, over the evaluation sample, the regression

y = αŷ1 + (1− α)ŷ2 + e, (4.6.4)

or
e2 = α(ŷ1 − ŷ2) + e. (4.6.5)

Actually, the estimated errors from 4.6.4 and 4.6.5 coincide asymptotically
with ec in 4.6.2 , so that the OLS estimator minimizes MSFEc(=

∑H
1 e

2
c/H).

In 4.6.5 we assume that the coefficients of ŷ1 and ŷ2 sum to one and
that a constant is not significant in the regression, which are both reasonable
restrictions given the maintained hypothesis of unbiasedness of ŷ1 and ŷ2.
Yet, in general, a lower MSFEc can be obtained by running the unrestricted
regression

y = α0 + α1ŷ1 + α2ŷ2 + u, (4.6.6)

with combined forecast

ỹc = α0 + α̂1ŷ1 + α̂2ŷ2.

But the residuals from 4.6.6, i.e., û = y − ỹc, will be in general serially
correlated. Indeed,

û = −α̂0 + (1−
2∑
i=1

α̂i)y +
2∑
i=1

α̂iei.

While the eis are in general uncorrelated (for one-step ahead forecasts), y is
usually correlated and therefore û is also correlated when the restriction α̂1

+ α̂2 = 1 is not imposed. Hence, a proper estimation method (such as GLS)
should be adopted.
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We also recall that the MSFE is not invariant to linear transformations
so that, for example, optimal weights when combining forecasts of levels and
differences of the same variable can be rather different (see for example
Clements and Hendry (1998)). Also, the optimal weights can be time vary-
ing; this case and other generalizations are discussed, e.g., in Timmermann
(2006).

To conclude, we should mention that in the presence of a rather large
set of alternative forecasts, from a practical point view a combined forecast
obtained by simply averaging all the alternative available forecasts (possibly
after trimming some of the worst ones based on their past track record) tends
to work well, in the sense of producing good and robust results in a variety
of cases.

4.7 Forecast encompassing

One model encompasses another with respect to a certain property if from
the first model it is possible to deduce the property of interest in the sec-
ond model, see Mizon and Richard (1986). Forecast encompassing concerns
whether the one-step forecast of one model can explain the forecast errors
made by another (which is therefore not strongly efficient), see, e.g., Chong
and Hendry (1986), Ericsson (1993).

From an operational point of view, we can use the regression 4.6.5 and
test for α = 0. If α 6= 0 the difference between ŷ1 and ŷ2 can partly explain
e2, and therefore the second model cannot forecast encompass the first one.
Similarly, if β 6= 0 in the regression

e1 = β(ŷ2 − ŷ1) + v, (4.7.1)

the first model cannot forecast encompass the second one.

A more direct test can be based on the regression

e1 = δŷ2 + ϕ, (4.7.2)

and it requires δ = 0 for the second model not to forecast encompass the first
one.

A third alternative is a test for α1 = 1 , α2 = 0 in 4.6.6. With reference to
equation 4.6.6, the first test that we considered requires α2 = 0 conditional
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on α1 + α2 = 1. The second test instead requires α2 = 0 conditional on
α1 = 1.4

Even if the procedures for forecast combination and encompassing are
similar, the suggestions from the two methods are different. The former
simply indicates to combine the competing forecasts, the latter to respecify
the models that produced the forecasts, because both of them are somewhat
misspecified, see e.g., Diebold (1989) for further details.

4.8 Evaluation and combination of density

forecasts

We have seen in Chapter 1 how to obtain (interval and) density forecasts
from the linear regression model. Similar techniques can be used for the
more complex models we study in subsequent chapters, though sometimes
it will not be possible to obtain analytical formulae for the (interval and)
density forecasts, but they have to be obtained using simulation methods
(see Chapter 9).

In this section we briefly discuss how to evaluate, compare and combine
density forecasts. Additional details and references can be found, e.g., in
Mitchell and Wallis (2011), Geweke and Amisano (2010), and Geweke and
Amisano (2011).

Let us indicate the density forecast by fT+h|T , given information up to T
(and XT+h) with horizon h, and its cumulative distribution function (CDF)
by FT+h|T . Similarly, we indicate the true density of the target variable by
gT+h|T and its CDF by GT+h|T . For example, in the case of the linear regres-
sion model considered in Chapter 1, under the assumption of normal errors,
we have seen that the (optimal) density forecast (fT+h|T ) is

yT+h ∼ N(ŷT+h, V (eT+h)),

4When the target variable is I(1) and cointegrated with both forecasts, it is important
to choose a balanced regression (see Chapter 7 for more details). In the case of 4.7.2, e1
is I(0) while ŷ2 is I(1), so that δ would be forced to be equal to zero in large samples.
In equation 4.7.1 there is a similar problem, unless ŷ2 and ŷ1 are such that ŷ2 − ŷ1 is
stationary. In that case, standard inference can be applied, which makes this an attractive
formulation. All the variables in equation 4.6.6 are instead I(1), so the equation is balanced
but the distribution of the F -test is non-standard because of the non-stationarity of the
variables.
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where ŷT+h = XT+hβ̂T and V (eT+h) denotes the variance of the forecast
error. The true density (gT+h|T ) is instead

yT+h ∼ N(XT+hβ, σ
2
ε).

4.8.1 Evaluation

For the evaluation of point forecasts we just compare the forecast and actual
values, for the density forecasts we must instead compare the entire forecast
and actual densities, or the corresponding CDFs, which makes the evaluation
more complex.

It is convenient to introduce the Probability Integral Transformation
(PIT), defined as

PITt(x) ≡ Ft+h|t(x), (4.8.1)

for any forecast x. In practice, the PIT associates to each possible forecast
value x its probability computed according to the density forecast Ft+h|t.

It can be shown that if Ft+h|t = Gt+h|t for all t, then the PITts are
independent U [0, 1] variables, where U denotes the uniform distribution.5

Therefore, to assess the quality of density forecasts we can check whether
their associated PITs are independent and uniformly distributed.

Uniformity (typically defined as probabilistic calibration) can be evalu-
ated qualitatively, by plotting the histogram of the PITts for the available
evaluation sample. For a more formal assessment of probabilistic calibration,
let us consider the inverse normal transformation:

zt = Φ−1(PITt), (4.8.2)

where Φ is the CDF of a standard normal variable. If PITt is
iid∼ U(0, 1) then

zt is
iid∼ N(0, 1).

It is more convenient to assess probabilistic calibration using zts rather
than PITts, since there are many more tests for normality than for unifor-
mity.6

The combination of independent and uniform PIT s is typically defined
complete calibration. Several procedures can be used to test for indepen-
dence. For example, if the zts are indeed normally distributed and therefore

5See Diebold, Gunther, and Tay (1998) for further detail.
6See e.g., Mitchell and Wallis (2011) for a list of tests for uniformity and normality.
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independence and lack of correlation are equivalent, we can use any of the
tests for no correlation in the errors described in Chapter 2. See, e.g., Mitchell
and Wallis (2011) for other procedures.

4.8.2 Comparison

As for point forecasts, a first method to compare alternative density forecasts
is to consider whether each of them has a positive evaluation, in the sense
of satisfying complete calibration. When that is the case, we may want to
directly compare the two (or more) competing density forecasts. For this, it
is convenient to introduce the logarithmic score, defined as

log Sj(x) = log fj,t+h|t(x), (4.8.3)

where j indicates the alternative densities.
If one of the densities under comparison coincides with gt+h|t (the true

density), then the expected value of the differences in the logarithmic scores
coincides with the Kullback-Leibler Information Criterion (KLIC):

KLICj,t = Eg[log gt+h|t(x) − log fj,t+h|t(x)] = E[dj,t(x)].

We can interpret dj,t as a density forecast error, so that the KLIC is a kind
of “mean density error” (similar to the bias in the case of the point forecasts).

To compare two densities, fj and fk, we can then use:

4Lt = logSj(xt)− log Sk (xt). (4.8.4)

To assess whether statistically the two densities are different (basically, to
construct the counterpart of the Diebold-Mariano test in a density context),
we can use: √

T (

∑
4Lt
T

/std.dev.)→ N(0, 1),

see Amisano and Giacomini (2007) for details, including the proper compu-
tation of the standard deviation in the denominator, and extensions.

4.8.3 Combination

We have seen in the previous sections that combining point forecasts can
reduce the MSFE. Along the same lines, we may want to combine density
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forecasts, but this is more complex since we need to make sure that the
resulting combination is still a density.

Following, e.g., Wallis (2005), to whom we refer for additional details and
references, starting from n forecast densities fj, j = 1, ..., n, the combined
density forecast is

fc =
n∑
j=1

wjfj,

where wj ≥ 0, j = 1, ..., n, and
∑n

j=1 wj = 1. The combined density fc is
therefore a finite mixture distribution.

Defining values for the weights wj, j = 1, ..., n, is not easy. A simple solu-
tion that often works well in practice (as in the case of the point forecasts), is
to set wj = 1/n, j = 1, . . . , n. Alternatively, the weights could be set in order
to improve the calibration properties of the combined densities with respect
to those of its components. Finally, the weights could be chosen optimally,
to maximize a certain objective function or minimize the KLIC with respect
to the true unknown density, see e.g., Hall and Mitchell (2007).

4.9 Examples using simulated data

In the previous three chapters we have seen forecasts produced by linear re-
gressions, the same models augmented with dummy variables and also mod-
els with lagged variables, which coincides with the following data generating
process that we call the dynamic model:

yt = α1 + α2xt + εt
yt = α1 + β1Dt + α2xt + β2Dtxt + εt
yt = α1 + β1Dt + α2xt + β2Dtxt + γy1yt−1 + γx1xt−1 + εt

Naturally, model (mis-)specification affects the forecast accuracy. In this
chapter we will compare the performance of all three specifications. To do
so, we will use simple forecast evaluation statistics, i.e., RMSFE and MAFE.

Table 4.9.1 represents indicators for all the models considered. The
RMSFE and MAFE are the smallest for the dynamic regression model, where
we were expecting this type of result as the dynamic model coincides with the
DGP (ignoring parameter estimation error). The numbers reported in Table
4.9.1 clearly show us that mis-specification can be very severe and costly.
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Forecasting Model RMSFE RMSFE MAFE MAFE
recursive recursive

Linear Regression 9.536 9.490 7.995 7.950
Dummy variable model 10.130 9.642 8.314 7.938
Dynamic model 1.108 0.965 0.865 0.760

Table 4.9.1: Forecasts evaluation: RMSFE and MAFE

The next step is to compare individual forecasts. In section 4.5 we dis-
cussed two main tests: the Diebold-Mariano (DM) and Morgan-Granger-
Newbold (MGN) tests. We start with the DM test. In this exercise we
compare forecasts of three models:

Model 1 - linear regressions

Model 2 - model with dummy variable

Model 3 - dynamic model

The null hypothesis of the DM test is that the average loss differential be-
tween the forecasts of compared models is equal to zero. The DM test results
for all three models are described in Table 4.9.2. If we consider a significance
level of 5%, the null hypothesis that the loss differential between the forecasts
from Model 1 and Model 2 being zero cannot be rejected. This result indi-
cates that there is no difference between forecasts of Models 1 and 2. On the
other hand, the results also indicate the dynamic model provides statistically
significant better forecasts than Models 1 and 2.

Comparisons M1 vs M2 M1 vs M3 M2 vs M3
DM test statistics -1.113 8.582 11.445
P-value 0.132 0.000 0.000

Table 4.9.2: Diebold-Mariano test for equality of MSFE

The second test discussed in Section 4.5 is the Morgan-Granger-Newbold
test. The null hypothesis of the MGN test is that the MSFEs associated
with two forecasts are equal. The test results appear in Table 4.9.3 and are
in line with the DM test findings.
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Comparisons M1 vs M2 M1 vs M3 M2 vs M3
MGN test statistics -1.100 42.932 65.137
P-value 0.273 0.000 0.000

Table 4.9.3: Morgan-Granger-Newbold test

In exercises with simulated data that appeared in the previous chapters
we generated recursive forecasts as well. We can compare those forecasts
using DM and MGN tests. The results are omitted as they convey the same
message.

Coefficient Std. Error t-Statistic Prob.

τ -1.744 0.953 -1.830 0.069

R-squared 0.000 Mean dep var -1.744
Adjusted R-squared 0.000 S.D.dependent var 9.609
S.E.of regression 9.609 Akaike IC 7.368
Sum squared resid 18375.640 Schwarz IC 7.385
Log likelihood -735.834 Hannan-Quinn 7.375
DW stat 0.790

Table 4.9.4: Unbiasedness and weak efficiency (via DW) tests for Model 1

Next, we turn our attention to unbiasedness and weak efficiency tests
starting with the former which are performed using equation (4.2.1a), and
can be implemented with a t−test (we do not need a robust one with h = 1)
in the following regression:

et+1 = yt+1 − ŷt+1|t = τ + εt+1.

The results for Models 1 and 2 appear in respectively Tables 4.9.4 and 4.9.5.
For M1 we accept the null τ = 0 at the 5 % level, while for M2 we clearly
reject the null. This means that forecasts for M1 appear to be unbiased,
while the opposite is true for M2.
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Coefficient Std. Error t-Statistic Prob.

τ -3.223 0.810 -3.979 0.000

R-squared 0.000 Mean dep var -3.223
Adjusted R-squared 0.000 S.D.dependent var 9.625
S.E.of regression 9.625 Akaike IC 7.372
Sum squared resid 18436.060 Schwarz IC 7.388
Log likelihood -736.162 Hannan-Quinn 7.378
DW stat 1.369

Table 4.9.5: Unbiasedness and weak efficiency (via DW) tests for Model 2

Variable Coefficient Std. Error t-Statistic Prob.

C 0.333 0.083 4.037 0.000
Y(-1) 0.197 0.139 1.413 0.166
IPR 0.201 0.069 2.907 0.006
SU(-1) -0.002 0.018 -0.140 0.889
SR(-1) 0.009 0.006 1.435 0.159

R-squared 0.513 Mean dep var 0.564
Adjusted R-squared 0.463 S.D. dep var 0.355
S.E. of regression 0.260 Akaike IC 0.251
Sum squared resid 2.638 Schwarz IC 0.454
Log likelihood -0.518 Hannan-Quinn 0.326
F-statistic 10.256 DW stat 2.220
Prob(F-statistic) 0.000

Table 4.9.6: Estimation output: ARDL Model 2

To test for weak efficiency, we need to test whether et is correlated across
time. In this case, we can look at the same regression output as the DW
statistic tells us whether there is order-one autocorrelation in the εt, which
amounts to testing the autocorrelation of et. Reading the output from both
aforementioned tables, we find that there is evidence for serial correlation in
the forecast errors for both models. In general, with h > 1 we need to fit
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a moving average model of order h − 1, MA(h − 1), to the h-steps ahead
forecast error and test that the resulting residuals are white noise. As an
alternative, an ARMA(p, q) model (presented in Chapter 5) can be fitted,
and the non-significance of AR and MA terms higher than h− 1 tested.

4.10 Empirical examples

4.10.1 Forecasting Euro area GDP growth

In the last few chapters, we have seen some examples on producing forecasts
using linear regressions with and without dynamics, and also the impact on
forecast accuracy by including dummies to accommodate structural changes
into forecasting models.

Simple forecast evaluation statistics, i.e., root MSFE and MAFE, were
used for comparisons. In the example here, we illustrate the forecast com-
parison tests discussed in section 4.5. Using again the Euro area data se-
ries, we consider the Models 1 through 4, estimated over the period 1996Q1
to 2006Q4; and using 2007Q1 to 2013Q2 as the forecast evaluation period.
Recall that Models 1 through 4 and the ARDL Model 2 contain different
elements in their information sets:

yt = α +Xtβ + εt

• Model 1: Xt = (iprt, sut, prt, srt)

• Model 2: Xt = (iprt, sut, srt)

• Model 3: Xt = (iprt, sut)

• Model 4: Xt = (iprt, prt, srt)

• ARDL Model 2: : Xt = (yt−1, iprt, sut−1, srt−1)

To proceed we need to re-estimate the ARDL Model 2, presented in Chap-
ter 3, over the period 1996Q1 to 2006Q4 using this estimation sample, with
the results appearing in Table 4.9.6. Comparing the in-sample fit of the
ARDL Model 2 with those reported in Tables 1.12.1, 1.12.2 and 1.12.3, it
appears that the ARDL Model 2 has a better fit in general than Models 1 -

3 in terms of AIC, and in most cases, R2 and R
2
. By the same measures, it

seems to be not as good as Model 4.
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M1 M2 M3 M4 ARDL M2
RMSFE 0.383 0.378 0.394 0.415 0.353
MAFE 0.327 0.331 0.344 0.364 0.310

Table 4.10.1: Forecast evaluation measures

We do know, however, that a good in-sample fit does not necessarily imply
a good out-of-sample performance. To compare the forecasts produced by
these models, we need to look at forecast sample evaluation statistics and
also to perform forecast comparison tests.

We first produce one-step ahead static forecasts for the period 2007Q1 to
2013Q2 and compute the RMSFE and the MAFE of the forecasts produced
by each of the models, as reported in Table 4.10.1. It is clear that one-
step ahead forecasts produced by the ARDL Model 2 outperforms the other
forecasts as indicated by both the values of RMSFE and MAFE. We assess
forecast unbiasedness by regressing each forecast error on an intercept and
then test its significance. It turns out that it is significant for all the models,
indicating the presence of a bias (a systematic over-estimation of growth,
which is not surprising as the evaluation sample contains the period of the
Great Recession and of the sovereign debt crisis). Weak efficiency is not
rejected for any of the models, however, as the one-step ahead forecasts
errors are all serially uncorrelated.

We proceed now to illustrate how to compare alternative predictions, us-
ing again the Morgan-Granger-Newbold (MGN) and the Diebold-Mariano
(DM) tests. Our interest here is to compare the one-step ahead static fore-
casts from the ARDL Model 2 with those of Models 1 through 4. Assum-
ing the loss function is quadratic, we first illustrate the use of the Diebold-
Mariano test. The test statistics are reported in Table 4.10.2. The null
hypothesis of the Diebold-Mariano test is that the average loss differential,
d, is equal to zero, i.e., H0 : d = 0. The test statistic has an asymptotic stan-
dard normal distribution, i.e., DM

a∼ N (0, 1) . If we consider a significance
level of 5%, the null hypothesis that the loss differential between the fore-
casts from ARDL Model 2 and those of the other models being zero cannot
be rejected, indicating there is no significant difference between its forecasts
and those of the other models. However, at 10% significance level, the test
results suggest the loss differential between the forecasts from ARDL Model
2 and those of Model 3 and Model 4. Moreover, the reported test statistics
here are all positive. This is an indication that the loss associated with Model
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1, 2, 3, and 4 is larger than that of ARDL Model 2.

vs M1 vs M2 vs M3 vs M4
Test Stat. 0.721 0.737 1.331 1.535
p-value 0.235 0.230 0.091 0.062

Table 4.10.2: DM tests ARDL Model 2 against Models 1 through 4

Now let us move next to the Morgan-Granger-Newbold (MGN) test. The
computed test statistics and the corresponding p-values are reported in Table
4.10.3. The null hypothesis of the Morgan-Granger-Newbold test is that
the mean of the loss differential is zero, meaning the variances of the two
forecast errors are equal. Or in other words, the covariance of the auxiliary
variables in equation 4.5.1 is equal to zero.The test statistic follows a Student
t distribution with H − 1 degree of freedom (in this case H = 26). At 5%
significance level, the null hypothesis cannot be rejected for all four cases.
Note however, that the null hypothesis can be rejected for the first case at
the 10% significance level.

vs M1 vs M2 vs M3 vs M4
Test Stat. 1.756 0.735 0.900 1.651
p-value 0.090 0.468 0.375 0.110

Table 4.10.3: MGN tests ARDL Model 2 against Models 1 through 4

We now look into whether there is any change in the results if we con-
sider recursive forecasts, i.e., the parameters in the models are re-estimated
for each period in the forecast evaluation sample. We then re-compute the
Diebold-Mariano and Morgan-Granger-Newbold test statistics for the same
hypotheses of interest. Tables 4.10.4 and 4.10.5 present the test results.
Looking at the Diebold-Mariano test statistics, the null hypothesis that the
loss differential between the one-step ahead recursive forecasts from ARDL
Model 2 and those from Models 2 through 4 being zero cannot be rejected
at the 5% significance level. Whereas the null hypothesis that the one-step
ahead recursive forecasts from ARDL Model 2 are no difference from those
of Model 1 can be rejected at 5% significance level. The Morgan-Granger-
Newbold test results confirm this finding at the 10 % level. At the 10 % level
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we can also reject the DM test null for the ARDL Model 2 against Models 3
and 4.

vs M1 vs M2 vs M3 vs M4
Test stat. 1.716 0.737 1.331 1.535
p-value 0.043 0.230 0.091 0.062

Table 4.10.4: DM tests recursive forecasts ARDL Model 2 vs Models 1 - 4

vs M1 vs M2 vs M3 vs M4
Test stat. 1.898 1.281 1.208 1.693
p-value 0.068 0.211 0.237 0.102

Table 4.10.5: MGN tests recursive forecasts ARDL Model 2 vs Models 1 - 4

To conclude, we have constructed pooled forecasts by combining the 5
available predictors, using equal weights for simplicity and as the sample
size is rather short. It turns out that the MSFE of the combined forecasts
is lower than that of the forecasts associated with Models 1 through 4, but
larger than that of the ARDL Model 2. In this case forecast combination
does not help because most of the forecasts we are combining are clearly
dominated by one of the forecasts (from the ARDL type model).

4.10.2 Forecasting US GDP growth

Using again the US data series employed in the previous chapters, we consider
Models 1 through 4, estimated over the period 1985Q1 to 2006Q4; and using
2007Q1 to 2013Q4 as the forecast evaluation period. Recall Models 1 through
4 and the ARDL Model 2 are the same as those in the previous subsection.
In order to do so, we need to re-estimate the ARDL Model 2 over the shorter
sample period 1985Q1 to 2006Q4 (detailed results are omitted).

We compute the RMSFE and the MAFE of the forecasts produced by
these models, as reported in Table 4.10.6. It is clear that one-step ahead
forecasts produced by the ARDL Model 2 is outperformed by the other fore-
casts as indicated by the values of RMSFE and the MAFE.

Now we proceed to illustrate how to compare alternative predictions,
using the Morgan-Granger-Newbold (MGN) test and the Diebold-Mariano
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M1 M2 M3 M4 ARDL M2
RMSFE 0.537 0.531 0.539 0.537 0.567
MAFE 0.402 0.399 0.403 0.418 0.438

Table 4.10.6: Simple forecast evaluation statistics

(DM) test. Our interest here is to compare the one-step ahead static forecasts
from ARDL Model 2 with those of Model 1, 2, 3, and 4. Assuming the
loss function is quadratic, we first illustrate the use of the Diebold-Mariano
test but consider the simple case when the forecast errors are assumed to
be serially uncorrelated. Table 4.10.7 reports the test statistics and the
corresponding p-values. If we consider a significance level of 5%, the null
hypothesis that the loss differential between the forecasts from ARDL Model
2 and those of the other models being zero can be rejected for Models 2
and 4. Moreover, at 10% significance level, the test results suggest the loss
differential between the forecasts from ARDL Model 2 and all models is non-
zero. Note, however, that the reported test statistics here are all negative.
This is an indication that the loss associated with Model 1, 2, 3 and 4 is
smaller than that of ARDL Model 2.

vs M1 vs M2 vs M3 vs M4
Test stat. -1.516 -1.748 -1.375 -2.279
p-value 0.064 0.040 0.084 0.011

Table 4.10.7: DM test on one-step ahead forecasts from ARDL model 2
against one-step ahead forecasts from Model 1 through 4.

vs M1 vs M2 vs M3 vs M4
Test stat. -1.109 -1.308 -0.946 -2.007
p-value 0.276 0.201 0.352 0.054

Table 4.10.8: MGN test on one-step ahead forecasts from ARDL model 2
against one-step ahead forecasts from Model 1 through 4

Now let’s move on to illustrate the Morgan-Granger-Newbold (MGN)
test. The computed test statistics and the corresponding p-values are re-
ported in Table 4.10.8. The null hypothesis of the MGN test is that the
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mean of the loss differential is zero, meaning the variances of the two fore-
cast errors are equal. The null hypothesis cannot be rejected for first 3 cases,
and can be rejected in the last case at the 10% significance level.

We now look into whether there is any change in inference of the two
forecast comparison tests if the parameters in the forecasting models are
re-estimated for each period in the forecast evaluation sample. We then re-
compute the Diebold-Mariano and the Morgan-Granger-Newbold test statis-
tics to test the equality of the one-step ahead recursive forecast from the
ARDL Model 2 against those from Model 1, 2, 3, and 4. Tables 4.10.9
and 4.10.10 present the test results. Looking at the Diebold-Mariano test
statistics, the null hypothesis that the loss differential between the one-step
ahead recursive forecasts from ARDL Model 2 and those from Model 2, 3,
and 4 being zero can be rejected at 10% significance level. And the sign
is again negative. However, the Morgan-Granger-Newbold test results show
that the null hypothesis of the mean of the loss differential being zero cannot
be rejected at 10% significance level for all 4 cases.

vs M1 vs M2 vs M3 vs M4
Test stat. -1.473 -1.748 -1.375 -2.279
p-value 0.070 0.040 0.084 0.011

Table 4.10.9: DM test on one-step ahead recursive forecasts from ARDL
Model 2 against those from Model 1 through 4

vs M1 vs M2 vs M3 vs M4
Test stat. -1.258 -1.243 -0.735 -1.641
p-value 0.219 0.224 0.468 0.112

Table 4.10.10: MGN test on one-step ahead recursive forecasts from ARDL
Model 2 against those from Model 1 through 4

4.10.3 Default risk

Let us now revisit the empirical default risk models reported in Table 3.7.11.
We found that the in-sample Model 4 featured the best fit, whereas Model 3
had the best out-of-sample RMSFE. We use the Morgan-Granger-Newbold
test for pairwise comparisons of the one-step ahead forecasts. The results ap-
pear in Table 4.10.11. The results indicate that the out-of-sample differences
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across the different models is not statistically significant. The DM statistics
– not reported – also confirm the same finding.

Model 1 Model 2 t-stat p-val Superior

VIX SENT 0.505 0.617 2
VIX PMI 0.575 0.569 2
VIX SP500 -1.042 0.305 1

SENT PMI 0.662 0.513 2
SENT SP500 -1.410 0.168 1
PMI SP500 -1.463 0.153 1

Table 4.10.11: MGN tests default risk models

4.11 Concluding remarks

The main focus in this book is forecasting using econometric models. It
is important to stress, however, that the methods reviewed in this chapter
developed for the purpose of evaluating forecasts apply far beyond the realm
of econometric models. Indeed, the forecasts could simply be, say, analyst
forecasts at least not explicitly related to any specific model. Hence, the
reach of the methods discussed in this chapter is wide.
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Forecasting with Time Series
Models
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Chapter 5

Univariate Time Series Models

5.1 Introduction

Box and Jenkins (1976) popularized the use of univariate time series models
for forecasting. Since then they have become a workhorse for practitioners
using economic and financial time series.

The key idea is to exploit the past behavior of a time series to forecast
its future development. This requires the future to be rather similar to the
past, which technically translates into an assumption of weak stationarity. In
words, weak stationarity means that the variable under analysis has a stable
mean and variance over time, and that the correlation of the variable with
each of its own lags is also stable over time.

Previous results in the statistical literature showed that any weakly sta-
tionary stochastic process can always be represented as an (infinite) sum of
the elements of a simpler, so-called white noise (WN) process, which has zero
mean, is uncorrelated over time, and has a constant variance. In turn, this
representation – known as the Wold decomposition – can be approximated by
another one where the variable of interest depends on a finite number of its
own lags, possibly combined with a finite number of lags of an uncorrelated
and homoskedastic process. The latter is called an autoregressive moving av-
erage (ARMA) representation, where autoregressive means that the variable
depends on its own past, and moving average means that it also depends
on a weighted average of the present and past values of a WN process. An
ARMA(p,q) is a model where the variable of interest depends on up to p of
its own lags and on up to q lags of the white noise process.
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In this chapter we will consider the specification, estimation, diagnostic
checking, and use for forecasting of ARMA(p,q) models. We will also consider
a particular case of non-stationarity, defined integration, where the variable
of interest turns out to be driven by cumulated sums of the elements of a
white noise process, so that it can be made stationary by differencing it a
proper number of times, say d. The extended model is called ARIMA(p,d,q).
As we will see, ARIMA models can be used not only for forecasting but
also for permanent-transitory decompositions and, more generally, as a basis
for filtering, where the variable of interest is decomposed into two or more
components, each of which characterized by different time series properties.

The chapter is structured as follows. In Section 5.2 we introduce the
representations of AR, MA, and ARMA processes. In Section 5.3 we deal
with model specification and in Section 5.4 with parameter estimation. In
Section 5.5 we discuss unit roots and tests for their presence. In Section 5.6
we consider diagnostic testing. In Sections 5.7 and 5.8 we derive optimal
forecasts for the cases of known and unknown parameters, respectively. In
Section 5.9 we introduce an alternative method for multi-steps ahead fore-
casting. In Section 5.10 we consider permanent-transitory decompositions.
In Section 5.11 we describe exponential smoothing and discuss its relation-
ship with ARIMA models. In Section 5.12 we briefly consider seasonality. In
Sections 5.13 and 5.14 we present examples based on, respectively, simulated
and actual data. Section 5.15 concludes the chapter.

A more detailed analysis of the topics considered in this chapter can
be found in Box and Jenkins (1976), Hamilton (1994) or Lütkepohl (2007),
among others.

5.2 Representation

A time series process is strictly stationary when

F {yt, . . . , yt+T} = F {yt+k, . . . , yt+T+k} , ∀ t, T, k. (5.2.1)

where F(·) indicates the joint density for a segment of length T of the process
y. A time series process is weakly stationary if

E (yt) = E (yt+k) , ∀ t, k, (5.2.2)

V ar (yt) = V ar (yt+k) , ∀ t, k,
Cov (yt, yt−m) = Cov (yt+k, yt−m+k) , ∀ t,m, k.
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Hence, a strictly stationary process is typically also weakly stationary but
the reverse is not true in general, unless the joint density is Gaussian.1 A
weakly stationary process can be represented as:

yt = εt + c1εt−1 + c2εt−2 + . . . (5.2.3)

=
∞∑
i=0

ciεt−i =
∞∑
i=0

ciL
iεt

= c (L) εt,

where L is the lag operator: Lεt = εt−1 and Liεt = εt−i, c0 = 1 and the
error process εt is uncorrelated across time and has a constant variance,
hence: εt ∼ WN(0, σ2), meaning white noise with mean zero and variance
σ2. The infinite moving average representation in (5.2.3) is known as the
Wold decomposition.

Note that we assumed in equation (5.2.3) that the overall mean of the pro-
cess yt is zero. It will be convenient to abstract from the unconditional mean
throughout the chapter, except for some special cases of interest. Therefore,
if we denote the unconditional mean by µ, all the analysis in this chapter
goes through with yt replaced by (yt−µ) whenever we have a non-zero mean
process.

A problem with the model in (5.2.3) is that it has an infinite number of
parameters. However, in general, we can approximate c (L) via a ratio of two
finite polynomials, namely:

c (L) =
ψ (L)

φ (L)
,

where ψ (L) = 1 - ψ1L - . . . - ψqL
q and φ (L) = 1 - φ1L - . . . - φpL

p. Fur-
thermore, because of weak stationarity φ (L) is invertible, i.e., φ(z) = 0 =∑p

j=0 φjz
j has all the roots outside the unit circle, we can rewrite equation

(5.2.3) as
φ (L) yt = ψ (L) εt,

or equivalently as

yt = φ1yt−1 + . . .+ φpyt−p + εt − ψ1εt−1 − . . .− ψqεt−q.
1A strictly stationary process which is not weakly stationary is one where the density

F(·) does not have first and/or second moments.
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This is a moving average autoregressive process of order p and q, henceforth
called ARMA(p, q).

Two useful tools to study ARMA processes are respectively the autocor-
relation (AC) and partial autocorrelation (PAC) functions. To define them,
we first introduce the autocovariance function, which reports the covariance
of yt with its own lags:

Cov (yt, yt−1) = γ (1) ,

Cov (yt, yt−2) = γ (2) ,
...

... (5.2.4)

Cov (yt, yt−k) = γ (k) .

Then, the AC is defined as:

AC(k) =
Cov (yt, yt−k)√

V ar(yt)
√
V ar(yt−k)

=
γ (k)

γ (0)
.

The kth value of the PAC measures the correlation between yt and yt−k,
conditional on yt−1, . . . , yt−k+1. Operationally, the elements of the PAC can
be considered as specific coefficients in regression equations. In particular,
they are

PAC (1) : coefficient of yt−1 in the regression of yt on yt−1,

PAC (2) : coefficient of yt−2 in the regression of yt on yt−1, yt−2,
...

...
...

PAC (k) : coefficient of yt−k in the regression of yt on yt−1, . . . , yt−k.

Note that inserting a deterministic component (like a constant) in the model
changes the expected value of yt, while both the AC and PAC remain the
same.

Before studying the characteristics of the class of ARMA processes, we
analyze the pure AR and MA processes.

5.2.1 Autoregressive processes

We assume that c (L) in (5.2.3) is invertible, i.e., c(z) = 0 =
∑∞

j=0 cjz
j has

all the roots outside the unit circle. Then we can rewrite (5.2.3) as

yt =
∞∑
j=1

φjyt−j+εt, εt ∼WN(0, σ2). (5.2.5)



i
i

i
i

i
i

i
i

5.2. REPRESENTATION 177

Weak stationarity implies that the effect of yt−j onto yt fades as j becomes
large. Hence, in practice we can reasonably approximate (5.2.5) with a pth-
order autoregressive process, defined as

yt = φ1yt−1 + . . .+ φpyt−p + εt. (5.2.6)

If we view the AR(p) process in (5.2.6) as an approximation of (5.2.3),
then it is weakly stationary by definition. If instead (5.2.6) is the data gen-
erating process (DGP), then precise conditions on its parameters are needed
to ensure that yt is weakly stationary. Specifically, yt is weakly stationary if
the roots of φ (z) = 1 - φ1z - . . . - φpz

p = 0 are all larger than one in absolute
value.

Weak stationarity also guarantees that φ(L) can be inverted, namely, yt
can be represented as

yt =
1

φ (L)
εt, (5.2.7)

which is an MA(∞) representation. The latter will be convenient in certain
situations, e.g., to compute impulse response functions, see Chapter 6. Weak
stationarity also matters to determine the properties of the parameter esti-
mators, as we will see later on. Finally, note also that adding a deterministic
component in (5.2.6) does not create additional complications.

As an example, let us consider the AR(1) process:

yt = φ1yt−1 + εt. (5.2.8)

φ (L) = 1− φ1L.

Weak stationarity requires |φ1| < 1, since

φ (z) = 1− φ1z = 0→ z =
1

φ1

.

The MA (∞) representation is

yt = εt + φ1εt−1 + φ2
1yt−2 = (5.2.9)

= εt + φ1εt−1 + φ2
1εt−2 + φ3

1yt−3

...

=
∞∑
i=0

φi1εt−i =
1

φ(L)
εt.
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We can use the MA(∞) representation to compute the mean and variance of
yt, namely:

E (yt) = 0

V ar (yt) = V ar

(
∞∑
i=0

φi1εt−i

)
=
∞∑
i=0

V ar
(
φi1εt−i

)
=

∞∑
i=0

φ2i
1 V ar (εt−i) =

σ2

1− φ2
1

.

Moreover, the autocovariance function appearing in (5.2.5) for the AR(1) is
as follows:

γ (1) = Cov (φ1yt−1 + εt, yt−1) = φ1V ar (yt) = φ1γ (0) ,

γ (2) = Cov (φ1yt−1 + εt, yt−2) = φ1γ (1) = φ2
1γ (0) ,

...

γ (k) = Cov (φ1yt−1 + εt, yt−k) = φ1γ (k − 1) = φk1γ (0) .

Therefore, for j = 1, 2, . . . , the AC is defined as:

AC(j) =
Cov (yt, yt−j)

σyσy−j
=
γ (j)

γ (0)
= φj1.

For the elements of the PAC we have:

PAC (1) = φ1,

PAC (j) = 0, j > 1.

Let us consider now the case of an AR(2) process:

yt = φ1yt−1 + φ2yt−2 + εt. (5.2.10)

To derive the weak stationarity conditions let us consider the solutions of

φ (z) = 1− φ1z − φ2z
2 = 0,

which are

z1,2 =
−φ1 ±

√
φ2

1 + 4φ2

2φ2

.
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Therefore, to have |z1| > 1 and |z2| > 1, we need:

φ1 + φ2 < 1,

φ2 − φ1 < 1,

−φ2 < 1,

see Harvey (1993) for further details. The autocovariance function for an
AR(2) process is given by:

γ (0) = φ1γ (1) + φ2γ (2) + σ2
ε ,

γ (1) = φ1γ (0) + φ2γ (1) ,

γ (2) = φ1γ (1) + φ2γ (0) ,
...

γ (k) = φ1γ (k − 1) + φ2γ (k − 2) .

The general element j of the autocovariance function can be obtained as fol-
lows. First, one multiplies both sides of (5.2.10) with yt−j. Second, one takes
expectations on both sides and uses the fact that yt−j and εt are uncorrelated
and that γ(i) = γ(−i).

Let us now form a system with the equations for the first three lags of the
autocovariance function. Solving this system of three equations, expressing
the γs as a function of the AR parameters, we obtain:

γ (0) =
(1− φ1)σ2

ε

(1 + φ2)
[
(1− φ2)2 − φ2

1

] ,
γ (1) =

φ1γ (0)

1− φ2

,

γ (2) = φ1γ (1) + φ2γ (0) ,

The autocorrelation function for an AR(2) process therefore is:

AC(1) =
φ1

(1− φ2)

AC(2) = φ2 +
φ2

1

(1− φ2)
,

...

AC(k) = φ1AC(k − 1) + φ2AC(k − 2).
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These are known as the Yule-Walker equations, and they can be used to
obtain estimators of φ1 and φ2. In fact, if we substitute AC(1) and AC(2)
with their estimated counterparts, the first two equations can be solved for φ̂1

and φ̂2. Typically there are more efficient estimators than those based on the
Yule-Walker equations, but the latter can provide a simple initial estimate.

For the partial autocorrelation function, it can be easily shown that its
first two lags are different from zero, while PAC(j) = 0 for j > 2. Using
methods similar to those seen in the examples considered so far, we can
calculate the AC and PAC for any AR (p) process. Moreover, the equations
which define the first p lags of the AC function can also be used to obtain
the initial (Yule-Walker) estimators of the parameters.

5.2.2 Moving average processes

The qth-order moving average process is defined as

yt = εt − ψ1εt−1 − . . .− ψqεt−q = ψ (L) εt, εt ∼ WN
(
0, σ2

ε

)
. (5.2.11)

It can easily be shown that an MA(q) process is always weakly stationary.
Its first two moments are

E (yt) = 0,

V ar (yt) =
(
1 + ψ2

1 + . . .+ ψ2
q

)
σ2
ε = γ (0) ,

whereas the autocovariance function is as follows:

γ(k) = Cov (yt, yt−k)

= Cov (εt − ψ1εt−1 − . . .− ψqεt−q, εt−k − ψ1εt−k−1 − . . .− ψqεt−k−q)

=

{
(−ψk + ψk+1ψ1 + . . .+ ψqψq−k)σ

2
ε

0
k = 1, . . . , q

k > q
.

Dividing γ(k) by γ(0) yields the autocorrelation function.

Another relevant property for an MA process is invertibility, that is, the
possibility to represent an MA process as an AR(∞). This requires that all
the roots of ψ (z) = 0 are larger than one in absolute value. When the MA
process is invertible, we can write:

1

ψ (L)
yt = εt.
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The AR(∞) representation is useful to derive the PAC for an MA process,
which will coincide with that of the AR(∞) process. Hence, the PAC ele-
ments decay (possibly non-monotonically) towards zero, but are always dif-
ferent from zero except in the limit.

As an example, let us consider the MA(1) process

yt = εt − ψ1εt−1. (5.2.12)

Its first two moments are

E (yt) = 0,

V ar (yt) =
(
1 + ψ2

1

)
σ2
ε ,

while the autocovariance function is

γ(1) = −ψ1σ
2
ε

γ(k) = 0, k > 1,

and for the AC we have AC(1) = −ψ1/(1 + ψ2
1) and AC(k) = 0, k > 1. The

condition for invertibility is |ψ1| < 1, with associated AR(∞) representation(
1 + ψ1L+ ψ2

1L
2 + ψ3

1L
3 + . . .

)
yt = εt.

From the latter, we can see that the PAC of the MA(1) process declines
exponentially.

To conclude, let us note the different shapes of the AC and PAC for AR
and MA processes. We have seen that the AC decays for an AR(p) process
but is always different from zero, except in the limit, while for an MA(q)
process the AC is only different from zero up to q lags. Conversely, the PAC
of an AR(p) process is only different from zero up to p lags, while that of an
MA(q) process decays but is always different from zero, except in the limit.
These considerations suggest that the estimated AC and PAC could be used
to determine whether the underlying process is of the AR or MA type, and
what is the order of the lags. We will revisit this issue in Section 5.3.

5.2.3 ARMA processes

An ARMA(p, q) process is defined as

φ (L) yt = ψ (L) εt. (5.2.13)
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The weak stationarity condition is, as for the AR processes,

φ (z) = 0→ |zi| > 1, i = 1, . . . , p,

where zi are the roots of the AR polynomial. Likewise, the invertibility
condition is, as for the MA processes,

ψ (z) = 0→ |zi| > 1, i = 1, . . . , q.

where zi are the roots of the MA polynomial. For a stationary ARMA, we
can write the infinite MA representation as:

yt = φ−1 (L)ψ (L) εt = c (L) εt

Therefore, the expected value and variance are:

E (yt) = 0 (5.2.14)

V ar (yt) = σ2
ε

∞∑
i=0

c2
i . (5.2.15)

The AC and the PAC are like those of an MA (∞) or AR (∞) , so both
decline exponentially.

As an example, let us derive the autocovariance structure for an ARMA(1,1)
process:

yt = φ1yt−1 + εt − ψ1εt−1. (5.2.16)

Moreover:

γ0 = V ar (yt) = E (φ1yt−1 + εt − ψ1εt−1)2 =

= φ2
1γ0 + σ2

ε + ψ2
1σ

2
ε − 2φ1ψ1E (yt−1εt−1)

= φ2
1γ0 + σ2

ε + ψ2
1σ

2
ε − 2φ1ψ1σ

2
ε ,

and:

γ1 = Cov (yt, yt−1) = E (yt−1 (φ1yt−1 + εt − ψ1εt−1))

= φ1γ0 − ψ1σ
2
ε =

(1− φ1ψ1) (φ1 − ψ1)

1− φ2
1

σ2
ε .

Next,

γ2 = Cov (yt, yt−2) = E (yt−2 (φ1yt−1 + εt − ψ1εt−1)) = φ1γ1.
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Similarly, the generic element of the autocovariance function is

γk = Cov (yt, yt−k) = φ1γk−1,

while by definition: AC(k) = γk/γ0. Therefore, for k ¿ 2 the shape of the AC
is similar to that of an AR(1) process. It can be easily shown that the MA
component plays a similar role for the PAC, in the sense that for k > 2 the
shape of the PAC is similar to that of an MA(1) process.

Finally, to obtain a first estimate of the ARMA(1, 1) parameters φ1, ψ1,
σ2
ε we can use the Yule-Walker approach. More specifically, one can form a

system with the equations for γ0, γ1, γ2. Then, using sample counterparts γ̂0,
γ̂1, γ̂2, one obtains parameter estimates by solving the system for φ̂1, ψ̂1, σ̂

2
ε .

5.2.4 Integrated processes

An integrated process yt is a non stationary process such that (1− L)d yt
is stationary, where d is the order of integration and the process is typically
labeled I(d). These are also called unit root processes, since integration is as-
sociated with roots of the AR polynomial φ(L) exactly equal to one, namely,
one or more values for z in φ(z) = 0 are equal to one, while in the weakly
stationary case we have seen that all the roots must be larger than one in
absolute value.

The most common integrated process is the Random Walk (RW):

yt = yt−1 + εt, (5.2.17)

for which d = 1, since
(1− L)yt = ∆yt = εt.

A RW can also be written as

yt = εt + εt−1 + εt−2 + . . . , (5.2.18)

so that the effects of a shock do not decay over time, contrary to the case of
a weakly stationary process (compare (5.2.18) with (5.2.9)).

From (5.2.18) we see that

E(yt) = 0,

while the variance is not properly defined:

V ar(yt) = V ar(εt + εt−1 + εt−2 + . . .)→∞.
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The AC is also not properly defined, but the persistence of the effects of the
shocks is such that if we computed empirically the AC, its elements would
not decay as in the weakly stationary case but would remain close to one at
all lags. For the PAC, we can easily see that PAC(1) = 1, while PAC(j) = 0
for j > 1.

Inserting a deterministic component into an integrated process can change
its features substantially. As an example, let us consider the RW with drift:

yt = µ+ yt−1 + εt. (5.2.19)

Repeated substitution yields:

yt = µ+ εt + µ+ εt−1 + µ+ εt−2 + . . .

so that

E (yt) = E(µ+ εt + µ+ εt−1 + µ+ εt−2 + . . .) → ∞,
V ar (yt) = V ar(µ+ εt + µ+ εt−1 + µ+ εt−2 + . . .) → ∞,

and the AC and PAC are as in the RW case. Also in this case first differ-
encing eliminates the non-stationarity, since

(1− L) yt = ∆yt = µ+ εt.

Recall that throughout the chapter we assumed for convenience that the
mean of yt is zero. It is clear that from the above discussion that this as-
sumption can be maintained for integrated processes once we subtract µ from
(1− L) yt.

5.2.5 ARIMA processes

An ARIMA(p, d, q) process is

φ (L) ∆dyt = ψ (L) εt. (5.2.20)

with ∆d ≡ (1− L)d , whereas φ (L) and ψ (L) are polynomials in the lag
operator of order, respectively, p and q, while yt is I(d). If we define xt = ∆dyt,
xt is an ARMA(p, q). Hence, the only additional complication with respect
to the ARMA case is the determination of the order of integration d.
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5.3 Model specification

In order to specify an ARIMA model, we need to determine d, p and q,
namely, the order of integration and the lag length of the AR and MA com-
ponents. Three main approaches are available, based respectively on the
AC/PAC, testing, and information criteria.

5.3.1 AC/PAC based specification

Using the available data on yt, we can easily estimate the AC and PAC
for different values of k. These values are typically graphed, with increasing
values of k on the right axis, possibly together with their associated (1−α)%
confidence intervals, where typically α = 0.05.

If the estimated values of both AC and PAC decay when k increases,
there is evidence that yt is weakly stationary and therefore we can set d = 0.
If instead the AC declines very slowly and PAC(1) is close to one, then there
is evidence for a unit root. Therefore, we difference yt once, and repeat the
analysis with ∆yt. If necessary, we further difference yt, otherwise we set
d = 1 and move to determine p and q.

If the estimated PAC presents some peaks and then it is close to zero,
while the AC declines exponentially, there is evidence in favor of a pure
AR(p), with p equal to the number of peaks (coefficients statistically different
from zero) in the PAC.

If instead the AC has peaks and then it is close to zero, while the PAC
declines exponentially, the evidence is in favor of a pure MA(q), with q equal
to the number of peaks (coefficients statistically different from zero) in the
AC.

Otherwise we have an ARMA process. The entity of the peaks of the AC
and PAC can provide an idea on the order of the AR and MA components,
but the identification of p and q from AC/PAC is clearly more complex in
the ARMA case. One possibility is to make a guess on p and q, estimate the
ARMA model, control whether the resulting residuals are WN, and if not go
back and try with a higher value for p and/or q.
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5.3.2 Testing based specification

A useful diagnostic tool to appraise the fit of a time series model pertains
to testing whether a number of (residual) autocorrelations are equal to zero.
Suppose we have selected the orders p and q of an ARMA model and es-
timated its parameters, then we should expect that the estimated errors,
denoted by ε̂t, are temporally uncorrelated. A commonly used test is the
Ljung-Box Q test (Ljung and Box (1978)), and an improved version known
as the Box-Pierce test (Box and Pierce (1970)). Either test is often reported
as Portmanteau test in standard software output. The null hypothesis is that
the correlations in the population from which the sample is taken are zero.
The Ljung-Box Q test is formally defined as:

QLB = T (T + 2)
h∑
k=1

ρ̂2
k

T − k

where ρ̂k is the sample autocorrelation at lag k, and h is the number of lags
being tested. Under the null the statistic Q follows a χ2

(h) distribution. When
applied to the residuals of a fitted ARMA model, the degrees of freedom need
to be adjusted however, to reflect the parameter estimation. For example,
for an ARIMA(p,q) model, the degrees of freedom should be set to h− p− q
(see Davidson (2000, p. 162)). The Box-Pierce test, in the notation outlined
above, is given by

QBP = T
h∑
k=1

ρ̂2
k,

and uses the same critical region as the Ljung-Box test.

Many regression-based model selection procedures exist for ARIMA(p,d,0)
type models, i.e., models without MA terms, based on formal testing pro-
cedures, such as the Wald or LR statistics. The problem is similar to the
regressor selection that we have discussed in Chapter 1 in the context of the
linear model. This includes the vast array of unit root tests to determine d,
which will be discussed in Section 5.5. Testing the lag length of the MA com-
ponent is slightly more difficult, as we will see its presence prevents the use
of OLS estimation, but can still be performed via ML or GMM procedures.
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5.3.3 Testing for ARCH

While we will cover ARCH-type models in Chapter 14, it is worth mentioning
a test for ARCH (autoregressive conditional heteroskedasticity) as it is closely
related to the Box-Pierce and Ljung-Box tests. The test involves regressing
ε2
t (note the square power transformation as we deal with time-varying vari-

ances) onto a constant and h lags ε2
t−1 . . . , ε

2
t−h. Using a straightforward

derivation of the LM test leads to the TR2 test statistic, where the R2 per-
tains to the aforementioned regression. Under the null hypothesis that there
is no ARCH, the test statistic is asymptotically distributed as chi-square
distribution with h degrees of freedom.

5.3.4 Specification with information criteria

The third option for ARIMA model specification is the use of information cri-
teria (IC), which were introduced in Chapter 1. IC combine model goodness
of fit with a penalty function related to the number of model parameters,
such that small models are preferred to large ones when they have similar
fit.

Selecting the AR and MA orders p and q requires one to start with a gen-
eral enough model, namely, an ARIMA(pMAX ,d, qMAX) where it is assumed
that pMAX > p0 and qMAX > q0, where p0 and q0 are the true orders. A
more technical condition is related to the penalty function and guarantees
that the procedure provides consistent results asymptotically, in the sense of
selecting the true orders p0 and q0 with probability approaching one when
the sample size T diverges. This condition is satisfied by the BIC criterion

BIC = log(σ̂2
ε) + (p+ q) log(T )/T

but not by the AIC criterion

AIC = log(σ̂2
ε) + 2(p+ q)/T

However, the relative performance of the AIC and BIC criteria in finite
samples cannot be uniquely defined, even though generally the former leads
to less parsimonious specifications than the latter since it penalizes less the
number of model parameters. See Lütkepohl (2007) for additional details
and derivations.

Empirically, we need to compute the IC for all combinations of p and q
(and possibly d) and then select the one that minimizes the IC. Hence, this
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procedure requires to estimate a possibly large set of models, but estimation
of ARIMA models, and particularly of AR models, is rather fast.

We conclude with a few general remarks. First, the three methods we
have discussed for model specification can, of course, also be jointly applied,
in order to assess whether they provide the same indications. In case of con-
flicting or uncertain results, which are possible also within the same method,
we can proceed with a few alternative specifications, rather than selecting
one, and compare their forecasting performance. Typically the latter will
be fairly similar, suggesting that the data are not informative enough to
discriminate across alternative specifications, but also that, at least from a
forecasting point of view, this is not a relevant problem. If instead we wanted
to associate a structural meaning to the parameters and/or to the alternative
specifications, then the identification issue would be much more relevant.

Second, in general, the lower the p and q orders the better, as long as
the model is correctly specified. Parsimonious specifications tend to forecast
better and are less prone to overfitting problems, namely, tailoring the model
to fit very well a specific sample, but not necessarily a longer sample and
therefore with a deterioration in the out-of-sample (forecasting) performance.

Third, we have seen that, assuming invertibility, an MA process can be
represented as an AR(∞) process. There are results showing that, under
rather mild conditions, the latter can be approximated by a finite AR pro-
cess. Intuitively, since most economic time series exhibit limited memory,
very high AR lags can be omitted. Since, as we will see, estimation of an
MA component can be complex, pure AR approximations are often used in
forecasting exercises. However, the use of an MA component can yield a
much more parsimonious specification, which can be helpful in a forecasting
context.

Finally, the choice of the order of differencing d is in general not a major
problem in a forecasting context. If we set d = 0 by mistake since yt is I(1),
then one of the AR roots will be anyway estimated to be close to one. If
instead we set d = 1 by mistake since yt is I(0), then one of the MA roots will
be close to one, thus close to canceling the effects of the imposed unit AR
root. The value of d, however, affects the properties of the forecasts, as we
will see. It is also relevant in a structural context, where different economic
theories can have alternative implications on whether a given variable is
stationary or integrated.
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5.4 Estimation

Once the order of the ARIMA(p,d,q) is specified, we need to estimate the
parameters in φ (L) and ψ (L) , where

φ (L) ∆dyt = ψ (L) εt.

If we define wt = ∆dyt, then

φ (L)wt = ψ (L) εt

and again

εt = ψ (L)−1 φ (L)wt.

Suppose the objective function to be minimized is the usual sum of
squared errors:

St =
∑

ε2
t .

Compared to the linear regression model considered in the previous chapters
we face additional problems when q > 0. In fact, if there is an MA component,
St is non-linear in the parameters. For example for an MA(1) process we have

yt − ψ1yt−1 − ψ2
1yt−2 − . . . = εt.

Therefore, we cannot find an analytical expression for the parameter estima-
tors. Instead they will have to be determined using a numerical optimization
method. The resulting estimators are labeled non-linear least squares (NLS)
estimators.

The typical estimator used for ARMA models is not quite the result-
ing non-linear least squares, but rather the maximum likelihood estimator
(MLE). To define this estimator, let us first recall that εt ∼WN(0, σ2), and
add the distributional assumption that for all t εt is normally distributed,

hence εt
iid∼ N(0, σ2). Furthermore, let us also collect all the parameters we

need to estimate into a vector called θ. This will include the parameters
determining φ (L) and ψ (L) , as well as σ2. For ARMA time series models
we also face the problem that, given a sample of size T, we need to think
about how to deal with so-called starting values. Take, for example, the
AR(1) model: How do we treat y0 which enters in the specification of the
first observation y1? Likewise, how do we treat ε0 in a MA(1) model? For
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the purpose of our analysis, we follow a recommendation of Box and Jenk-
ins (1976, p. 211) and compute the likelihood of an ARMA(p,q) conditional
on y1, . . . , yp, equal to the first p observations and ε1 = . . . = εMax(p,q) =
0. Therefore, using the Gaussian density we have the sample log likelihood
function of the ARMA(p,q) model equal to:

L(yp+1, . . . , yT ; θ) = −T − p
2

log (2π)− T

2
log (σ2) (5.4.1)

−
T∑

t=p+1

ε2
t

2σ2

Under mild conditions, the MLE estimator is consistent and, when multi-
plied by

√
T , it has an asymptotically normal distribution, centered at the

true parameter values denoted by θ0. Note also that in the context of MLE
there is no analytical expression for the estimator in the presence of an MA
component.

In order to reach convergence of a numerical optimization method, it is
important to start with reasonable initial values for the parameters. A pos-
sibility is to use the Yule-Walker estimators that we have discussed before,
that is, estimate the AC and use the theoretic relations between its coeffi-
cients and the parameters of φ (L) and ψ (L) to obtain an estimate of the
latter. For a more detailed discussion of the MLE of ARMA models, see e.g.,
Hamilton (1994, Chapter 5).

When q = 0, i.e., in the absence of MA terms, we are back to the case of
a linear dynamic model, discussed in Chapter 2, so that the parameters can
be estimated by OLS.2

5.5 Unit root tests

To understand the econometric issues associated with unit root and station-
arity tests, let us consider the following model:

yt = Tt + zt

Tt = ν0 + ν1t

zt = ρzt−1 + εt (5.5.1)

2It is also possible to estimate MA models indirectly via AR approximate models using
a technique known as indirect inference (see Gouriéroux, Monfort, and Renault (1993)).
For further details see Ghysels, Khalaf, and Vodounou (2003).
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with εt ∼ WN(0, σ2), and Tt is a deterministic linear trend. If ρ < 1 then
yt is I(0) about the deterministic trend Tt, sometimes referred to as trend-
stationary. If ρ = 1 and ν1 = 0, then zt is a random walk and yt is I(1) with
drift.

Let us start with ν0 = ν1 = 0 and hence Tt is zero, yielding:

yt = ρyt−1 + εt, (5.5.2)

or
∆yt = (ρ− 1) yt−1 + εt. (5.5.3)

We are interested in whether there is a unit root, ρ = 1, so that yt is I(1)
and we need to difference the process to achieve stationarity. Formally, we
are interested in the hypothesis:

H0 : ρ = 1 → yt is I(1) without drift

H1 : |ρ| < 1 → yt is I(0) with mean zero

Note that the coefficient of yt−1 in equation (5.5.3) is equal to zero when ρ
= 1. Hence, we might be tempted to use a t−test to verify the hypothesis
of interest. Unfortunately, the problem is that under the unit root null, the
usual sample moments of yt used to compute the t−test do not converge to
fixed constants. Instead, Dickey and Fuller (1979) and Phillips (1987) showed
that the sample moments of yt converge to random functions of Brownian
motions on the unit interval.3 In particular:

T−3/2

T∑
t=1

yt−1
d→ σ

∫ 1

0
W (τ)dτ

T−2

T∑
t=1

y2
t−1

d→ σ2
∫ 1

0
W (τ)2dτ

T−1

T∑
t=1

yt−1εt
d→ σ2

∫ 1

0
W (τ)dW (τ)

3A Brownian Motion – or also called a Wiener process – on the unit interval is a
continuous-time stochastic process, associating with each τ ∈ [0, 1] a scalar random variable
W (τ) that satisfies: (1) W (0) = 0; (2) for any dates 0 ≤ τ1 ≤ . . . ≤ τk ≤ 1 the incremental
changes W (τ2) −W (τ1), . . . , W (τk) −W (τk−1) are i.i.d. normal with W (s) − W (t) ∼
N (0, (s− t)); (3) W (s) is continuous in s.
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Using the above results Phillips showed that under the unit root null:

T (ρ̂− 1)
d→

∫ 1

0
W (τ)dW (τ)∫ 1

0
W (τ)2dτ

t− test(ρ = 1)
d→

∫ 1

0
W (τ)dW (τ)

(
∫ 1

0
W (τ)2dτ)1/2

The above yields:

• The convergence rate of ρ̂ is not the standard
√
T but instead T, typi-

cally referred to as ‘super-consistency.

• Neither ρ̂ nor t− test(ρ = 1) are asymptotically normally distributed.

• The limiting distribution of t − test(ρ = 1) is called the Dickey-Fuller
(DF) (Dickey and Fuller (1979)) distribution, which does not have a
closed form representation. Consequently, the p-values of the distribu-
tion must be computed by numerical approximation or by simulation.
The critical values are available in tables, or they are automatically
generated by econometric software packages.

• The T (ρ̂ − 1) and t − test(ρ = 1) statistics are called respectively
Dickey-Fuller (DF) normalized bias test and DF t-test.

• The critical values of the DF distribution are generally larger than
the standard t distribution ones, such that using the standard critical
values will lead to rejecting the null hypothesis of a unit root too often.

The distribution of the test statistics is also different depending on the
deterministic component since we have seen that the interaction of unit roots
and deterministic components can change the model structure substantially.
In practice, the trend properties of the data under the alternative hypothesis
H1 will determine the form of the test regression used. Furthermore, the type
of deterministic terms in the test regression will influence the asymptotic
distributions of the unit root test statistics. Hence, a careful choice of the
deterministic component and associated critical value is required. The two
most common trend cases can be summarized as follows:
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Constant Only

The test regression is

∆yt = ν0 + (ρ− 1) yt−1 + εt

and includes a constant to capture the nonzero mean under the alternative.
More specifically:

H0 : ρ = 1 and ν0 = 0 → yt is I(1) without drift

H1 : |ρ| < 1 and ν0 6= 0 → yt is I(0) with non-zero mean

Under H0 the asymptotic distributions of the normalized biased and t test
statistics are influenced by the presence but not the coefficient value of the
intercept in the DF test regression.

Constant and Time Trend

The test regression is

∆yt = ν0 + ν1t+ (ρ− 1) yt−1 + εt

and includes a constant and deterministic time trend to capture the deter-
ministic trend under the alternative. The hypotheses to be tested are

H0 : ρ = 1 and ν1 = 0 → yt is I(1) with drift

H1 : |ρ| < 1 and ν1 6= 0 → yt is I(0) with deterministic trend

Under H0 the asymptotic distributions of the normalized biased and t test
statistics are again influenced by the presence but not the parameter values
of the intercept and trend slope coefficients in the DF test regression.

If the AR process is of order p , with p > 1, we can always rewrite the
process as

∆yt = γyt−1 + ρ1∆yt−1 + . . .+ ρp−1∆yt−p+1 + εt, (5.5.4)

where γ = φ (1) , and the ρ coefficients are related to the original φ coeffi-
cients. If one of the roots of φ (z) = 0 is z = 1, it follows that φ (1) = γ = 0
and therefore the coefficient of yt−1 in (5.5.4) will be equal to zero. We can
therefore apply the same test as before, namely a t-test for γ = 0, or nor-
malized bias test, which are both known as Augmented Dickey Fuller (ADF)
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tests. Interestingly, the ADF test has the same distribution as the DF test,
hence we can use the same critical values. To be more specific, we can run
test regressions:

∆yt = Dtβ + γyt−1 + ρ1∆yt−1 + . . .+ ρp−1∆yt−p+1 + εt

where Dt is a vector of deterministic terms (constant, trend). The spec-
ification of the deterministic terms depends on the assumed behavior un-
der the alternative hypothesis of trend stationarity as noted before. The
ADF t-statistic and normalized bias statistic (the latter being computed as
T (γ̂ − 1)/(1 − ρ̂1 . . . − ρ̂p−1)) are based on the least squares estimates of
the above regression and have the same limiting distribution as with p = 1.
However, in finite samples, the size and power of the ADF test are affected
by the number of lags included in (5.5.4), so that the determination of p is
relevant and we can use any of the procedures discussed in Section 5.3.

Phillips and Perron (1988) developed a number of alternative unit root
tests. The Phillips-Perron (PP) unit root tests differ from the ADF tests
mainly in how they deal with serial correlation and heteroskedasticity in the
errors. In particular, where the ADF tests use a parametric autoregression
to approximate the (in general ARMA) structure of the errors in the test
regression, the PP tests ignore any serial correlation in the test regression.
The PP test regression essentially relies on HAC estimators (cfr. section 2.3)
to account for the serial correlation and the heteroskedastcity.

Elliott, Rothenberg, and Stock (1996) proposed a modification of the DF
test statistic based on the generalized least squares (GLS) principle. This
modification, known as DF-GLS, can substantially improve the small-sample
size and power of the test, in particular when an unknown mean or trend is
present. The DF-GLS statistic, as well as the PP tests, are implemented in
standard econometric software, such as EViews or R.

The size and power of unit root tests are also affected by the presence
of deterministic breaks in the model parameters. Since the latter, when
unaccounted, often spuriously increase the persistence of the series, it can
happen that a unit root is not rejected even when the root is actually smaller
than one (so the power of the test decreases). There exist more complex
statistical procedures to allow for breaks when testing for unit roots, see,
e.g., Perron (1989) and Stock (1994).

There are also procedures to test for the presence of more than one unit
root, e.g., d = 2. The simplest approach is first to test whether ∆yt has a
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unit root (so that d = 2) and then, if the hypothesis is rejected, whether yt
has a unit root (so that d = 1). At each step we can use the DF or ADF tests
that we have described above, though one should use proper critical values
that control for the sequential applications of the procedure.

For forecasting, it is worth mentioning that if yt is I(d), so that

∆dyt = wt, (5.5.5)

then
yt = Σdwt, (5.5.6)

where, as an example,

Σwt =
t∑

i=−∞

wi, (5.5.7)

Σ2wt =
t∑

i=−∞

j∑
i=−∞

wj. (5.5.8)

To conclude, we mention that are many alternative procedures available
for testing for unit roots (or for stationarity), notably where the null is trend-
stationarity see e.g., Kwiatkowski, Phillips, Schmidt, and Shin (1992). How-
ever, it remains difficult in general to outperform the ADF procedure, which
has the advantage of being easy to implement and understand. For fur-
ther details, there are a number of excellent survey, one can read, including
Campbell and Perron (1991), Stock (1994), and Phillips and Xiao (1998).

5.6 Diagnostic checking

We noted in Section 5.3 that the Ljung-Box and Box-Pierce statistics can be
used to test whether estimated residuals are white noise.

More informally, we can verify whether the estimated values of the resid-
ual AC and PAC lie within the approximate asymptotic 95% confidence bands
(around the null hypothesis of zero), which are±1.96/

√
T . Graphical displays

of the AC and PAC against two horizontal lines corresponding to respectively
the negative and positive critical values is often standard output one exam-
ines.

We can use also the other tests for no correlation in the residuals that
we have seen in the context of the linear regression model, as well as those
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for homoskedasticity and parameter stability, which all have an asymptotic
justification.

If the model fails to pass the diagnostic checks, we need to re-specify it,
for example by increasing the AR or MA orders. Empirically, if the diagnos-
tic checks are passed but some of the model coefficients are not statistically
significant, we could also assess whether the diagnostic checks remain satis-
factory for a more parsimonious specification.

Having determined the ARIMA model order, estimated its parameters,
and verified that the underlying assumptions are not rejected, we can use it
for forecasting purposes, as discussed in the following sections.

5.7 Forecasting, known parameters

As we have seen in the case of the linear regression model, the optimal forecast
of yT+h in the MSFE sense is

ŷT+h = E (yT+h |yT , yT−1, . . . , y1 ) . (5.7.1)

We consider optimal linear forecasts for ARIMA(p, d, q) models, which cer-
tainly coincide with E (yT+h |yT , yT−1, . . . , y1 ) if we assume that {εt} is nor-
mal. We also assume for the moment that the ARIMA parameters are known.
We discuss first the general case, then present some examples, and finally
make a set of additional comments related to ARIMA forecasts.

5.7.1 General formula

To calculate the optimal linear forecast for an ARIMA(p,d,q), we can proceed
as follows. We start by defining ∆dyt = wt, so that wt is ARMA(p,q):

wT = φ1wT−1 + . . .+ φpwT−p + εT − ψ1εT−1 − . . .− ψqεT−q.

From

wT+1 = φ1wT + . . .+ φpwT−p+1 + εT+1 − ψ1εT − . . .− ψqεT−q+1,

it follows that

ŵT+1 = E (wT+1 |IT ) = φ1wT + . . .+ φpwT−p+1 − ψ1εT − . . .− ψqεT−q+1.
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Similarly,

ŵT+2 = E (wT+2 |IT ) = φ1ŵT+1 + . . .

+φpwT−p+2 − ψ2εT − . . .− ψqεT−q+2

. . . (5.7.2)

ŵT+h = E (wT+h |IT ) = φ1ŵT+h−1 + . . .

+φpŵT−p+h − ψhεT − . . .− ψqεT−q+h
where ŵT−j = wT−j if j ≤ 0 and there is no MA component for h > q.

We obtain the forecast of yT+h summing appropriately those for wT+j, j
= 1, . . . , h. For example, for d = 1, we have

ŷT+h = yT + ŵT+1 + . . .+ ŵT+h. (5.7.3)

To clarify the general derivation of the optimal ARIMA forecasts, we now
discuss a few examples.

5.7.2 Some examples

We consider a number of specific examples which are relatively simple to
work with.

AR(1) Model

Let us start with the AR(1) process:

yt = φyt−1 + εt. (5.7.4)

The formula in (5.7.2) simplifies to:

ŷT+1 = φyT ,

ŷT+2 = φŷT+1 = φ2yT ,

. . .

ŷT+k = φkyT .

Since

yT+1 = φyT + εT+1,

yT+2 = φ2yT + εT+2 + φεT+1,

. . .

yT+h = φhyT + εT+h + φεT+h−1 + . . .+ φh−1εT+1,
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the forecast errors are

eT+1 = εT+1,

eT+2 = εT+2 + φεT+1,

. . .

eT+h = εT+h + φεT+h−1 + . . .+ φh−1εT+1,

and their variances

V ar (eT+1) = σ2
ε ,

V ar (eT+2) =
(
1 + φ2

)
σ2
ε ,

. . .

V ar (eT+k) =
(
1 + φ2 + . . .+ φ2k−2

)
σ2
ε .

Moreover, we have

lim
h→∞

ŷT+h = 0 = E (yt)

lim
h→∞

V ar (ŷT+h) =
1

1− φ2
σ2
ε = V ar (yt)

MA(1) Model

Let us consider the case of an MA(1) process,

yt = εt − ψ1εt−1 (5.7.5)

From the general formula in (5.7.2), we have

ŷT+1 = −ψ1εT ,

ŷT+2 = 0,

. . .

ŷT+h = 0.

Since

yT+1 = εT+1−ψ1εT ,

yT+2 = εT+2−ψ1εT+1,

. . .

yT+h = εT+h−ψ1εT+h−1,
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the forecast errors are

eT+1 = εT+1

eT+2 = εT+2 − ψ1εT+1

. . .

eT+k = εT+k−ψ1εT+k−1,

with variances

V ar (eT+1) = σ2
ε

V ar (eT+2) =
(
1 + ψ2

1

)
σ2
ε

. . .

V ar (eT+h) =
(
1 + ψ2

1

)
σ2
ε

Again, we have

lim
h→∞

ŷT+h = 0 = E (yt)

lim
h→∞

V ar (êT+h) =
(
1 + ψ2

1

)
σ2
ε = V ar (yt) .

ARMA(p,q) Model

Let us now consider an alternative derivation of the optimal forecast for an
ARMA(p,q), and show that it is equivalent to that in (5.7.2). We can write
the model as

a(L)yt = b(L)εt

a(L) = 1−
p∑
j=1

ajL
j, b(L) =

q∑
j=0

bjL
j, b0 = 1

or in MA(∞) representation

yt = c(L)εt,

with a(z)c(z) = b(z), namely,

ck −
p∑
j=1

ajck−j = bk, (5.7.6)
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We have that

ŷT+h =
∞∑
i=0

ci+hεT−i.

The above equation implies that

ŷT+h −
p∑
j=1

aj ŷT+h−j =
∞∑
i=0

(ci+hεT−i −
p∑
j=1

ajci+h−jεT−i). (5.7.7)

If we now use (5.7.6) in (5.7.7), we have

ŷT+h −
p∑
j=1

aj ŷT+h−j =
∞∑
j=0

bj+hεT−j, (5.7.8)

with bj+h ≡ 0, j+h > q, which is indeed equivalent to what we would obtain
with (5.7.2). With this formula we can generate optimal forecasts for all h,
p and q.

Random Walk Model

For the random walk
yt = yt−1 + εt, (5.7.9)

it is
ŷT+h = yT ,

for any h, and
eT+h = εT+1 + εT+2 + . . .+ εT+h..

Therefore, the variance of the forecast error is

V ar (eT+h) = hσ2
ε .

From these expressions, it follows that

lim
k→∞

ŷT+k = yT ,

lim
k→∞

V ar (ŷT+k) = ∞.

More generally, the presence of a unit root in the AR component implies
that the variance of the forecast error grows linearly over time, while in the
stationary it converges to the unconditional variance of the variable.
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5.7.3 Some additional comments

The results on the optimal forecasts and associated forecast errors we have
derived so far have a few other interesting implications, namely:

• Using the MA(∞) representation, it can be shown that the forecast
error is:

eT+h = yT+h − ŷT+h =
h−1∑
j=0

cjεT+h−j. (5.7.10)

Therefore, even when using an optimal forecast, the h-steps ahead fore-
cast error is serially correlated. In particular, it is an MA(h-1) process.

• Moreover

E(eT+h) = 0,

Var(eT+h) = σ2
ε

h−1∑
j=0

c2
j ,

lim
h→∞

Var(eT+h) = Var(yt),

from which is also follows that

Var(eT+h+1)− Var(eT+h) = σ2
εc

2
h ≥ 0,

so that the forecast error variance increases monotonically with the
forecast horizon. This result is no longer necessarily true if the param-
eters are estimated.

• If the error ε is Gaussian, so is the forecast error. In particular

yT+h − ŷT+h√
Var(eT+h)

∼ N(0, 1).

We can use this result to construct (1− α)% interval forecasts as:(
ŷT+h − cα/2

√
Var(eT+h); ŷT+h + cα/2

√
Var(eT+h)

)
where cα/2 are critical values from the standard normal distribution.
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• From (5.7.10), for h = 1 we have

eT+1 = εT+1, (5.7.11)

which can also be read as

εT+1 = yT+1 − ŷT+1, (5.7.12)

which provides an interpretation of the errors in the MA(∞ ) represen-
tation of a weakly stationary process.

• Consider ŷT+h and ŷT+h+k, i.e., forecasts of yT+h and yT+h+k made in
period T. From (5.7.10) it can be easily shown that:

E(eT+heT+h+k) = σ2
ε

h−1∑
j=0

cjcj+k,

so that the forecast errors for different horizons are in general corre-
lated.

• From (5.7.10) and the fact that εt is white noise, and considering the
predictor ŷT+h as an estimator (hence random), it follows that

Cov(ŷT+h, eT+h) = 0.

Therefore,
V ar(yT+h) = V ar(ŷT+h) + V ar(eT+h)

and
V ar(yT+h) ≥ V ar(ŷT+h).

Hence, the forecast is always less volatile than the actual realized value.

5.8 Forecasting, estimated parameters

So far we have assumed that the ARIMA parameters were known. However,
in practice they are not, and the forecasts are based on estimated rather than
true parameters. If we use consistent parameter estimators, the formulas we
have derived for the optimal forecasts remain valid. The only additional
complication is an increase in the variance of the forecast error due to the
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estimation uncertainty. Typically, the increase is minor when the estimation
sample size is large enough. Therefore, we only focus on a few examples
to illustrate this case, see, e.g., Clements and Hendry (1998) or Lütkepohl
(2007) for a more general treatment.

The first case we assess is that of a stationary AR(1) with drift:

yt = µ+ ayt−1 + εt. (5.8.1)

If the parameters µ and a have to be estimated, by µ̂ and â, the forecast
error for h = 1 is:

eT+1 = εT+1 + (µ− µ̂) + (a− â)yT = εT+1 + (Θ− Θ̂)′xT

xT =

(
1
yT

)
Θ− Θ̂ =

(
µ− µ̂
a− â

)
and

Var(eT+1) = σ2
ε + x′TVar(Θ̂)xT , (5.8.2)

where

Var(Θ̂) = Var

(
µ̂
â

)
= σ2

εE

[
T

∑T
t=1 yt−1∑T

t=1 yt−1

∑T
t=1 y

2
t−1

]−1

∼= T−1

[
σ2
ε + µ2(1 + a)(1− a)−1 −µ(1 + a)
−µ(1 + a) (1− a2)

]
, (5.8.3)

see Clements and Hendry (1998) for details. The expression in (5.8.2) is
known as the approximate forecast error variance.

For the h-steps ahead prediction we have:

ŷT+h = µ̂
(1− âh)
(1− â)

+ âhyT .

Therefore,

êT+h =
h−1∑
i=0

(µai − µ̂âi) + (ah − âh)yT +
h−1∑
i=0

aiεT+h−i

and

Var(êT+h) = σ2
ε

(1− a2h)

(1− a2)
+ E

[
h−1∑
i=0

(µai − µ̂âi)

]2

+Var
[
(ah − âh)

]
y2
T + 2E

[
h−1∑
i=0

(µai − µ̂âi)(ah − âh)

]
yT .
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Details on this derivation can be found in Clements and Hendry (1998).
Let us evaluate now the effects of the presence of a unit root, by setting

a = 1 in (5.8.1). We have seen that it is

ŷT+h = µh+ yT

eT+h =
h−1∑
i=0

εT+h−i

and Var(eT+h) = hσ2
ε increases with the forecast horizon h.

Using estimated parameters from an AR(1) with drift, without imposing
the unit root, the forecast error becomes

eT+h = (µ− µ̂)h+ (1− âh)yT +
h−1∑
i=0

εT+h−i.

It can be shown that the OLS estimator of a converges at a rate of T 3/2, rather
than T 1/2 as in the stationary case, so that its variance can be neglected. The
variance of µ̂ decreases instead with T, so that the key determinant of the
forecast uncertainty is the estimation of µ, the “local trend,” combined with
the cumulated future errors.

5.9 Multi-steps (or direct) estimation

When forecasting h-steps ahead with a quadratic loss function, we consider a
loss function different from the one which is minimized in-sample for param-
eter estimation. The idea of multi-steps (or direct) estimation is to estimate
the parameters that will be used in forecasting by minimizing the same loss
function as in the forecast period.

As an example, let us consider the AR(1):

yt = ayt−1 + εt

so that

yT+h = ahyT +
h−1∑
i=0

aiεT+h−i

The standard forecast, as we have seen, is:

ŷT+h = âhyT ,
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where

â = argmin
a

T∑
t=1

(yt − ayt−1)2 =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

and
E(yT+h − ŷT+h) = (ah − E(âh))yT .

The forecast ŷT+h is also called “iterated” since, as we have seen, it can be
derived by replacing the unknown future values of y with their forecasts for
T + 1, . . . , T + h− 1.

The alternative forecast is

ỹT+h = ãhyT

where

ãh = argmin
ah

T∑
t=1

(yt − ahyt−h)
2 =

∑T
t=h ytyt−h∑T
t=h y

2
t−h

and
E(yT+h − ỹT+h) = (ah − E(ãh))yT .

The forecast ỹT+h is labeled “direct” since it is derived from a model where
the target variable yT+h is directly related to the available information set in
period T.

The relative performance of the two forecasts ŷT+h and ỹT+h in terms
of bias and efficiency depends on the bias and efficiency of the alternative
estimators of ah, âh and ãh. In the presence of correct model specification,
both estimators of ah are consistent, but âh is more efficient than ãh since
it coincides with the maximum likelihood estimator. Hence, at least in large
samples, the standard iterated forecast ŷT+h can be expected to be better
than ỹT+h. However, in the presence of model mis-specification the ranking
can change.

Let us illustrate this statement with an example. Let us assume that the
DGP is an MA(1):

yt = εt + ψεt−1, (5.9.1)

with εt ∼WN(0, σ2
ε), but the chosen model for yt is the AR(1):

yt = ρyt−1 + vt, (5.9.2)

where vt is supposed to be WN(0, σ2
v).
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We wish to compare standard and direct estimation based forecasts, as-
suming h = 2 and using as usual the MSFE as a comparison criterion.

Standard estimation yields

ρ̂ =
T∑
t=1

ytyt−1

(
T∑
t=1

y2
t−1

)−1

and to a first approximation

E(ρ̂) ∼=
ψ

(1 + ψ2)
= ρ.

Then
ŷT+2 = ρ̂2yT , E(ŷT+2) ∼= ρ2yT

and it can be shown that

M̂SFE = E
[
(yT+2 − ρ̂2yT )2|yT

]
∼= (1 + ψ2)σ2

ε +
(
Var(ρ̂2) + ρ4

)
y2
T

In the case of direct estimation, it is

ρ̃2 =
T∑
t=2

ytyt−2

(
T∑
t=2

y2
t−2

)−1

∼= 0

so that
ỹT+2 = ρ̃2yT ∼= 0

and

M̃SFE = E [(yT+2 − ỹT+2)|yT ]
∼= (1 + ψ2)σ2

ε + Var(ρ̃2)y2
T .

It can be shown that for particular values of the parameters it is possible
that

M̃SFE ≤ M̂SFE.

A necessary condition for this is that the AR(1) model is mis-specified other-
wise, as said, ρ̂2 is the ML estimator of ρ2 and the associated forecast cannot
be beaten.
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It is theoretically difficult to characterize in a general setting the trade-off
between bias and estimation that exists in multi-period forecasts (see Find-
ley (1983), Findley (1985), Lin and Granger (1994), Clements and Hendry
(1996), Bhansali (1999), and Chevillon and Hendry (2005), among others).
Marcellino, Stock, and Watson (2006) compare empirical iterated and direct
forecasts from linear univariate and bivariate models by applying simulated
out-of-sample methods to 170 US monthly macroeconomic time series span-
ning 1959 through 2002. The iterated forecasts typically outperform the
direct forecasts, particularly if the models can select long lag specifications.
The relative performance of the iterated forecasts improves with the forecast
horizon.

5.10 Permanent-transitory decomposition

It is sometimes of interest to decompose a process yt into two components,
labeled as permanent and transitory, respectively. The former captures the
long-run, trend-like behavior of yt. The latter measures short term deviations
from the trend.

There is no unique way to achieve a permanent-transitory decomposition.
We will review two of the most common approaches. The first, often called
the Beveridge and Nelson (1981) (BN) decomposition, features a permanent
component which behaves as a random walk. The second, the Hodrick and
Prescott (1997) (HP) decomposition, has potentially more complex dynamics
for the permanent component.

5.10.1 The Beveridge Nelson decomposition

We saw in the previous section that a weakly stationary process can be
written as an MA(∞), and that if yt ∼ I (d) , then ∆dyt is weakly stationary.
Assuming d = 1, we have:

∆yt = µ+ c (L) εt, εt
iid∼
(
0, σ2

ε

)
. (5.10.1)

Let us consider another polynomial in L, defined as

d (L) = c (L)− c (1) . (5.10.2)

Since d (1) = 0, 1 is a root of d (L) , which can therefore been rewritten as

d (L) = c̃ (L) (1− L) . (5.10.3)
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Combining equations (5.10.2) and (5.10.3) we obtain

c (L) = c̃ (L) (1− L) + c (1)

and
∆yt = µ+ c̃ (L) ∆εt + c (1) εt.

To obtain a representation for yt, we need to integrate both sides:

yt = µt+ c (1)
t∑

j=1

εj︸ ︷︷ ︸
trend

(permanent component)
(PC)

+ c̃ (L) εt︸ ︷︷ ︸ .
cycle

(transitory component)
(CC)

It also follows that the permanent component is a random walk with drift:

PCt = PCt−1 + µ+ c (1) εt. (5.10.4)

Moreover, the variance of the trend innovation is c (1)2 σ2
ε , which is larger

(smaller) than the innovation in yt if c (1) is larger (smaller) than one.

The innovation in the cyclical component is c̃ (0) εt. Since c̃ (L) = c(L)−c(1)
1−L ,

then c̃ (0) = c (0)− c (1) = 1− c (1) . Therefore, the innovation in the cyclical
component is (1− c (1)) εt.

As an example, let us derive the BN decomposition for an ARIMA(1,1,1)
model,

∆xt = φ∆xt−1 + εt + ψεt−1.

From the MA representation for ∆xt, we have:

c (L) =
1 + ψL

1− φL
, c (1) =

1 + ψ

1− φ
,

c̃ (L) =
c (L)− c (1)

1− L
= − φ+ ψ

(1− ψ) (1− ψL)
;

It follows that the BN decomposition is

yt = PC + CC =
1 + ψ

1− φ

t∑
j=1

εj −
φ+ ψ

(1− ψ) (1− ψL)
εt. (5.10.5)
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Empirically, we need to specify the AR and MA orders of the ARIMA(p,1,q)
model and estimate its parameters, obtaining ĉ (L) and µ̂. Next, we can
estimate the permanent component using the fact that PCt = PCt−1 + µ +
c (1) εt. Starting with PC0 = α, with an arbitrary value for α, e.g., α = 0, we
then use µ̂, ĉ (1) , and ε̂1 to construct PC1. Then we use µ̂, ĉ (1) , PC1 and
ε̂2 to construct PC2, and so on. Finally, we obtain the cyclical component
CCt as yt − PCt. We can calculate the mean of CC, and recenter CC (so
that it has zero mean) and use it as α to calculate the PC again, since it is
reasonable that CC has zero mean.

5.10.2 The Hodrick-Prescott filter

The Hodrick-Prescott filter is an alternative way to compute the permanent
component. Its use is widespread among macroeconomists, in particular in
the United States. The permanent component is obtained as

min
PC

T∑
t=1

(yt − PCt)2

︸ ︷︷ ︸
Variance of CC

+ λ
T−1∑
t=2

[
(PCt+1 − PCt)2 + (PCt − PCt−1)2] . (5.10.6)

The bigger is λ, the smoother is the trend. In practice, λ = 100 is used
with annual data, λ = 1600 with quarterly data and λ = 14400 with monthly
data. Note that if λ = 0, it is PCt = yt.

5.11 Exponential smoothing

Exponential smoothing (ES) is a method to produce short-term forecasts
quickly and with sufficient accuracy, particularly suited when the estima-
tion sample is short since, as we will see, the underlying model is tightly
parameterized and corresponds to a specific ARIMA specification.

ES decomposes a time series into a “level” component and an unpre-
dictable residual component. Once the level at the end of the estimation
sample is obtained, say yLT , it is used as a forecast for yT+h, h > 1.

If yt is an i.i.d. process with a non-zero mean, we could estimate yLT as the
sample mean of y. If instead yt is persistent, then the more recent observations
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should receive a greater weight. Hence, we could use

yLT =
T−1∑
t=1

α(1− α)tyT−t,

with 0 < α < 1 and

ỹT+h = yLT . (5.11.1)

Since

(1− α)yLT =
T−1∑
t=1

α(1− α)t+1yT−t−1,

we have

yLT = αyT + (1− α)yLT−1,

with the starting condition yL1 = y1. Hence, the larger α the larger the weight
on the most recent observations. Note that in the limiting case where α = 1,
it is yLT = yT and the ES forecasts coincides with that from a RW model for
y.

A more elaborate model underlies the Holt-Winters procedure

yLt = ayt + (1− a)(yLt−1 + Tt−1), (5.11.2)

Tt = c(yLt − yLt−1) + (1− c)Tt−1,

with 0 < a < 1, and starting conditions T2 = y2 − y1 and yL2 = y2. In this
case, we have

ỹT+h = yLT + hTT . (5.11.3)

The coefficients α and a control the smoothness of yLt . The smaller they are
the smoother yLT , since past observations of yt receive a rather large weight.
In practice, the smoothing coefficients, and c, are selected by minimizing the
in-sample MSFE, namely,

T−1∑
t=3

(yt − ỹt)2.

Let us now derive under what conditions the ES forecasts can be considered
as optimal forecasts, focusing on the more general case in (5.11.3) for which
we have:

et = yt − ỹt|t−1| = yt − yLt−1 − Tt−1. (5.11.4)
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From (5.11.2) we have:

yLt − yLt−1 = a(yt − yLt−1) + (1− a)Tt−1 = Tt−1 + aet, (5.11.5)

due to the definition of et in (5.11.4). Again from (5.11.2) we have:

Tt − Tt−1 = c(yLt − yLt−1)− cTt−1 = caet (5.11.6)

because of (5.11.5). Moreover, using again (5.11.5) we have

(yLt − yLt−1)− (yLt−1 − yLt−2) = Tt−1 − Tt−2 + aet − aet−1

= caet−1 + aet − aet−1

so that
(1− L)2yLt = a [1− (1− c)L] et.

From (5.11.6) we have

(1− L)2Tt = ca(1− L)et.

Putting together the expressions for (1− L)2yLt and (1− L)2Tt we obtain

(1− L)2(yLt + Tt) = a(1 + c)et − aet−1

and, since from (5.11.4) et = yt − yLt−1 − Tt−1, we can write

(1− L)2yt = (1− L2)et + a(1 + c)et−1 − aet−2.

Therefore, in conclusion, the Holt-Winter procedure forecast in (5.11.3)
is optimal (in the MSFE sense) if yt is an ARIMA(0,2,2). Similarly, it can be
shown that the forecast in (5.11.1) is optimal when yt is an ARIMA(0,1,1).

5.12 Seasonality

Seasonality is a systematic but possibly stochastic intra-year variation in the
behavior of an economic variable, related, e.g., to the weather or the calendar
and their impact on economic decisions. For example, sales are systematically
higher in December due to Christmas, and electricity consumption can peak
in the summer months due to the use of air conditioning.

A common approach in the analysis and forecasting of economic time
series is to work with seasonally adjusted variables. The rationale is that the
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interesting movements in economic variables are typically not related to their
seasonal component, which is therefore eliminated from the time series prior
to modeling. However, seasonal adjustment procedures can spuriously alter
the dynamic behavior of a variable, in particular when the seasonal pattern
changes over time, see e.g., Canova and Ghysels (1994). It is also interesting
to note that Ghysels, Granger, and Siklos (1996) show that seasonal adjusted
white noise produces a series that has predictable patterns.

An alternative method is to work with not seasonally adjusted data and
directly model the seasonal component. We will discuss two alternative ap-
proaches in this context, which treat seasonality as, respectively, determin-
istic or stochastic. We refer to, e.g., Ghysels and Osborn (2001) for further
details.

5.12.1 Deterministic seasonality

Let us assume that the time series xt can be decomposed into a deterministic
seasonal component, st, and an ARMA component, yt, so that we can write

xt = st + yt. (5.12.1)

Under the additional assumption that t is measured in months and there is
a deterministic monthly seasonality, we can write

st =
12∑
i=1

γiDit,

where Dit are seasonal dummy variables taking values 1 in each month i and
0 otherwise, i = 1, . . . , 12.

The seasonal coefficients γi can be estimated in the ARMA model for xt,
which has only a more complex deterministic component than the one we
have considered so far (e.g., the overall mean), so that estimation can be
conducted as discussed above.

As an alternative, we could seasonally adjust the variable xt by subtract-
ing from each of its values s̃t, where

s̃t =
12∑
i=1

γ̃iDit, γ̃i = xi,

and xi is the sample mean of all month-i observations of x.
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This approach can also easily handle a slow evolution in the shape or
amplitude of the seasonal component, by using weighted averages of the
month-i observations of x for the construction of γ̃i. For example, also based
on the discussion of exponential smoothing in the previous section we could
use

γ̃i(j) = αγ̃i(j − 1) + (1− α)xj,i,

where α ∈ [0, 1] , j is measured in years, and xj,i indicates the value of x in
month i of year j. The larger is α, the more stable the seasonal pattern.

Finally, a similar dummy variable approach can be used for different
patterns of seasonality (e.g., quarterly), and also to handle other data irreg-
ularities such as working days effects and moving festivals.

5.12.2 Stochastic seasonality

The seasonal pattern could be stochastic rather than deterministic, and in
this case the use of seasonal dummies would not be sufficient to take the
seasonal time variation into account. In this case, we could extend the
ARMA(p,q) specification to take into explicit account the possibility of sea-
sonal dynamics. In particular, we could use a model such as

φ1 (L)φ2 (Ls) yt = ψ1 (L)ψ2 (Ls) εt, (5.12.2)

where Ls is the seasonal lag operator, e.g., s = 12 in the monthly case, so
that

φ2 (Ls) = 1− φ21L
s − . . .− φ2p2L

sps ,

ψ2 (Ls) = 1 + ψ21L
s + . . .+ ψ2ψ2L

sqs ,

where ps and qs are the orders of, respectively, the seasonal AR and MA
polynomials. This model is typically known as a seasonal ARMA model and
it can properly represent several seasonal time series.

A first example is the seasonal random walk model:

yt = yt−s + εt,

hence, year-to-year differences are white noise. Another example is the case
where p = ps = q = qs =1 and s =12:

(1− φ11L)(1− φ21L
12)yt = (1 + ψ11L)(1 + ψ21L

12)εt,
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or

(1− φ11L− φ21L
12 + φ11φ21L

13)yt = (1 + ψ11L+ ψ21L
12 + ψ11ψ21L

13)εt.

This can also be considered as an ARMA(13,13), though with a set of zero
restrictions on the coefficients.

Since a seasonal ARMA is just a constrained version of a general ARMA
model, the same tools for specification, estimation and diagnostic testing
that we have seen for the ARMA case can be applied in this context, see,
e.g., Granger and Newbold (1986, Section 3.7).

Finally, some of the roots of the seasonal AR polynomial φ2 (Ls) could be
equal to one as in the seasonal random walk model. In the general case, these
are known as seasonal unit roots. Tests for this case can be constructed along
the lines of the ADF procedure discussed above, see Ghysels and Osborn
(2001) for further details.

5.13 Examples with simulated data

We use standard Box–Jenkins procedure to specify and estimate several types
of ARMA models. Once the appropriate ARMA specification is found, it is
used for an out-of-sample forecasting exercise. The data set contains 600
simulated observations. In order to avoid dependence on the starting values,
the first 100 observations are discarded.

5.13.1 Stationary ARMA processes

In this section three stationary ARMA processes will be taken into consider-
ation: y1, with an AR(2) data generating process; y2, with an MA(2) DGP;
and y3, with an ARMA(2,2) DGP.

As we may note from Figure 5.13.1, the dynamic behavior of the variables
looks similar although they have been generated from different DGPS: all of
them display random fluctuations around their mean without an evident time
trend.

This provides preliminary evidence on the weak stationarity of the pro-
cesses, and justifies the Box-Jenkins approach that relies on the analysis
of the complete and partial autocorrelation functions (respectively, AC and
PAC) to select the most appropriate ARMA specification for each variable.
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Figure 5.13.1: Stationary ARMA process y1 through y3, sample 101 - 600

Figures 5.13.2 - 5.13.4 show the (partial) correlograms of the three series
for the entire sample under consideration. As we can see from Figure 5.13.2,
y1 has an exponentially decaying autocorrelation function and significant
peaks at lags one and two in the PAC, hence strongly supporting an AR(2)
specification. On the other hand, from Figure 5.13.3 we see an oscillating
PAC function while the AC displays a significant peak at lag two, suggesting
that y2 could in fact follow a MA(2) process. Finally, from Figure 5.13.4 it is
harder to make a proposal for a model for y3 based on the reported AC and
PAC functions. However, the presence of significant peaks in both of them
suggests a combined ARMA specification.

We should mention that in small samples it can be more challenging to
get a precise indication of the appropriate ARMA specification from the AC
and PAC. In such situations, we can select the most likely specifications, use
statistical testing, and compare their relative forecasting performance.
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Autocorrelation Partial Correlation AC  PAC

1 0.370 0.370
2 0.350 0.246
3 0.149 -0.049
4 0.115 -0.002
5 0.054 -0.001
6 0.040 0.003
7 0.029 0.010
8 -0.024 -0.054
9 -0.058 -0.058

10 -0.124 -0.089
11 -0.099 -0.011
12 -0.154 -0.074

Figure 5.13.2: AC and PAC functions for y1 entire sample (101 -600)

Let us now use the lag selection criteria, such as AIC and BIC, to select
an appropriate ARMA specification for the three series, and compare the
outcome with the suggestions that emerged from the AC and PAC analysis,
(see Tables 5.13.1, 5.13.2 and 5.13.3).

AR / MA 0
0 3.042114
1 2.909087
2 2.860312
3 2.871777
4 2.885768
5 2.896720
6 2.910012

Table 5.13.1: The ARIMA selection with BIC for y1

For y1, for example, setting 10 as a sensible maximum number of AR
lags, no differencing nor MA terms (as we inferred from the analysis of the
AC and PAC), and the Schwarz as the relevant information criterion (i.e.,
the BIC), the procedure selects exactly an AR(2) specification. Specifically,
it produces Table 5.13.1.



i
i

i
i

i
i

i
i

5.13. EXAMPLES WITH SIMULATED DATA 217

Autocorrelation Partial Correlation AC  PAC

1 0.145 0.145
2 -0.335 -0.364
3 -0.022 0.114
4 -0.014 -0.184
5 -0.029 0.054
6 0.009 -0.074
7 0.055 0.089
8 0.004 -0.060
9 0.003 0.079

10 -0.010 -0.067
11 -0.056 -0.001
12 0.005 -0.010

Figure 5.13.3: AC and PAC functions for y2 entire sample (101 - 600)

AR / MA 0 1 2 3
0 3.038216 2.965412 2.817112 2.820006
1 3.024794 2.871028 2.819972 2.823934
2 2.886401 2.836022 2.823942 2.827933
3 2.877178 2.830599 2.827901 2.823809

Table 5.13.2: The ARIMA selection with BIC for y2

Table 5.13.1 shows that the minimum BIC is achieved with two AR terms.
Repeating the same exercise for both the BIC and the AIC and for the three
series under examination we see that the procedure always selects the true
DGPs when the entire sample is taken as a reference, as shown in Tables
5.13.2 and 5.13.3 for BIC.

AR / MA 0 1 2 3
0 3.187754 3.059214 2.981900 2.985839
1 3.142723 2.995391 2.985840 2.988778
2 3.051139 2.987988 2.981839 2.991453
3 3.028714 2.989539 2.993529 2.987754

Table 5.13.3: The ARIMA selection with BIC for y3

In the next two subsections we will estimate the specifications selected
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Autocorrelation Partial Correlation AC  PAC

1 0.227 0.227
2 -0.234 -0.301
3 0.002 0.161
4 0.001 -0.140
5 -0.001 0.097
6 0.052 -0.013
7 0.079 0.105
8 0.020 -0.029
9 0.032 0.097

10 -0.014 -0.082
11 -0.072 -0.001
12 0.008 -0.003

Figure 5.13.4: AC and PAC functions for y3 entire sample (101 - 600)

by BIC. Finally, we will devote an entire subsection on illustrating the fore-
casting performance of the selected models.

5.13.2 Estimation: Full sample analysis

Tables 5.13.4 through 5.13.6 report the estimation results of the three models
suggested by the ARIMA selection procedure; y1 is modeled as an AR(2), y2

as an MA(2), and y3 as an ARMA(2,2). The results are quite satisfactory,
with the selected AR and MA terms always significant and Durbin-Watson
statistics always pretty close to the value of 2, signaling almost with noise
residuals.

Let us have a closer look at the diagnostic tests for each of the estimated
models. Diagnostics appear in Tables 5.13.7 though 5.13.9, showing some
routine statistics for the residuals coming from the estimated models for
y1, y2 and y3, respectively. For all the three models, the actual vs fitted
and residuals (see Figures 5.13.5 through 5.13.7) show a good fit for the
selected models. The residuals display frequent sign changes, although there
might be a few outliers; the Jarque-Bera statistics for the three residuals
are still low, formally indicating no rejection of normality. Moreover, the
no serial correlation LM test, and the White and ARCH heteroskedasticity
tests never reject their respective null hypotheses, the only exception being
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Dep Var: Y1

Variable Coefficient Std. Error t-Statistic Prob.

C 0.042014 0.093569 0.449014 0.653
AR(1) 0.279133 0.043545 6.410269 0.000
AR(2) 0.245699 0.043530 5.644410 0.000

R-squared 0.189038 Mean dep var 0.03953
Adjusted R-squared 0.185774 S.D. dep var 1.10175
S.E. of regression 0.994163 Akaike IC 2.83215
Sum squared resid 491.2152 Schwarz IC 2.85743
Log likelihood -705.0378 Hannan-Quinn 2.84207
F-statistic 57.92603 DW stat 1.96986
Prob(F-statistic) 0.000000

Table 5.13.4: Estimation results for y1

Dep Var: Y2
Variable Coefficient Std. Error t-Statistic Prob.

C -0.009993 0.038195 -0.261621 0.793
MA(1) 0.281535 0.040840 6.893551 0.000
MA(2) -0.414625 0.040851 -10.14959 0.000

R-squared 0.209487 Mean dep var -0.01033
Adjusted R-squared 0.206306 S.D. dep var 1.10425
S.E. of regression 0.983775 Akaike IC 2.81114
Sum squared resid 481.0032 Schwarz IC 2.83643
Log likelihood -699.7857 Hannan-Quinn 2.82106
F-statistic 65.85277 DW stat 1.96942
Prob(F-statistic) 0.000000

Table 5.13.5: Estimation results for y2
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Dep Var: Y3
Variable Coefficient Std. Error t-Statistic Prob.

C 0.011417 0.054939 0.207816 0.835
AR(1) -0.193760 0.283357 -0.683803 0.494
AR(2) -0.076268 0.132683 -0.574815 0.565
MA(1) 0.594037 0.284018 2.091550 0.037
MA(2) -0.135818 0.241172 -0.563158 0.573

R-squared 0.198335 Mean dep var 0.01040
Adjusted R-squared 0.191857 S.D. dep var 1.18998
S.E. of regression 1.069757 Akaike IC 2.98269
Sum squared resid 566.4681 Schwarz IC 3.02483
Log likelihood -740.672 Hannan-Quinn 2.99922
F-statistic 30.61621 DW stat 1.99818
Prob(F-statistic) 0.000000

Table 5.13.6: Estimation results for y3

the residuals of the y3 specification which seem to display some remaining
serial correlation. These results on the lack of correlation of the residuals are
also confirmed by the complete and partial correlograms, which present no
significant spikes.

Having a simulated dataset allows us to answer also another interesting
question: What if the researcher “gets it wrong” and estimates an AR(1),
MA(1), ARMA(1,1) for, respectively, y1, y2 and y3? Let us consider y1

for instance. Estimating an AR(1) specification yields a reasonably good
fit, with a slight decrease in the adjusted R2 to 14% but no major signs
of misspecification, see Table 5.13.10. Nevertheless, the correlogram of the
residuals of the AR(1) question features a relevant peak exactly at lag 2, as
the AR(2) term was omitted in the estimation. A similar feature emerges for
the two other misspecified models, as indicated by Figure 5.13.8 that reports
the empirical correlograms of the residuals.

5.13.3 Estimation: Subsample analysis

Table 5.13.11 illustrates in a synthetic way the results of applying the ARIMA
selection procedure we employed in the previous section in two smaller sub-
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Heteroskedasticity Test: ARCH

F-statistic 0.009042 F(1,497) 0.924
Obs*R-squared 0.009078 Chi-Sq(1) 0.924
Breusch-Godfrey Serial
Correlation LM Test:
F-statistic 0.628107 F(2,495) 0.534
Obs*R-squared 1.265691 Chi-Sq(2) 0.531
Heteroskedasticity Test: White

F-statistic 0.776695 F(5,494) 0.566
Obs*R-squared 3.899984 Chi-Sq(5) 0.563
Scaled explained SS 3.132991 Chi-Sq(5) 0.679
Jarque-Bera normality Test: 3.516553 0.172

Table 5.13.7: Diagnostic tests on the AR(2) model for y1

Heteroskedasticity Test: ARCH

F-statistic 0.169720 F(1,497) 0.680
Obs*R-squared 0.170345 Chi-Sq(1) 0.679
Breusch-Godfrey Serial
Correlation LM Test:
F-statistic 0.281619 F(2,495) 0.754
Obs*R-squared 0.568031 Chi-Sq(2) 0.752
Heteroskedasticity Test: White

F-statistic 0.776314 F(9,490) 0.638
Obs*R-squared 7.029190 Chi-Sq(9) 0.634
Scaled explained SS 7.486218 Chi-Sq(9) 0.586
Jarque-Bera normality Test: 0.945034 Prob. 0.623

Table 5.13.8: Diagnostic tests on the MA(2) model for y2
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Residual Actual Fitted

Autocorrelation Partial Correlation AC  PAC
1 0.012 0.0122 0.019 0.0193 -0.040 -0.0414 -0.011 -0.0115 -0.018 -0.0166 0.007 0.0077 0.038 0.0388 -0.001 -0.0049 -0.021 -0.02310 -0.078 -0.07511 -0.035 -0.03212 -0.124 -0.122

Figure 5.13.5: Top panel: Actual vs fitted, and residuals; bottom panel: Cor-
relogram of the residuals for the AR(2) model for y1
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Autocorrelation Partial Correlation AC  PAC
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Figure 5.13.6: Top panel: Actual vs fitted, and residuals; bottom panel: Cor-
relogram of the residuals for the MA(2) model for y2
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Heteroskedasticity Test: ARCH

F-statistic 0.087968 F(1,497) 0.766
Obs*R-squared 0.088306 Chi-Sq.(1) 0.766
Breusch-Godfrey Serial
Correlation LM Test:
F-statistic 3.380311 F(2,495) 0.034
Obs*R-squared 6.736898 Chi-Sq.(2) 0.034
Heteroskedasticity Test: White

F-statistic 1.475130 F(9,490) 0.154
Obs*R-squared 13.18975 Chi-Sq.(9) 0.154
Scaled explained SS 13.83836 Chi-Sq.(9) 0.128
Jarque-Bera normality Test: 0.504597 Prob. 0.777

Table 5.13.9: Diagnostic tests on the ARMA(2,2) model for y3

Variable Coefficient Std. Error t-Statistic Prob.

C 0.025639 0.045844 0.559268 0.576
AR(1) 0.370487 0.041659 8.893349 0.000

R-squared 0.137052 Mean dep var 0.03953
Adjusted R-squared 0.135319 S.D. dep var 1.10175
S.E. of regression 1.024503 Akaike IC 2.89028
Sum squared resid 522.7037 Schwarz IC 2.90714
Log likelihood -720.570 Hannan-Quinn 2.89689
F-statistic 79.09166 DW stat 2.17887
Prob(F-statistic) 0.000000

Table 5.13.10: Estimation results for the mis-specified model for y1
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Residual Actual Fitted

Autocorrelation Partial Correlation AC  PAC
1 -0.000 -0.0002 -0.000 -0.0003 -0.025 -0.0254 -0.004 -0.0045 0.011 0.0116 0.030 0.0297 0.083 0.0838 0.002 0.0029 0.035 0.03710 -0.002 0.00211 -0.072 -0.07312 0.013 0.011

Figure 5.13.7: Top panel: Actual vs fitted, and residuals; bottom panel: Cor-
relogram of the residuals for the ARMA(2,2) model for y3
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Autocorrelation Partial Correlation AC  PAC
1 -0.091 -0.0912 0.238 0.2313 -0.004 0.0364 0.065 0.0135 0.003 0.0026 0.018 0.0007 0.031 0.0318 -0.020 -0.0229 -0.012 -0.03110 -0.096 -0.09811 -0.013 -0.02112 -0.140 -0.105

Autocorrelation Partial Correlation AC  PAC
1 -0.179 -0.1792 -0.259 -0.3003 0.112 -0.0034 -0.062 -0.1305 0.011 0.0036 -0.025 -0.0847 0.067 0.0718 -0.027 -0.0419 0.006 0.05110 0.018 -0.00611 -0.071 -0.03812 0.038 0.005

Autocorrelation Partial Correlation AC  PAC
1 -0.036 -0.0362 -0.101 -0.1023 -0.026 -0.0344 0.022 0.0095 -0.018 -0.0236 0.044 0.0467 0.061 0.0638 0.006 0.0199 0.025 0.04310 0.005 0.01211 -0.078 -0.07212 0.029 0.026

Figure 5.13.8: Correlograms for mis-specified models; top to bottom, for y1,
y2, y3, respectively
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samples: the first goes from observation 101 to 200, the second from 201 to
300. As we can see, in shorter samples the criteria can select models rather
different from the DGPs. This is not necessarily a bad outcome, as long as
the residuals of the models satisfy the usual assumptions and the forecasting
performance remains satisfactory.

Subsample 101-200 Subsample 201-300
AIC BIC AIC BIC

y1 AR(2) AR(1) AR(2) AR(2)
y2 MA(2) MA(2) MA(2) MA(10)
y3 ARMA(2,2) ARMA(2,2) ARMA(8,8) ARMA(3,3)

Table 5.13.11: Synthetic results of the ARIMA selection procedure for the
two subsamples 101 - 200 and 201 - 300

Several tests on the residuals are performed, and, as for the full sample
analysis, there is evidence of good fit of these models where estimated using
subsamples. As we can see, in the first subsample the AIC criterion seems
to be slightly more accurate than the BIC, although they both yield quite
satisfactory results in identifying the DGP. On the other hand, the second
subsample results are much less accurate, signaling that the realizations in
that portion of the sample are quite different from those of the first one and
of the entire sample. Clearly, if the researcher’s data availability is limited
(around 100 observations is quite frequent in some macro applications) the
results of the estimation procedure and inference may be very variable, hence
the need of using robust methods in empirical practice.

5.13.4 Forecasting

We now use the three models to produce forecasts for the last 100 observa-
tions of the sample. Clearly, in ordinary forecasting practice, one tries to
forecast closer future values of the variables under examination (for quar-
terly datasets, from 1 to 4 quarters ahead; from 1 to 12 months ahead in
monthly datasets) as the forecast error grows larger with the forecast hori-
zon. Nevertheless, for illustrative purposes here we chose to estimate the
three models from observation 100 to 499 and to forecast the last 100 obser-
vations of the sample, although 100 periods ahead is quite a large forecast
horizon. The static forecast is simply the one-step ahead forecast and the dy-
namic forecasting method calculates multi-steps ahead forecasts, from 1- up
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to 100-period ahead in our example.4 In general, we expect static forecasts
to be more accurate than dynamic ones, due to the shorter forecast horizon.

Figure 5.13.9 shows the results. The static forecasts track the actual
values of the series, though not very closely, in line with the rather low values
of the models’ R2. Instead, the dynamic forecasts quickly converge to the
unconditional means of the variables. This result comes from the fact that
the AR terms effect declines exponentially, while the MA effect is assumed
to be zero for all the forecast periods beyond the MA order.

5.14 Empirical examples

5.14.1 Modeling and forecasting the US federal funds
rate

The aim of this empirical application is to formulate an ARMA model suit-
able to describe the dynamics of the effective federal funds rate r in the
United States. This is a key variable from a macroeconomic and financial
point of view. Once such a specification is found, we will evaluate its fore-
casting performance through a simple out-of-sample forecasting exercise. We
have a monthly dataset spanning from January 1985 until the end of 2012.
The data are imported from the Federal Reserve Economic Data (FRED)
website. The observations are averages of daily figures and have not been
seasonally adjusted. We will first analyze the time frame going from 1985
to 2002, using the period from 2003 to 2006 for an out-of-sample forecasting
exercise prior the global financial crisis. Then, we will enlarge the estima-
tion sample to the start of the crisis, i.e., in August 2007, and we will see
whether our model is able to forecast the steep fall that the federal funds
rate displayed from 2008 until the end of the sample.

Figure 5.14.1 graphs the series, showing a major change when the global
financial crisis happened and the federal funds rate was gradually taken to
almost zero in order to ease the liquidity problems of the US economy and
stimulate investment and consumption. Clearly, having this major regime
change in our sample already tells us that structural instability might have
occurred.

4More specifically, it uses the forecasted values in previous periods to construct forecasts
in future periods, hence the starting point of the forecast sample has an important bearing
on the forecasts using dynamic forecasting.
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Figure 5.13.9: Actual values and static vs dynamic forecasts for y1, y2, and
y3 in the sample 501 - 600
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Figure 5.14.1: The effective US federal funds rate 1985 - 2012

The Augmented Dickey-Fuller test can help us investigate the dynamic
properties of the series more thoroughly. Our conjecture regarding the non-
stationarity of r is confirmed in Table 5.14.1, as the ADF test for the series
in levels with the intercept (upper panel) cannot reject the null of a unit
root at conventional significance levels. When we perform the same test on
the differenced variable Dr instead (bottom panel) there is strong evidence
in favor of stationarity, suggesting that a specification in differences for r is
preferred.

Let us decide on the lag structure by looking at both the AIC and the
BIC criteria with a maximum AR/MA order of 12. While the AIC favors
an ARMA(5,2) specification, or equivalently an ARIMA(5,1,2) model for the
series r, BIC picks an ARMA(10,1) specification (see Table 5.14.2). The long
AR specification could capture either a mild seasonal component or possible
breaks in the parameters.
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ADF Test for r t-Statistic Prob.*

-0.912779 0.782
Test critical values: 1% level -3.460884

5% level -2.874868
10% level -2.573951

ADF Test for Dr t-Statistic Prob.*

-8.810261 0.000
Test critical values: 1% level -2.575813

5% level -1.942317
10% level -1.615712

Table 5.14.1: The Augmented Dickey-Fuller test

AR / MA 0 1 2
0 -0.276287 -0.514755 -0.544955
1 -0.596637 -0.611789 -0.627400
2 -0.600159 -0.622702 -0.622388
3 -0.615346 -0.621617 -0.616286
4 -0.611976 -0.615451 -0.610219
5 -0.619612 -0.615223 -0.621251
6 -0.616315 -0.612577 -0.621058
7 -0.613225 -0.607978 -0.621052
8 -0.611476 -0.607423 -0.611349
9 -0.614132 -0.610542 -0.609949
10 -0.615026 -0.650287 -0.644754
11 -0.615257 -0.645099 -0.641540
12 -0.609648 -0.640053 -0.638794

Table 5.14.2: ARIMA selection with BIC for Dr
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We started specifying an ARMA(10,2) model for Dr, and then we noticed
that some AR lags could be conveniently eliminated. At the end of this
general-to-specific specification procedure we ended up with a parsimonious
ARMA(5,2) model reported in Table 5.14.3.

Autocorrelation Partial Correlation AC  PAC
1 -0.016 -0.0162 0.005 0.0053 -0.014 -0.0144 0.064 0.0645 0.040 0.0426 0.035 0.0367 0.000 0.0038 -0.044 -0.0479 0.049 0.04410 0.020 0.01611 0.011 0.00712 0.021 0.027

Figure 5.14.2: Correlogram of residuals from ARMA(5,2) for Dr

The model results in a good statistical fit: the adjusted R2 is about
26%, quite high for a specification in differences of a financial variable. The
specification also passes most diagnostic tests, as shown in Figure 5.14.2 and
Table 5.14.4. Although the residuals display some relevant outliers in the
period around 1986, their correlogram looks clean, and the serial correlation
LM test supports this intuition. Some signs of neglected heteroskedasticity
emerge from both the White and the ARCH tests. A specification with
dummy variables at the beginning of the sample does not improve the overall
performance of the model though.
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Figure 5.14.3: The actual values of r against the forecasted series. The upper
panel presents dynamic forecasts or multi-steps ahead, while the lower one
presenets static or one-step ahead forecast, for the period 2003 - 2006
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Variable Coefficient Std. Error t-Statistic Prob.

AR(1) 0.169824 0.063523 2.673423 0.008
AR(2) -0.799708 0.043098 -18.55554 0.000
AR(3) 0.515466 0.076887 6.704226 0.000
AR(5) 0.205128 0.066405 3.089048 0.002
MA(1) 0.262565 0.013437 19.54028 0.000
MA(2) 0.976636 0.009565 102.1080 0.000

R-squared 0.282454 Mean dep var -0.02995
Adjusted R-squared 0.264867 S.D. dep var 0.22866
S.E. of regression 0.196060 Akaike IC -0.39263
Sum squared resid 7.841698 Schwarz IC -0.29700
Log likelihood 47.22639 Hannan-Quinn -0.35397
DW stat 2.004751

Table 5.14.3: Paraneter estimates ARMA(5,2) model for Dr

Breusch-Godfrey
Serial Correlation LM Test:
F-statistic 0.090390 F(2,202) 0.913
Obs*R-squared 0.187771 Chi-Sq(2) 0.910
Heteroskedasticity Test: ARCH
F-statistic 35.80092 F(1,207) 0.000
Obs*R-squared 30.81699 Chi-Sq(1) 0.000
Heteroskedasticity Test: White
F-statistic 4.645695 F(21,188) 0.000
Obs*R-squared 71.74515 Chi-Sq(21) 0.000

Table 5.14.4: Diagnostic tests on the residuals of ARMA(5,2) model for Dr

We now want to produce one-step ahead forecasts for r in the period 2003
- 2006. The first option is to construct forecasts for Dr and then cumulate
them with the starting value for r, namely,

r̂T+1 = rT + D̂rT+1.

When we use this method, we add to the forecast series the suffix “dif-
ferences,” in order to clarify that the forecast for rT+1 has been obtained
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indirectly from the model specified in differences.

As an alternative, we can specify a model for the level of the interest rate r
and produce a forecast for rT+1 directly. Which model is suitable to represent
r in levels? As we saw previously, the unit root test indicated that there was
evidence for non-stationarity, and the correlogram showed a very persistent
AR type of behavior. It turns out that an AR(11) specification, with many
non-significant intermediate lags removed, is able to capture almost all the
variability of the series. From the estimation output in Table 5.14.5, we note
the very high R2, which is not surprising for a specification for the levels
of an I(1) variable, and a Durbin-Watson statistic close to 2. The latter
statistic is not reliable in the case of dynamic models but the diagnostic tests
on the residuals reported in Table 5.14.6 confirm the likely correctly specified
dynamics, though there remain some problems of heteroskedasticity as in the
case of the specification in differences.

Variable Coefficient Std. Error t-Statistic Prob.

AR(1) 1.410725 0.065970 21.38418 0.000
AR(2) -0.385824 0.071123 -5.424708 0.000
AR(11) -0.028306 0.011827 -2.393426 0.017

R-squared 0.989310 Mean dep var 5.51282
Adjusted R-squared 0.989204 S.D. dep var 1.92831
S.E. of regression 0.200362 Akaike IC -0.36285
Sum squared resid 8.109257 Schwarz IC -0.31422
Log likelihood 40.19299 Hannan-Quinn -0.34318
DW stat 2.004220

Table 5.14.5: Parameter estimates restricted AR(11) model for r

We can now compare the forecasting performance of the models specified
in differences and in levels. Figure 5.14.3 shows the results of this forecasting
exercise by graphing the actual values of r against the two forecasted series in
the period 2003-2006: in the upper panel the forecasts are dynamic or multi-
steps ahead, while in the lower panel they are static or one-step ahead. Table
5.14.7 complements the analysis by showing the standard forecast evaluation
criteria, the RMSFE and the MAFE, for the one-step ahead forecasts.

As we can see, the forecasts from the two models are quite similar, even
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Breusch-Godfrey
Serial Correlation LM Test:
F-statistic 0.660035 F(2,200) 0.518
Obs*R-squared 1.344200 Chi-Sq(2) 0.510
Heteroskedasticity Test: ARCH
F-statistic 26.24542 F(1,202) 0.000
Obs*R-squared 23.45749 Chi-Sq(1) 0.000
Heteroskedasticity Test: White
F-statistic 11.92362 F(6,198) 0.000
Obs*R-squared 54.41108 Chi-Sq(6) 0.000

Table 5.14.6: Diagnostic tests on the residuals of AR(11) model for r

RMSFE MAFE
Levels 0.0868 0.0637
Differences 0.1075 0.0834

Table 5.14.7: Forecast evaluations for the one-step ahead forecasts

if naturally in the dynamic case they are not capable at all of capturing the
increase of the federal funds rate that started in 2004. More precisely, for
the one-step ahead predictions, the forecasts from the model in levels yield
a RMSFE of 0.09 while for the model in differences the value is 0.11. The
MAFE is also slightly lower for the specification in levels.

The crisis period

The one-step predictive capacity of the above-selected models appear rea-
sonable for the 2003 - 2006 period. Will it be any different if we enlarge our
estimation sample and we forecast the financial crisis period?

Tables 5.14.8 and 5.14.9 clearly show that the models’ fit remains quite
similar also using the enlarged estimation sample. For the forecasting per-
formance, Figure 5.14.4 and Table 5.14.10 report detailed forecast evaluation
criteria. The quality of the dynamic predictions is lower now, but this was
an expected result since from 2008 onward the US federal fund rate has
reached the zero lower bound. Structural instability might have worsened
also the short-term performance of our ARMA specifications. Nevertheless,
both the specification in levels and that in difference yield similar results,
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with the one-step ahead forecasts remaining quite precise. The RMSFE is
higher than that for the period 2003 - 2006, but the MAFE is comparable
and the specification in levels remains slightly better.

Variable Coefficient Std. Error t-Statistic Prob.

AR(1) 0.309924 0.179822 1.723511 0.086
AR(2) -0.529328 0.201804 -2.622974 0.009
AR(3) 0.385577 0.096964 3.976501 0.000
AR(5) 0.227198 0.056587 4.015022 0.000
MA(1) 0.099835 0.180357 0.553539 0.580
MA(2) 0.613386 0.175845 3.488216 0.000

R-squared 0.290327 Mean dep var -0.00856
Adjusted R-squared 0.276627 S.D. dep var 0.21258
S.E. of regression 0.180808 Akaike IC -0.56037
Sum squared resid 8.467142 Schwarz IC -0.47932
Log likelihood 80.24991 Hannan-Quinn -0.52781
DW stat 2.007645

Table 5.14.8: Parameter estimates ARMA(5,2) for Dr with enlarged sample

Variable Coefficient Std. Error t-Statistic Prob.

AR(1) 1.417957 0.058500 24.23864 0.000
AR(2) -0.388422 0.063316 -6.134685 0.000
AR(11) -0.032273 0.010137 -3.183665 0.001

R-squared 0.992941 Mean dep var 4.97984
Adjusted R-squared 0.992886 S.D. dep var 2.15119
S.E. of regression 0.181445 Akaike IC -0.56425
Sum squared resid 8.461069 Schwarz IC -0.52316
Log likelihood 76.35278 Hannan-Quinn -0.54773
DW stat 2.009223

Table 5.14.9: Parameter estimates AR(11) model for r with enlarged sample
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Figure 5.14.4: Actual vs forecasted r series, period 2007 - 2012
1-step forecasts (upper panel), h-step forecasts (lower panel)
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Figure 5.14.5: Actual vs 2-step ahead forecasted r series, period 2007 - 2012

RMSFE MAFE
Levels 0.1491 0.0694
Differences 0.1552 0.0703

Table 5.14.10: Forecast evaluations for the one-step ahead forecasts

Having evaluated already the one-step ahead and the multi-steps ahead
forecasts from this model, let us conclude our exercise by producing also
a sequence of two-steps ahead forecasts As we saw, there are two available
methods: the iterated forecasts, where we analytically compute the expres-
sion for the two-steps ahead forecast from the chosen ARMA specification,
and the direct forecast, where we lag our ARMA model one period backward
and we produce static forecasts from this model.

Figure 5.14.5 displays the actual r series and these two types of two-steps
ahead forecasts, showing that the direct method is slightly more precise in
this example.

Table 5.14.11 complements the analysis by presenting the RMSFE and
MAFE criteria of these methods, together with the previously computed
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one-step results. The RMSFE confirms the visual impression in favor of the
direct method. However, the MAFE of the iterated forecasts is slightly lower
than that of the direct forecasts.

One-step Two-steps ahead
ahead iterated direct

RMSFE 0.1552 0.3160 0.1813
MAFE 0.0703 0.1461 0.1813

Table 5.14.11: Forecast evaluation

5.14.2 Modeling and forecasting US inventories

In this second empirical application, we focus on the quarterly time series
of the change in real private inventories (rcpi), since this is a key driver of
business cycles. We consider data for the United States, for the period 1985 -
2012, downloaded again from the FRED database. Note that since the series
is given from the FRED database in percentage terms, for our calculations
it is convenient to use the original series divided by 100.

The first step is identifying a suitable ARMA model for rcpi, graphed in
Figure 5.14.6. We note that the series seems stationary around its mean while
its variance seems to increase towards the end of the sample, consequently
to the global financial crisis. We will start our exercise by simply postponing
the analysis of this very complex period, ending the estimation sample in
2006.

Let us start by computing the empirical AC and PAC functions of the
series, reported in Figure 5.14.7.

The AC shows a vaguely oscillatory pattern, and the PAC has a significant
peak at lag 1, but also pronounced albeit non-significant peaks at lags 4 and
7. Hence, an AR component is needed, and an ARMA specification is also
plausible.

The graph of the series and the value of the PAC are compatible with
stationary of the series. In order to make sure there is no unit root, we also
run the Augmented Dickey-Fuller test, shown in Figure 5.14.12.

The ADF test confirms that the series is stationary, hence we can model
the variable in levels.

Let us check now what specification the ARIMA selection routine pro-
vides. The AIC- and BIC-based results this time are qualitatively the same,
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Figure 5.14.6: The series of real changes in private inventories for the US
for 2007 - 2012

Autocorrelation Partial Correlation AC  PAC
1 0.385 0.3852 -0.083 -0.2723 -0.087 0.0754 -0.320 -0.4215 -0.152 0.2636 -0.003 -0.3037 -0.002 0.2908 0.220 -0.0939 0.089 0.01610 -0.186 -0.27211 -0.206 -0.02112 -0.165 -0.00913 -0.048 -0.05414 0.039 -0.03515 0.020 -0.112

Figure 5.14.7: Correlogram of rcpi
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t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -3.9513 0.002
Test critical values: 1% level -3.4970

5% level -2.8906
10% level -2.5823

Table 5.14.12: Augmented Dickey-Fuller test for rcpi

namely an ARMA(3,2) seems to be favored by both criteria.

We have estimated an ARMA(3,2) model and since all lags are signif-
icant in Table 5.14.13, we will continue our example with an ARMA(3,2)
specification. Figure 5.14.13 shows that the overall goodness of fit seems sat-
isfactory, and the diagnostic tests reported in Figures 5.14.8 and 5.14.9 and
Table 5.14.14 indicate no remaining serial correlation or heteroskedasticity
in the residuals.

Variable Coefficient Std. Error t-Statistic Prob.

C 0.311431 0.094479 3.296302 0.001
AR(1) 0.596686 0.113719 5.247034 0.000
AR(2) -0.712288 0.098247 -7.249984 0.000
AR(3) 0.451393 0.106507 4.238135 0.000
MA(1) -0.154118 0.034152 -4.512663 0.000
MA(2) 0.967220 0.020041 48.26132 0.000

R-squared 0.433316 Mean dep var 0.31330
Adjusted R-squared 0.388342 S.D. dep var 0.36738
S.E. of regression 0.287329 Akaike IC 0.42656
Sum squared resid 5.201136 Schwarz IC 0.62083
Log likelihood -8.71634 Hannan-Quinn 0.50363
F-statistic 9.634632 DW stat 2.01732
Prob(F-statistic) 0.000001

Table 5.14.13: Parameter estimates ARMA(3,2) model for rcpi

We will compare both one-step ahead/static and multi-steps ahead/dynamic
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Figure 5.14.8: Actual vs fitted and residuals from ARMA(3,2) for rcpi, 1986
- 2002

Autocorrelation Partial Correlation AC  PAC
1 -0.013 -0.0132 0.029 0.0293 0.054 0.0554 -0.017 -0.0175 0.015 0.0126 -0.071 -0.0737 0.054 0.0538 -0.215 -0.2149 0.064 0.07310 0.165 0.17511 0.005 0.03112 -0.031 -0.070

Figure 5.14.9: Correlogram of the residuals from ARMA(3,2)
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Breusch-Godfrey
Serial Correlation LM Test:
F-statistic 0.054017 F(2,61) 0.947
Obs*R-squared 0.121987 Chi-Sq(2) 0.940

Heteroskedasticity Test: ARCH
F-statistic 0.625783 F(1,66) 0.431
Obs*R-squared 0.638691 Chi-Sq(1) 0.424

Heteroskedasticity Test: White
F-statistic 0.443385 F(27,41) 0.985
Obs*R-squared 15.59381 Chi-Sq(27) 0.960
Scaled explained SS 19.89035 Chi-Sq(27) 0.835

Table 5.14.14: Diagnostic tests on the residuals from ARMA(3,2)

forecasts.5

The results of the exercise are shown in Figure 5.14.10, where the one-step
ahead and the h-steps ahead forecast series are graphed against the actual
values of rcpi.

The quality of these forecasts is not very high, although predicting in-
ventories is notoriously difficult. Let us also compute the two-steps ahead
forecasts from the same model, both with the iterated and the direct method,
as we did in the previous examples.

Figure 5.14.11 shows the two types of two-steps ahead forecasts against
the actual values of rcpi.

To complement the analysis, Table 5.14.15 shows the standard evaluation
criteria for the four types of forecasts we produced so far.

1-step 2-steps 2-steps 1-to-x
ahead ahead, iterated ahead, direct steps ahead

RMSFE 0.3110 0.5800 0.3152 0.3362
MAFE 0.2563 0.4393 0.2822 0.2961

Table 5.14.15: Forecast evaluation

5In the text we refer to these type of forecasts as both h-steps ahead and one-to-x
steps ahead. Indeed, the two definitions can be used interchangeably although the latter
is slightly more precise.
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Figure 5.14.10: The one-step ahead and the h-step ahead forecast series
against the actual for rcpi, 1986 - 2002

The iterated computation of the two-steps ahead forecasts yields slightly
more precise results than the direct forecasts. One-step ahead forecasts, not
surprisingly, are still the most accurate.

The crisis period

We now assess whether an ARMA model can produce reliable forecasts also
during the global financial crisis period. We now include the crisis period in
the estimation sample, which spans from 1985Q1 to 2009Q4, and we produce
forecasts for 2010Q1 - 2012Q4. We use a simple tool to take into consideration
the effects of the crisis on the previously specified ARMA model: a dummy
variable equal to 1 in the period 2007Q4 - 2009Q4 and equal to 0 elsewhere.

The previously selected ARMA model requires some additional modifica-
tions in the presence of the dummy and the extended estimation sample.The
selected most parsimonious specification is reported in Table 5.14.16. The
dummy is inserted both for the autoregressive terms and for the constant. A
seventh-order AR term had to be included, as otherwise the correlogram in-
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Figure 5.14.11: The two-step ahead forecasts against the actuals for rcpi,
1986 - 2002

dicated significant serial autocorrelation. The term is only mildly significant
if multiplied by the dummy, but it substantially improves the overall model
fit.

This specification yields an adjusted R2 = 0.67, substantially higher than
the one for the pre-crisis period (which was 0.38), with a Durbin Watson
statistic of 2.12. Figures 5.14.12 and 5.14.13, and Table 5.14.17 report the
diagnostic tests on the residuals that overall support the model specification.

1 step 2-steps 2-steps 1-to-x
ahead ahead, iterated ahead, direct steps ahead

RMSFE 0.2896 0.3329 0.4305 0.3779
MAFE 0.2250 0.2751 0.3468 0.2997

Table 5.14.18: Forecast evaluation
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Figure 5.14.12: The residuals of the estimated AR(7) model for rcpi in the
extended sample

Autocorrelation Partial Correlation AC  PAC
1 -0.070 -0.0702 0.024 0.0193 0.112 0.1154 -0.089 -0.0755 -0.106 -0.1266 0.053 0.0317 0.134 0.1748 -0.138 -0.1109 0.066 0.00410 0.105 0.09311 -0.132 -0.06412 -0.130 -0.173

Figure 5.14.13: Correlogram of the residuals of the AR(7) model for rcpi
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Coefficient Std. Error t-Statistic Prob.

C(1) 0.144059 0.048902 2.945845 0.004
C(2) -0.567565 0.410887 -1.381317 0.170
C(3) 0.465738 0.109646 4.247637 0.000
C(4) 2.409279 0.546987 4.404637 0.000
C(5) -2.893790 0.726124 -3.985256 0.000
C(6) 0.134667 0.109553 1.229241 0.222
C(7) 1.155596 0.855702 1.350465 0.180

R-squared 0.689825 Mean dep var 0.24323
Adjusted R-squared 0.668185 S.D. dep var 0.52727
S.E. of regression 0.303729 Akaike IC 0.52692
Sum squared resid 7.933607 Schwarz IC 0.71754
Log likelihood -17.50192 Hannan-Quinn 0.60389
F-statistic 31.87716 DW stat 2.12359
Prob(F-statistic) 0.000000

Table 5.14.16: Estimation results for the AR(7) model for rcpi in the esti-
mation period containing the global financial crisis.

It is interesting to note how the dummy variable affects the estimated
parameter values, since it is as if we had two separate equations

Before the crisis: rcpit = 0.14 + 0.46rcpit−1 + 0.13rcpit−2 + ε1t

(5.14.1a)

During the crisis: rcpit = −0.43 + 2.88rcpit−1 − 2.76rcpit−2

+1.15rcpit−7 + ε2t (5.14.1b)

In particular, the persistence (as measured by the sum of the AR coefficients)
increases substantially during the crisis period.

Computing forecasts with this specification hence amounts to exploiting
the information of both models (5.14.1a) and (5.14.1b) combined into a single
specification.

Figure 5.14.14 reports the one-, h-, and two-steps ahead (dynamic) fore-
casts against the actual values of rcpi, while Table 5.14.18 presents the de-
tailed forecast evaluation criteria.
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Breusch-Godfrey
Serial Correlation LM Test:
F-statistic 3.429180 F(2,84) 0.037
Obs*R-squared 7.020020 Chi-Sq(2) 0.029

Heteroskedasticity Test: ARCH
F-statistic 0.025863 F(1,90) 0.872
Obs*R-squared 0.026431 Chi-Sq(1) 0.870

Heteroskedasticity Test: White
F-statistic 0.188135 F(14,78) 0.999
Obs*R-squared 3.037834 Chi-Sq(14) 0.999
Scaled explained SS 3.384554 Chi-Sq(14) 0.998

Table 5.14.17: Diagnostic checks on the residuals from AR(7) model
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Figure 5.14.14: Forecasts from AR(7) model for rcpi against the actual 2010
- 2012
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Figure 5.14.15: Residuals of the mis-specified model which does not contain
the dummy variable accounting for the crisis

The overall impression from these results is that the forecast performance
remains overall stable after the crisis, once the model is appropriately modi-
fied to allow for parameter changes during the crisis.

Related to the previous point, it is interesting to consider what would
happen if we did not include the dummies for the financial crisis, and just pro-
duced forecasts with a simple AR(2) model (which is precisely the (5.14.1a)
part of the model we have estimated). The estimation of the model without
augmentation for the dummy produces the following equation:

rcpit = 0.048 + 0.7rcpit−1 + 0.07rcpit−2 + ε1t. (5.14.2)

The associated residuals, graphed in Figure 5.14.15, are large and negative
during the global financial crisis. Let us produce forecasts according to this
model, which neglects the peculiar effects of the crisis, and compare them
with the previously obtained results.

Figure 5.15.16 shows the forecasts obtained through model (5.14.2) against
those we obtained through the richer specification (5.14.1a)-(5.14.1b), both at
one-, two-, and one- to h-steps ahead. The two upper panels present, respec-
tively, the static (right) and the dynamic (left) forecasts for the two models
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under examination, while the two lower panels are dedicated to the two-steps
ahead forecasts both iterated (right) and direct (left). Generally, the fore-
casts from the specification without dummies underestimate rcpi more than
the competing model with dummies. This is particularly evident in the case
of the dynamic forecasts.

Hence, taking into explicit consideration parameter changes, when they
occur, is relevant to improve the forecasting performance also when using
ARMA models.

5.15 Concluding remarks

In this chapter we have discussed the specification, estimation, diagnostic
checking of ARIMA models, and then shown how they can be used for fore-
casting and to obtain permanent-transitory decompositions.

The models are overall rather simple, since they basically explain the
variable of interest using its past only. Hence, a natural question is whether
these univariate time series methods are useful in practice. The answer is
yes, for the following reasons.

First, from a theoretical perspective, any weakly stationary process (or
integrated process after proper differencing) can be written as an MA(∞),
and under mild conditions the latter can be approximated by an ARMA
model.

Second, the high persistence of several economic variables suggests that
forecasting methods that exploit the present and the past behavior of the
variable to predict the future can perform well.

Third, the specification, estimation, and forecast construction for ARIMA
models are quick and inexpensive.

Fourth, forecasts from these models can provide a benchmark for com-
parison of more elaborate forecasts or can be combined with forecasts from
other models to assess whether a lower loss function can be obtained.

Fifth, forecast failure of these models can provide an indication of the
type of information that is missing in more elaborate models, e.g., it can
suggest that a substantial amount of dynamics should be included.
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Figure 5.15.16: Forecasts not accounting for the crisis (no dummy) against
those obtained through the richer specification containing the dummy, against
the actuals

Finally, and more practically, empirically these forecasting methods tend
to perform well for a variety of variables and across different evaluation sam-
ples, when used for short-term forecasting.
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Chapter 6

VAR Models

A natural extension of the univariate time series models we have considered
in the previous chapter is the vector (multivariate) ARMA class (VARMA).
In these models, each variable depends on its own lags, on the lags of all the
other variables, on its own current and lagged errors, and on the lagged errors
for all the other variables. Hence, they provide a very general representation
for the joint dynamics of the variables under analysis.

The main advantage of these models is their generality and that they do
not impose any strong a priori restrictions on the cross-variable relationships.
The cost is that they can be very heavily parameterized, which makes esti-
mation challenging, in particular in short samples, and can reduce forecast
efficiency. As usual, these pros and cons should be evaluated in the con-
text of the specific application of interest. The seminal work by Sims (1980)
led to the widespread use of VAR models, particularly for the purpose of
macroeconomic modeling.

Since it is difficult to model and estimate a multivariate MA component,
usually only Vector Autoregressive (VAR) models are used in the empirical
literature. If the lag order of VAR models is large enough, they provide in
general a good approximation for VARMA models. Hence, in this chapter we
will focus on VAR models. We will consider the case of stationary variables,
while the possibility of some unit roots (and cointegration) will be discussed
in the next chapter.

After a succinct overview on representation, estimation and diagnostic
checking, we will consider VAR-based forecasting and impulse response anal-
ysis. For more details on VAR models see, e.g., Lütkepohl (2007) or Hamilton
(1994), and for a focus on forecasting Clements and Hendry (1998).

253
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Section 6.1 considers representations of VAR models. Section 6.2 covers
specification of VAR models, whereas estimation is discussed in section 6.3.
Diagnostic checks appear in Section 6.4, and forecasting with VAR models
is detailed in 6.5. Impulse response functions are the subject of Section 6.6
and forecast error variance decompositions the subject of 6.7. Structural
VARs with long-run restrictions are illustrated in Section 6.8. Examples
with simulated data appear in Section 6.9. Empirical examples are covered
in Section 6.10. Concluding remarks appear in the final Section 6.11

6.1 Representation

A VAR(p) model for the set of m variables y1t, . . . , ymt grouped in the m× 1
vector yt = (y1t, . . . , ymt)

′
is:

yt
m×1

= µ
m×1

+ Φ1
m×m

yt−1 + . . .+ Φpyt−p + εt
m×1

, εt ∼WN

(
0, Σ

m×m

)
. (6.1.1)

Hence, in a VAR(p) each variable depends on:

• Up to p of its own lags and up to p lags of each other variable, with
coefficients grouped in the p matrices Φ1, . . . ,Φp, each of dimension
m×m.

• Possibly an intercept, with all intercepts grouped in the m × 1 vector
µ = (µ1, . . . , µm)

′
, or other deterministic components such as seasonal

dummies or a time trend.

• An error term or residual, grouped into εt = (ε1t, . . . , εmt)
′
, such that

the error term of each equation has zero mean and is uncorrelated over
time and homoskedastic, but it can be contemporaneously correlated
with the errors in other equations; therefore, εt is a multivariate white
noise process, εt ∼WN (0,Σ), where Σ is an m×m variance covariance
matrix. In expanded notation:

E(εit) = 0 i = 1, . . . ,m

E(εitεjt−τ ) =

{
0 ∀τ, i 6= j

0 τ 6= 0, i = j
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E(εtε
′
t) =


σ11 σ12 . . . σ1m

σ12 σ22 . . . σ2m

. . . . . .
σ1m σ2m . . . σmm


Note that the total number of parameters in a VAR(p) is m (the inter-

cepts) plus m2p (the coefficients of the lagged variables) plus m(m + 1)/2
(the variances and covariances of the errors). Hence, the total number of
parameters grows very fast with the number of variables m, so that a careful
choice of the variables to be considered in the analysis is needed, generally
based on economic theory considerations.

As an example, let us consider the expanded form of a VAR(1) for three
variables, with no intercept. We have:

y1t = φ11y1t−1 + φ12y2t−1 + φ13y3t−1 + ε1t,

y2t = φ21y1t−1 + φ22y2t−1 + φ23y3t−1 + ε2t,

y3t = φ31y1t−1 + φ32y2t−1 + φ33y3t−1 + ε3t,

with ε1t

ε2t

ε3t

 ∼WN

0
0
0

 ,
σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

 .

As in the univariate case, weak stationarity is an important property for
representation and estimation. In a multivariate context, it requires that

E (yt) = c,

V ar (yt) = V0 <∞,
Cov (yt, yt+k) = Vk depends on k but not on t,

where c is now an m×1 vector and Vi an m×m matrix, i = 0, 1, . . . . Hence,
the unconditional first and second moments of the vector process yt must
exist and be stable across time.

For a VAR(p) process, weak stationarity is verified when all the roots z
of det (I − Φ1z − . . .− Φpz

p) = 0 are larger than one in absolute value, an
assumption we make in this chapter but will relax in the next.

To theoretically justify the use of VAR models, we should think of them
as approximations to VMA(∞) models, along the lines of what we have seen
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in the univariate context. More precisely, if yt is an m-dimensional weakly
stationary process, from the Wold theorem it admits the representation

yt = C(L)εt, (6.1.2)

where C(L) is anm×mmatrix polynomial in L (C(L) = I+C1L+C2L
2+. . .),

and εt is an m× 1 vector white noise process, εt ∼ WN(0,Σ) .
Under mild conditions, C(L) can be approximated by A−1(L)B(L), so

that we can rewrite (6.1.2) as

A(L)yt = B(L)εt (6.1.3)

with A(L) = I + A1L + . . . + ApL
p, B(L) = I + B0L + . . . + BqL

q. Under
slightly more stringent conditions, we can also assume that q = 0, such that
(6.1.3) becomes a VAR(p) model.

6.2 Specification of the model

The specification of a VAR model requires selecting the variables under anal-
ysis, the deterministic component, and the number of lags, p.

As we mentioned, the choice of the variables under analysis should be
driven by economic theory, related to the specific problem of interest, and
kept as limited as possible in order to avoid the curse of dimensionality,
i.e., an excessive number of parameters to be estimated. On the other hand,
modeling too few variables can generate omitted variable problems, which are
particularly relevant for structural analysis, e.g., for the consistent estimation
of the dynamic reaction of the variables to structural shocks.

The deterministic component generally includes an intercept. Additional
variables, such as seasonal dummies, other types of dummy variables to cap-
ture potential parameter breaks, and trends can also be inserted.

For the specification of the number of lagged variables, there are three
main approaches, as we have seen in the ARIMA context. First, there exist
multivariate versions of the AC and PAC, but they are rarely used. Second,
we can start with a high number of lags, and then reduce it by sequential
testing for their significance using the Wald or the LR tests. Third, we can use
multivariate versions of the information criteria (IC) that, as we have seen in
the univariate case, combine a measure of goodness of fit with a penalization
related to the number of model parameters. In this case we compute the IC
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for a range of values, j = 1, . . . , pmax, and select the number of lags that
minimizes the IC. For consistency, i.e., for the criterion to pick-up the true
lag order p0 with probability one asymptotically, we need pmax > p0 and
some conditions on the penalty function g(T ). Specifically, when T diverges,
it should be g(T ) → ∞ and g(T )/T → 0. The most common multivariate
IC are

AIC(j) = ln |Σj|+
2

T
jm2,

BIC(j) = ln |Σj|+
lnT

T
jm2, j = 1, . . . , pmax,

where AIC stands for Akaike’s information criterion and BIC for Bayesian
information criterion, also known as Schwarz information criterion, see Lütke-
pohl (2007) for more details. In the case of the AIC the penalty function
is m2, while it is m2 lnT for the BIC. Hence, it can be easily seen that the
BIC is consistent but the AIC is not. Moreover, since for T ≥ 8 the penalty
is larger for BIC than AIC, in general in empirical applications BIC will
select a lower lag order than AIC, which can be convenient in forecasting
applications, where often parsimony is convenient.

To conclude, one could use testing also to determine the deterministic
component and reduce the dimensionality of the system. For example, if
variable m is not of direct interest and its lags are not significant in any of
the other m− 1 equations, it can be dropped from the system.

6.3 Estimation

The VAR is composed by m equations, one for each of the variables under
joint analysis, linked by the correlation in the errors and the presence of the
same explanatory variables into each equation. The former feature typically
calls for a system estimation method, where all the system parameters are
jointly estimated, taking into explicit account the error correlation structure.
However, it can be shown that the latter feature justifies the use of equation
by equation OLS parameter estimation. To be more precise, let us write the
VAR(p) as follows:

yt = Bxt + εt
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where

B = (µ Φ1 . . .Φp) (m× (mp+ 1))

xt =


1
yt−1

...
yt−p

 (mp+ 1)× 1.

Therefore:

yt|yt−1, . . . , yt−p ∼ N(Bxt,Σ)

and the log-likelihood function is:

L(y1, . . . , yT ;B,Σ) = −Tm
2

log (2π)− T

2
log |Σ−1|

−1

2

T∑
t=1

[
(yt −Bxt)Σ−1(yt −Bxt)

]
The resulting ML estimator of the VAR model parameters is:

B̂ =

[
T∑
t=1

ytx
′
t

][
T∑
t=1

xtx
′
t

]

This means that the ML estimator of the VAR parameters is equivalent
to equation by equation OLS estimators. Consequently, OLS equation by
equation is consistent and asymptotically efficient assuming that all the as-
sumptions underlying the VAR are valid.

The OLS estimators are also asymptotically normal distributed (with the
usual

√
T rate of convergence), so that inference on the parameters can be

conducted by standard Wald-type statistics, which will have χ2 asymptotic
distributions. Likelihood ratio testing procedures provide an alternative. The
OLS estimator for each separate equation is also equivalent to the system
(multivariate) estimator because a VAR is a Seemingly Unrelated Regression
System (SUR) with the same regressors for each equation in the system, see
Judge, Hill, Griffiths, Lütkepohl, and Lee (1988, pp. 450 - 451) for further
details.
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The ML estimator for the innovation variance is:

Σ̂ = (1/T )
T∑
t=1

ε̂tε̂
′
t

where ε̂t = yt - B̂xt. The ML estimator of the variance is consistent, but
it is biased in small samples, so it is common to use the variance estimator
adjusted by the number of degrees of freedom:

Σ̃ =
T

(T −mp−m)
Σ̂

There also happens to be a connection with HAC estimators (recall section
2.3) for the estimation of long-run variances worth discussing at this point.
Andrews and Monahan (1992) suggest to remove some dependence via a
finite order VAR to compute the long-run variance of a stationary process.
Let us denote by Vy the long-run variance of y. We first fit a VAR(k) (often
with k = 1), compute the residuals

ε̂t = yt − µ̂+
k∑
i=1

Φ̂iyt−i,

and compute Γ̂j,T = (1/(T − j)
∑T

t=j+1 ε̂tε̂
′
t−j. Then we estimate V̂ε using the

HAC estimator appearing in (2.3.2) to compute

V̂y =

[
yt − µ̂−

k∑
i=1

Φ̂iyt−i

]−1

V̂ε

[
yt − µ̂−

k∑
i=1

Φ̂iyt−i

]−1

Hence, the Andrews and Monahan procedure relies on a VAR model to first
pre-whiten a stationary series and compute a HAC estimator using the resid-
uals (which are not necessarily white noise as typically a small number of
lags is used – even only one lag). The above formula consists of so-called re-

coloring the output of the HAC estimator V̂ε to obtain the desired estimator
V̂y.

Finally, it is worth making parenthetically some observations about esti-
mating the VAR parameters of VARMA models, leaving the MA parameters
unspecified, except for the order q. First, in a VARMA model, xt is no
longer a valid instrument for the estimation of the VAR parameters in B
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since lagged, say yt−1 are correlated with the MA process determining εt.
However, assuming q known, yt−q−k, k ≥ 1 are valid instruments, and there-
fore we can estimate via instrumental variables (cf. Section 2.7)

B̃ =

[
T∑
t=1

ytz
′
t

][
T∑
t=1

xtz
′
t

]
where the instrument set is

zt =


1

yt−q−1

yt−q−2
...

yt−q−p

 .

See Stoica, Söderström, and Friedlander (1985) and Hansen, Heaton, and
Ogaki (1988) for further details.

6.4 Diagnostic checks

As mentioned in the previous chapters, before using a model for forecasting or
policy analysis, it is important to assess whether its underlying assumptions
are supported by the data. In particular, we have assumed that the errors are
(multivariate) white noise, namely, uncorrelated and homoskedastic. These
properties can be tested equation by equation, using the testing procedures
we have briefly discussed in the context of the linear dynamic model.

As an alternative, there exist multivariate versions of the statistics for no
serial correlation and homoskedasticity (and possibly normality) in the resid-
uals, which also consider the cross-linkages across the model errors. Specifi-
cally, there exist multivariate versions of the LM (Breusch-Godfrey) test for
no correlation, of the White test for homoskedasticity, and of the Jarque-
Bera test for normality. We refer again to Lütkepohl (2007) for derivations
and formulas.

From a forecasting point of view, parameter stability is particularly im-
portant (both in- and out-of-sample). We can again use techniques con-
sidered in the context of the linear regression model to assess equation by
equation whether the parameters are stable. For example, we can consider
recursively estimated parameters and confidence intervals, or we can conduct
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Chow tests in the case where the break dates are known (whose multivariate
versions can also be derived).

Finally, and again as in the univariate case, if the assumptions are rejected
we may want to reconsider the model specification, e.g., by increasing the
lag length, including additional (possibly dummy) variables, changing the
specification of the deterministic component, or modifying the estimation
sample, in order to obtain a model whose underlying assumptions are more
supported by the data.

6.5 Forecasting

The optimal forecast in the MSFE sense for a VAR(p) is obtained as a simple
extension of the formula for the univariate case:

ŷT+h = Φ1ŷT+h−1 + . . .ΦpŷT+h−p (6.5.1)

where ŷT+h−j = yT+h−j for h − j ≤ 0, possibly adding the intercept µ or
any other proper deterministic component present in the model. Hence,
to compute the forecast for ŷT+h, we calculate ŷT+1, use it to obtain ŷT+2

and keep iterating until we obtain ŷT+h. This approach is usually defined
“iterated.”

As an example, if y is VAR(1),

ŷT+1 = AyT ,

ŷT+2 = AŷT+1 = A2yT ,

. . .

ŷT+h = AŷT+h−1 = AhyT .

The direct forecasting method presented in the previous chapter provides
an alternative forecast for yT+h. In the VAR(p) context, the direct model
takes the form

yt = A1yt−h + . . .+ Apyt−h−p + ut,

with forecast

ỹT+h = A1yT + . . .+ ApyT−p. (6.5.2)

Under correct specification, ŷT+h is more efficient than ỹT+h. However, in the
presence of model mis-specifications, ỹT+h can be more robust than ŷT+h.
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In the context of forecasting, it is relevant to introduce the notion of
Granger non-causality. Given a VAR written in the form:[

a11 (L) a12 (L)
a21 (L) a22 (L)

] [
yt
xt

]
=

[
εyt
εxt

]
, (6.5.3)

xt does not Granger-cause yt if a12 (L) = 0, that is yt does not depend on the
lags of xt. Similarly, yt does not Granger-cause xt if a21 (L) = 0. Note that
this notion of causality is only related to whether a given variable, or a set
of them, improves the forecasts of another variable. Since the variables can
be contemporaneously correlated through the errors, it is possible to have
causality even in the presence of Granger non-causality.

From 6.1.2, the MA(∞) representation of yt, we can also write the optimal
forecast as

ŷT+h =
∞∑
j=0

Cj+hεT−j, (6.5.4)

with associated forecast error

eT+h =
h−1∑
j=0

CjεT+h−j. (6.5.5)

Hence, the variance covariance matrix of the forecast error is

V (eT+h) = Σ + C1ΣC ′1 + . . .+ Ch−1ΣC ′h−1.

The elements on the diagonal of V (eT+h) contain the variances of the
forecast errors for each specific variable, V (e1T+h),. . . ,V (emT+h). These el-
ements, under the additional assumption of normal errors, can be used to
construct interval forecasts for each variable at a given level α. Specifically,
the interval forecast for variable ŷjT+h, j = 1, . . . ,m, takes the form[

ŷjT+h − cα/2
√
V (ejT+h), ŷjT+h + cα/2

√
V (ejT+h)

]
, (6.5.6)

where cα/2 is the proper critical value from the standard normal distribution.
From equation (6.5.5), it also follows that for h2 > h1 one has V (h2) >

V (h1), in the sense that V (h2) - V (h1) is a positive definite matrix. As in
the univariate case, it can be shown that this ranking is no longer necessarily
true with estimated parameters.
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The formula for the optimal forecast in (6.5.4) can be rearranged into

ŷT+h = ChεT +
∞∑
j=0

Cj+h+1εT−1−j = ŷT+h|T−1 + ChεT ,

and using (6.5.5) gives

ŷT+h = ŷT+h|T−1 + Ch(yT − ŷT |T−1)︸ ︷︷ ︸
forecast error

. (6.5.7)

In words, the updating formula in (6.5.7) indicates that the optimal forecast
for period T + h made in period T can be obtained by summing the optimal
forecast for T +h made in the previous period (T−1) and the one-step ahead
forecast error made in forecasting yT in period T − 1.

When the parameters are estimated, the expression for the forecast error
variance must be modified to take into account parameter estimation uncer-
tainty. Lütkepohl (2007, Chapter 3) presents a detailed derivation and the
proper formulas which are very complex from a notational point of view.

To conclude, a usual problem with VAR models is overparameterization,
which yields very good in-sample fit but bad out-sample forecasts. Several
procedures have been proposed to alleviate this problem, based on – using
the Bayesian paradigm – either a priori restrictions on the parameters or a
different estimation method. We will revisit this issue in Chapter 8.

6.6 Impulse response functions

As we discussed, a stationary VAR for the m variables grouped in the vector
yt can be written in MA(∞) form as

yt = Φ−1 (L) εt = Θ (L) εt, εt ∼WN (0,Σ) . (6.6.1)

Since Σ is positive definite, there exists a non-singular matrix P such that

PΣP ′ = I. (6.6.2)

We can therefore rewrite equation (6.6.1) as

yt = Θ (L)P−1Pεt = Ψ (L) vt, (6.6.3)

vt = Pεt,

E (vt) = 0, E (vtv
′
t) = PΣP ′ = I.
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Equation (6.6.3) is the MA(∞) representation of the model

PΦ (L) yt = vt, (6.6.4)

which is typically known as a Structural VAR (SVAR), as there are contem-
poraneous relationships among the variables because of the P matrix. The
orthogonal errors vt are usually interpreted as structural (economic) shocks,
e.g., demand or supply shocks.

It is interesting to compute how the variables under analysis react to the
structural shocks. We can write

Ψ (L) = P−1 −Θ1P
−1L−Θ2P

−1L2 − . . . (6.6.5)

= Ψ1 −Ψ2L−Ψ3L
2 − . . .

A shock is a vector with one element equal to one and all the others equal
to zero, e.g.,

v1,t+1 =


1
0
0
...
0

 , v2,t+1 =


0
1
0
...
0

 , . . . , vm,t+1 =


0
0
0
...
1

 . (6.6.6)

The non-zero elements can also be set to any other constant value, such as
the standard deviation of the corresponding element of εt. In fact, since the
system is linear, the size of the shock is irrelevant because the response of
the variables is just proportional to the size of the shock.

The response in period t+ i of y to a shock in period t+ 1 will be:

∂yt+1

∂vt+1

= P−1 = Ψ1, (6.6.7)

∂yt+2

∂vt+1

= −Ψ2,

∂yt+3

∂vt+1

= −Ψ3,

. . .

where, for example,

Ψ1 =


∂y1,t+1

∂v1,t+1
. . . ∂y1,t+1

∂vm,t+1

...
. . .

...
∂ym,t+1

∂v1,t+1
. . . ∂ym,t+1

∂vm,t+1

 . (6.6.8)
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The term ∂yk,t+i/∂vjt+1 is known as the impulse response in period t + i
of variable k to the shock j, with k, j = 1, . . . ,m and i = 1, 2, . . . . The
collection of all impulse responses is knows as the impulse response function
(IRF).

An important problem for the computation of the responses to structural
shocks is that the choice of the matrix P , used to map the VAR residuals
εt into the structural shocks vt, is not unique. There are many invertible
matrices P that satisfy PΣP ′ = I. As a consequence, the IRF is also not
unique.

Since Σ, the variance matrix of εt, has m(m + 1)/2 distinct elements,
this is the maximum number of unrestricted elements in P . Typically, P is
chosen as a triangular matrix:

P =


p11 0 . . . 0
p12 p22 . . . 0
...

. . .

p1m p2m . . . pmm

 ,

where the elements pij are such that PΣP ′ = I. In this context, different
identification schemes are associated to a reshuffling of the rows of P , namely
to different orderings of them variables in yt. Hence, we can consider different
orderings of the variables to evaluate the sensitivity of the impulse response
function. Of course, this does not exhaust the set of alternative identification
schemes, since more general (non-triangular) forms for the P matrix are
possible.

Empirically, the elements of P are unknown and, once its form is cho-
sen, they must be estimated starting from those of Σ̂. Estimates of P are
combined with those of the other VAR parameters Φ (L) in (6.6.4) to obtain
estimates for Θ (L) and Ψ (L) in (6.6.3). The estimates for Ψ (L) correspond
to the estimated IRF. Appropriate standard errors for the IRF can also be
derived, either analytically or by means of Monte Carlo or Bootstrap meth-
ods, see e.g., Lütkepohl (2007) for details. As we will see in the empirical
examples, typically, the elements of the estimated IRF and their associated
confidence bands are reported in multi-panel graphs, showing the response
over time of each variable to each structural shock.
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An an illustration of the computation of IRF, let us assume that

yt =

 output gap
inflation

short term interest rate

 =

y1t

y2t

y3t

 .
The interaction among these three key variables is of major interest for
macroeconomists. In particular, they would like to know how these vari-
ables react to demand, supply and monetary policy shocks. Hence, we want
to identify these three structural shocks starting from the VAR residuals,
and then compute the reaction of the variables to the identified structural
shocks.

Let us assume that yt follows as VAR(1) process:

yt = A1yt−1 + εt, εt ∼WN (0,Σ)

In order to identify the structural shocks, as discussed above we assume that

vt = Pεt, PΣP ′ = I = V ar (vt) ,

with

P =

p11 0 0
p21 p22 0
p31 p32 p33

 .
It follows that

P−1 =

α11 0 0
α21 α22 0
α31 α32 α33

 (6.6.9)

=


1
p11

0 0

− 1
p11

p21
p22

1
p22

0
(p21p32−p22p31)

p11p22p33
− 1
p22

p32
p33

1
p33

 ,
vt =

v1t

v2t

v3t

 =

 p11ε1t

p21ε1t + p22ε2t

p31ε1t + p32ε2t + p33ε3t

 ,
and the SVAR can be written as

yt = A1yt−1 + P−1vt. (6.6.10)
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We interpret v1 as a demand shock, v2 as a supply shock, and v3 as a
monetary policy shock. Given the structure of the matrix P , and of P−1,
we assume that the demand shock influences all the three variables contem-
poraneously, the supply shock affects current inflation and interest rate but
the output gap only with a delay, and the monetary shock has a delayed
effect on both output gap and inflation, while the interest rate immediately
reacts. This is a reasonable pattern from an economic point of view. For-
mula (6.6.10) implies that (1) y1t is affected by α11v1t, (2) y2t is affected by
α21v1t + α22v2t, (3) y3t is affected by α31v1t + α32v2t + α33v3t. The model in
(6.6.10) can be rewritten as

Pyt = PA1yt−1 + vt, (6.6.11)

where

Pyt =

 α11y1t

α21y1t + α22y2t

α31y1t + α32y2t + α33y3t

 . (6.6.12)

Hence, another way to interpret our identification scheme is that the output
gap is only affected contemporaneously by its own shock, inflation by its
own shock plus the output gap shock, interest rate by its own shock plus the
output gap shock, and the inflation shock.

The MA(∞) representation of the model is

yt = εt + A1εt−1 + A2
1εt−2 + A3

1εt−3 + . . . = Θ (L) εt

Hence, the impulse response functions are

∂yt+i
vt

= AiP−1 = Ψi =

Ψ11 Ψ12 Ψ13

Ψ21 Ψ22 Ψ23

Ψ31 Ψ32 Ψ33

 ,
where

Ψqj,i =
∂yqt+i
vjt

, q = 1, 2, 3 j = 1, 2, 3, i = 1, 2, . . . (6.6.13)

and

v1t =

1
0
0

 , v2t =

0
1
0

 , v3t =

0
0
1

 .
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To conclude, we note that there exist more complex SVAR structures
linking VAR residuals and structural shocks, typically expressed as

Bvt = Aεt. (6.6.14)

It is again necessary to recover the parameters in the B and A matrices from
those of the variance of the VAR residuals, Σ, with

A−1BB′
(
A−1

)′
= Σ.

Therefore, we need to impose a sufficient number of a priori restrictions on A
and B to identify their remaining free parameters from those of Σ, see e.g.,
Amisano and Giannini (2012).

Both in the simple SVAR in (6.6.3) and in the more complex formulation
in (6.6.14), it is also possible to impose more restrictions than those strictly
needed to achieve identification. In these cases the SVAR is overidentified and
the overidentification restrictions can be tested, with the required underlying
estimation typically conducted with GMM methods.

6.7 Forecast error variance decomposition

We have seen before that the h-steps ahead forecast error can be written as

eT+h = εT+h + Θ1εT+h−1 + . . .+ Θh−1εT+1,

so that
V ar (eT+h) = Σ + Θ1ΣΘ′1 + . . .+ Θh−1ΣΘ′h−1.

Let us now write V ar (eT+h) as

V ar (eT+h) = P−1PΣP ′(P−1)′ + Θ1P
−1PΣP ′(P−1)′Θ′1 + (6.7.1)

+ . . .+ Θh−1P
−1PΣP ′(P−1)′Θ′h−1

= Ψ1Ψ′1 + Ψ2Ψ′2 . . .+ ΨhΨ
′
h

since PΣP ′ = I and Θi−1P
−1 = Ψi.

It follows that
Ψ2
ij,1 + Ψ2

ij,2 + . . .+ Ψ2
ij,h, (6.7.2)

represents the contribution of the innovations in the jth variable in explaining
the h-steps ahead forecast error variance for yi, i, j = 1, . . . ,m. This is the so-
called forecast error variance decomposition (FEVD). In practice, the FEVD
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tells us, for each forecast horizon, how relevant shocks to each variable are
to explain the forecast error in any other variable.

Let us consider in more detail, as an example,
V ar (e1,T+1) Cov (e1,T+1, e2,T+1) . . . Cov (e1,T+1, em,T+1)

Cov (e2,T+1, e1,T+1) V ar (e2,T+1) . . . Cov (e2,T+1, em,T+1)
...

...
. . .

...
Cov (em,T+1, e1,T+1) Cov (em,T+1, e2,T+1) . . . V ar (em,T+1)

 = Ψ1Ψ′1,

where

Ψ1 =


Ψ11 . . . Ψ1m

Ψ21 . . . Ψ2m
...

. . .
...

Ψm1 . . . Ψmm


The one-step ahead forecast error variance for the first variable in the

system can be decomposed

V ar (e1,T+1) = Ψ2
11 + Ψ2

12 + . . .+ Ψ2
1m. (6.7.3)

Similarly, for the second variable it is

V ar (e2,T+1) = Ψ2
21 + Ψ2

22 + . . .+ Ψ2
2m.

And so on for the other variables.
Going back to the example where

yt =

 output gap
inflation

short term interest rate

 ,
we have that, e.g., Ψ2

21 is the contribution of the “structural” shock 1 (demand
shock) in explaining the variance of the one-step ahead forecast error of
variable 2 (inflation), while Ψ2

22 and Ψ2
23 are the contributions of, respectively,

the supply and monetary shocks.

6.8 Structural VARs with long-run

restrictions

Identification of the structural shocks needed to compute IRF and FEVD
can be achieved using more general techniques and restrictions than those
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considered in Section 6.6. In this section, we will consider the role of as-
sumptions on the long-run behavior of some variables and/or effects of some
shocks. We illustrate the method by means of an example, where we want to
identify demand and supply shocks exploiting the generally accepted propo-
sition that demand shocks do not have long-run effects, while supply shocks
do. Blanchard and Quah (1989) explain how to identify VARs imposing
these restrictions.

We consider a bivariate VAR(1) for GDP growth and unemployment,
defined as

yt = Ayt−1 +Bvt, (6.8.1)

where vt are the structural shocks, and B = P−1 in the previous notation.
The MA representation is

yt = (I − AL)−1Bvt, (6.8.2)

from which the cumulative long-run response of y to the shocks in v is

(I − A)−1B =

[
π11 π12

π21 π22

] [
b11 b12

b21 b22

]
. (6.8.3)

The ith, jth element of this matrix captures the long-run effects of shock j on
variable i. From the variance-covariance matrix Σ we obtain 3 parameters,
so in order to identify B we need to impose one a priori restriction on its
elements. As an example, the Cholesky decomposition imposes b21 = 0.
If

yt =

[
growtht

unemploymentt

]
,

then the demand shock v1t has no long-run effects on growth if

π11b11 + π12b21 = 0. (6.8.4)

In fact, with this restriction it is

(I − AL)−1Bvt =

[
0 ∗
∗ ∗

] [
v1

v2

]
. (6.8.5)

Hence, rather than imposing b21 = 0 as with the Cholesky approach, we can
assume that b11 and b21 are linked by the linear relationship in (6.8.4).
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6.9 VAR models with simulated data

We now illustrate the use of VAR models using simulated data. Specifically,
we generate 600 observations using a bivariate VAR(1) DGP, and in order to
avoid dependence on the starting values, we discard the first 100 observations.
We will use the methods described in this chapter to specify and estimate
an appropriate VAR model, and then to provide forecasts for the two series
under analysis by using both deterministic and stochastic simulation. In the
former, the iterated approach is applied to compute the forecasts (the model
is solved forward deterministically). In the latter, bootstrapped errors are
added to the forward solution in each of a set of simulations, and the average
across all the simulations is treated as the forecast. As a final step, the
computed forecasts will be evaluated in comparison with those obtained by
an equivalent structural equation model.

The DGP is a simple bivariate model with the following specification:

yt = 1 + 0.8yt−1 + εyt (6.9.1)

xt = 1 + 0.5xt−1 + 0.6yt−1 + εxt

with

vt =

[
1 0.5
0 1

]
εt and vt

iid∼ N(0.I). (6.9.2)

The pattern of the simulated series is reported in Figure (6.9.1).

From the figure, the variables look stationary and tend to co-move. Of
course, this is not surprising given the DGP. When using actual data, we
should choose the variables under analysis based on the specific application
we are interested in, with the help of economic theory. For example, y could
be the growth rate of consumption and x of disposable income.

To specify a VAR model for y and x, we have to choose the deterministic
component and the lag length, p. To keep things simple, here we only include
the default deterministic variable, i.e., the intercept, and we focus on the
selection of the appropriate lag length.

We can start with a sufficiently long lag length (a general model) and
then we have two options to reduce it: either we use the multivariate version
of the BIC and AIC information criteria or we perform a sequence of LR tests
for the significance of the various lags, starting with testing the significance
of p versus p − 1 lags. In this example, all the information criteria and the
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Figure 6.9.1: Simulated series x and y

LR test agree on selecting p = 1, as we can see from Table 6.9.1. Let us then
try to estimate both a VAR(1) and a VAR(4) model, to assess the effects of
over-parameterization.

Tables 6.9.2 and 6.9.3 report the estimation results for the two models.
As we can see, the overall fit of the two models is quite similar, although the
information criteria slightly favor the VAR(1) even when applied for each
equation separately. Moreover, since we are in the privileged position of
knowing the true values of the structural parameters, we can definitely say
that the VAR(1) gets also closer to the actual DGP. Note also that the inverse
roots of the characteristic polynomials of the two models in Figure 6.9.2 do
not signal any problem of non-stationarity, as expected.

Let us consider diagnostic tests on the VAR(1) residuals in Tables 6.9.4
- 6.9.6. The pairwise cross-correlograms (sample autocorrelations) are not
reported here. The estimated residuals in the two VAR models for the speci-
fied number of lags look quite “clean,” never exceeding the interval of plus or
minus two times the asymptotic standard errors of the lagged correlations.
The same results are confirmed by the serial correlation LM test which in
both cases cannot reject the null of no serial correlation up to lag 12. More-
over, the multivariate version of the White heteroskedasticity test does not
find any sign of neglected residual heteroskedasticty. Finally, the multivariate
version of the normality test does not reject the hypothesis that the residuals
have a joint normal distribution (and the univariate tests are in agreement).
Hence, both VARs provide a proper representation for the variables.
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VAR Lag Order Selection Criteria

Lag LogL LR FPE AIC SC HQ

0 -1596.550 NA 9.945 7.973 7.993 7.981
1 -1120.800 944.396* 0.946* 5.620* 5.680* 5.644*
2 -1118.250 5.030 0.953 5.627 5.727 5.667
3 -1117.630 1.230 0.969 5.644 5.783 5.699
4 -1114.200 6.699 0.972 5.647 5.826 5.718
5 -1113.940 0.515 0.990 5.666 5.885 5.752
6 -1111.720 4.291 0.999 5.674 5.933 5.777
7 -1109.430 4.396 1.007 5.683 5.982 5.801
8 -1108.140 2.468 1.021 5.696 6.035 5.831
9 -1105.210 5.590 1.027 5.702 6.080 5.852
10 -1103.130 3.936 1.036 5.711 6.130 5.877
11 -1101.080 3.878 1.047 5.721 6.179 5.903
12 -1098.540 4.756 1.054 5.728 6.226 5.926

* Indicates lag order selected by the criterion. LR: sequential test (each at
5% level), FPE: final prediction error, AIC: Akaike information criterion,

SC: Schwarz, HQ: Hannan-Quinn

Table 6.9.1: Results of the lag length selection tests
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Figure 6.9.2: Inverse roots of the AR characteristic polynomial for the
VAR(1) (left panel) and the VAR(4) (right panel)
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Vector Autoregression Estimates

Y X

Y(-1) 0.790 0.597
(0.035) (0.031)

[ 22.695] [ 19.380]

X(-1) -0.047 0.523
(0.030) (0.027)
[-1.555] [ 19.429]

C 1.421 0.862
(0.242) (0.214)
[5.863] [4.022]

Standard errors in() and t-statistics in []
R-squared 0.594 0.758
Adj. R-squared 0.591 0.757
Sum sq. resids 485.316 379.840
S.E. equation 1.104 0.977
F-statistic 290.570 624.674
Log likelihood -607.258 -558.125
Akaike AIC 3.044 2.799
Schwarz BIC 3.074 2.829
Mean dep 4.972 8.014
S.D. dep 1.728 1.983
Determinant resid covariance (dof adj.) 0.932
Determinant resid covariance 0.918
Log likelihood -1120.801
Akaike information criterion 5.620
Schwarz criterion 5.680

Table 6.9.2: Estimation results of the VAR(1)

We know that a usual problem with VAR models is overparameterization,
which yields very good in-sample fit but bad out-sample forecasts: in our
example both the VAR(1) and VAR(4) do very well in terms of in-sample fit,
so we now try to assess comparatively their predictive capabilities. We use
the observations 501-600 as the forecast sample, and construct both static
(one-step ahead) and dynamic (one- to 100-steps ahead) forecasts for the two
variables y and x.

In the deterministic setting, the inputs to the model are fixed at known
values, and a single path is calculated for the output variables, using the the-
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Vector Autoregression Estimates
Y X

Y(-1) 0.839 0.648
(0.056) (0.050)

[ 14.936] [ 13.080]

Y(-2) -0.097 -0.105
(0.094) (0.083)
[-1.027] [-1.264]

Y(-3) 0.095 -0.061
(0.094) (0.083)
[ 1.004] [-0.733]

Y(-4) -0.146 0.166
(0.078) (0.069)
[-1.866] [ 2.403]

X(-1) 0.011 0.577
(0.064) (0.056)
[ 0.165] [ 10.246]

X(-2) -0.047 -0.049
(0.074) (0.065)
[-0.633] [-0.759]

X(-3) 0.112 -0.071
(0.074) (0.065)
[ 1.524] [-1.089]

X(-4) -0.036 0.024
(0.044) (0.039)
[-0.812] [ 0.606]

C 1.215 0.943
(0.309) (0.272)
[ 3.936] [ 3.467]

Standard errors in() and t-statistics in []
R-squared 0.598 0.763
Adj. R-squared 0.590 0.759
Sum sq. resids 479.443 372.030
S.E. equation 1.106 0.974
F-statistic 73.024 158.072
Log likelihood -604.816 -553.960
Akaike AIC 3.061 2.808
Schwarz BIC 3.151 2.897
Mean dep 4.972 8.014
S.D. dep 1.728 1.983
Determinant resid. covariance (dof adj.) 0.929
Determinant resid.covariance 0.888
Log likelihood -1114.202
Akaike information criterion 5.647
Schwarz criterion 5.826
Standard errors in() and t-statistics in[]

Table 6.9.3: Estimation results of the VAR(4)
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VAR residual normality tests

Component Skewness Chi-sq df Prob.

1 0.110 0.812 1 0.367
2 -0.260 4.501 1 0.034
Joint 5.313 2 0.070

Component Kurtosis Chi-sq df Prob.

1 2.911 0.133 1 0.715
2 2.806 0.631 1 0.427
Joint 0.764 2 0.682

Component Jarque-Bera df Prob.

1 0.945 2 0.623
2 5.132 2 0.077
Joint 6.077 4 0.193

Table 6.9.4: VAR(1) residual normality test

VAR heteroskedasticity tests

Joint test:
Chi-sq df Prob.
11.059 12 0.524

Individual components:

Dependent R-squared F(4,396) Prob. Chi-sq(4) Prob.

res1*res1 0.014 1.429 0.223 5.708 0.222
res2*res2 0.009 0.867 0.484 3.482 0.480
res2*res1 0.002 0.180 0.949 0.727 0.948

Table 6.9.5: VAR(1) residual heteroskedasticity test

oretical formula we have described in the previous sections. In the stochastic
environment, uncertainty is incorporated into the model by adding a random
element. To simulate the distributions of future values, the model object uses
a Monte Carlo approach, where the model is solved many times with pseudo-
random numbers substituted for the unknown errors at each repetition. As
the number of repetitions increases, we expect the mean of the empirical
distribution of future values to approach the conditional expectations of the
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VAR residual serial correlation LM tests
Lags LM-Stat Prob

1 4.470 0.346
2 1.066 0.900
3 6.659 0.155
4 0.721 0.949
5 4.546 0.337
6 1.563 0.816
7 3.588 0.465
8 5.211 0.266
9 4.231 0.376
10 2.308 0.679
11 8.047 0.090
12 1.878 0.758

Table 6.9.6: VAR(1) residual serial correlation LM tests

variables. The default settings for these Monte Carlo experiments are 1000
simulations, with innovations generated from normal random numbers. The
produced forecasts also have confidence intervals accounting for parameter
estimation uncertainty, set by default at the 95% level.

The stochastic forecasts for both y and x (static and dynamic) generated
from the VAR(1) specification are graphed in Figure 6.9.3 against the re-
spective actual values. Table 6.9.7 provides the detailed forecast evaluation
statistics for all the series.

If we consider first the one-step ahead forecasts, both the RMSFE and the
MAFE are lower for the VAR(1) specification than for the VAR(4), both for
the deterministic and the stochastic settings, though the differences are small.
The pattern is reversed for the dynamic one- to 100-step(s) ahead forecasts
(indicated by h-steps ahead in the table), but the differences remain small.
Also graphically, the VAR(1) and VAR(4) forecasts are very similar.

Do we gain and how much in terms of forecast accuracy by using a bi-
variate model for x and y instead of two separate ARMA models for the two
variables? Using the standard information criteria two parsimonious ARMA
specifications to represent x and y are the following:

xt = 7.97 + 0.73xt−1 + 0.15εt−1 + 0.09εt−2 + 0.16εt−3 (6.9.3)

R2
adj = 0.71, DW = 1.99
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Figure 6.9.3: Static one-step and dynamic h-step ahead stochastic forecasts
against the actuals, VAR(1)

yt = 4.96 + 0.77yt−1 + ut (6.9.4)

R2
adj = 0.59, DW = 1.98

We can now produce static and dynamic forecasts from the above models.
The evaluation criteria reported in Table 6.9.8, show that the accuracy gain
by using a bivariate instead of a univariate model is pretty modest, although
it is more pronounced for x than y. Indeed, the actual DGP of x contains
the interaction with y, hence we would expect that a VAR model is better
in predicting it.

Another important application of VAR models concerns the evaluation
of the impact of structural shocks, which can be done using the MA(∞)
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VAR(1)

x y

Stochastic setting

h-steps ahead one-step ahead h-steps ahead one-step ahead

RMSFE 2.482 0.975 RMSFE 1.952 1.107

MAFE 2.071 0.788 MAFE 1.643 0.890

Deterministic setting

h-steps ahead one-step ahead h-steps ahead one-step ahead

RMSFE 2.477 0.974 RMSFE 1.939 1.107

MAFE 2.063 0.788 MAFE 1.632 0.893

VAR(4)

x y

Stochastic setting

h-steps ahead one-step ahead h-steps ahead one-step ahead

RMSFE 2.473 1.003 RMSFE 1.917 1.105

MAFE 2.068 0.794 MAFE 1.617 0.896

Deterministic setting

h-steps ahead one-step ahead h-steps ahead one-step ahead

RMSFE 2.479 0.998 RMSFE 1.939 1.100

MAFE 2.068 0.789 MAFE 1.633 0.894

Table 6.9.7: Detailed forecast evaluation criteria for VAR(1) and VAR(4)

x ∼ ARMA(1,3) y ∼ AR(1)

h-steps ahead h-steps ahead
RMSFE 2.505 RMSFE 1.942
MAFE 2.107 MAFE 1.641

one-step ahead one-step ahead
RMSFE 1.471 RMSFE 1.086
MAFE 1.180 MAFE 0.883

Table 6.9.8: Forecast evaluation criteria for the ARMA models specified for
x and y
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representation of the VAR, after proper identification of the structural shocks
vt starting from the VAR residuals εt, as discussed in the previous sections.
In this example, we use the Cholesky decomposition of the variance matrix
of the VAR residuals to identify the structural shocks and then study their
dynamic transmission on the variables x and y.

Since the Cholesky decomposition is not unique, there is one for each pos-
sible ordering of the VAR variables, we have computed two sets of Impulse
response functions (IRFs): the first is obtained by ordering x first and y sec-
ond, and the other one is obtained with the inverse ordering of the variables.
The results are visible respectively in Figures 6.9.4 and 6.9.5.
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Figure 6.9.4: Impulse response functions for the VAR(1) model. Response to
Cholesky one s.d. innovations 2 s.e. The values are computed using a lower
triangular mapping matrix P

Looking at the IRFs for the VAR(1), the results are similar for both
ordering of the variables: y does not seem to respond very much to structural
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Figure 6.9.5: Impulse response functions for the VAR(1) model. Response
to Cholesky one s.d. innovations 2 s.e. The values are computed using an
upper triangular mapping matrix P

shocks coming from x, while x instead is very sensitive to shocks coming from
y. The same is true for the IRFs for the V AR(4). Furthermore, the figures
provide additional evidence that both systems are stationary, as the IRFs
tend to go to zero, as the impact of the shock vanishes after 10 periods.

Further, let us consider the variance decomposition of the two models,
which is a different method of depicting the system dynamics. The variance
decomposition splits the forecast error variance of each endogenous variable,
at different forecast horizons, into the components due to each of the shocks,
thereby providing information on their relative importance. Since the two
types of Cholesky decompositions (where either y also depends on contem-
poraneous values of x, or vice versa xt depends on yt) generate similar IRFs,
we only consider the (y, x) ordering.
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For both models, the forecast error variance decomposition of y indicates
that shocks to y itself dominate both in the short and in the long-run. Ac-
cording to the VAR(1), the effect grows in time from 83% to 85% of the
forecast error variance, while with the VAR(4) the effect is more pronounced
in the short term, 84%, and it decreases to 80% after 10 periods. The shocks
to x contribute much less in explaining y, and they behave in a specular way
with respect to the y shocks. Finally, the forecast error decomposition of x in
both figures shows that also for x its own shock dominates in the short run,
but the effects of the y shock increase over time while those of x decrease, so
that the two shocks have comparable importance at longer horizons.

6.10 Empirical examples

6.10.1 GDP growth in the Euro area

In this example we apply the VAR estimation and forecasting techniques
we saw in the theoretical sections of the chapter to study the relationship
among the GDP growth rates of three major countries in the Euro area,
namely, France, Germany and Italy, using the United States as an exoge-
nous explanatory variable. The data set contains 108 quarterly observations
from 1986Q1 to 2012Q4. The variables are the growth rates of real GDP
expressed as percentage change from the previous year (%yoy), download-
able from DATASTREAM.1 The series are all adjusted for seasonality and
labeled as g i where i = fr, ger, it, us; the dataset also contains some binary
dummy variables labeled D 19XXqx accounting for exceptional episodes in
the chosen temporal period.

As we can see from Figure 6.10.1, the three growth rates seem to be
tightly linked, suggesting a synchronized business cycle through the entire
Euro area, or at least its major economies. The gray shaded areas indicate
the recessions occurring in the United States: the one that occurred in 1991
impacted our Euro area countries only in 1992 - 3, after the break-up of the
European Monetary System (EMS), while the 2007 financial crisis arrived in
Europe with only a few quarters delay, qualifying indeed as a “global” crisis.

1Note that the GDP growth rates can be manually calculated by using the log difference
operator on the series of real GDP in levels. In this example we chose to use the (%yoy)
growth rates calculated by Oxford Economics just because they are available from the
1980s on, while the real GDP series in levels are available only from the 1990s.
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From the graph it also emerges that for the two main recessions of 1992 and
2008, Germany and Italy display more pronounced troughs than France, and
this can be due to the tight commercial links existing between the German
and Italian economies and their degree of openness.
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Figure 6.10.1: Real GDP growth rates for France, Germany, and Italy during
the period 1986Q1 - 2012Q4. The gray shaded areas indicate the NBER
recessions for the United States

Preliminary analysis on the series confirmed that g fr, g us, and g ger
can be considered as stationary at the 5% confidence level, while g it cannot,
and it is probably characterized by a unit root. However, from an economic
point of view, it is surprising that the growth rate is integrated, and therefore
we will treat it anyway as stationary.

The next step of our analysis is to see whether there are common inter-
temporal dependencies among the growth rates of the three Euro area coun-
tries, using g us as an exogenous variable, due to the global importance of
the United States and the limited effects of each of the Euro area countries on
its large economy. First, we will specify suitable VAR models and estimate
them over the period 1986 - 2003, next we will evaluate their forecasting
performance from 2004 to 2006. Then, we will repeat the estimation until
2006Q4 and evaluate the forecasting performance of the model during 2007
- 2012, including the crisis period.
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VAR Lag Order Selection Criteria
Lag LogL LR FPE AIC SC HQ

0 -324.200 NA 3.034 9.623 9.721 9.662
1 -217.244 201.331 0.170 6.742 7.134* 6.898
2 -198.730 33.217* 0.129* 6.463* 7.148 6.734*
3 -193.902 8.233 0.146 6.585 7.564 6.973
4 -183.820 16.310 0.143 6.553 7.827 7.058

* Indicates lag order selected by the criterion. LR: sequential test (each at
5% level), FPE: final prediction error, AIC: Akaike information criterion,

SC: Schwarz, HQ: Hannan-Quinn

Table 6.10.1: Choice of the appropriate lag length p through information
criteria

Let us start by selecting the appropriate lag length p for our VAR model.
Table 6.10.1 reports the information criteria associated with the various lags
of our VAR model. The AIC, the Hannan-Quinn criterion, the Final Pre-
diction Error (FPE), and the LR criteria all suggest p = 2. while the more
parsimonious BIC indicates p = 1. As a consequence, we will estimate two
rival VAR models with, respectively, p = 1 and p = 2, and we will evaluate
their relative performance.

Note that both models include the same set of exogenous variables, namely,
the growth rate of US GDP and the dummy variables necessary to remove
some outliers (in 1988Q1, 1993Q1, and 2000Q1). Table 6.10.2 reports the
estimation results of the VAR(1) model. VAR(2) results are not reported.
Both VARs display a good overall performance given the not so high num-
ber of observations in the sample, and in general the exogenous variables
we chose are significant. On the other hand, while in the VAR(1) model
the significance of some lagged variables is very low, the same is generally
not true for the VAR(2) model, suggesting that the former is probably mis-
specified. The same impression emerges when we look at the residuals of
the two models. Tables 6.10.3 - 6.10.5 report results from the diagnostic
tests for the VAR(1); results for the VAR(2) are not reported since they
are very similar. The residuals of both models look quite “clean,” although
from their correlograms (not shown here), it is even more evident that the
VAR(2) captures some autocorrelation that the VAR(1) does not. On the
other hand, there is no sign of heteroskedasticty or non-normality in any of
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the two models’ residuals, and this is partly due to the dummies we have
introduced. Finally, note that the inverse of the AR roots are all well within
the unit circle, supporting our choice of treating the growth rate of Italy as
stationary.

How are the variables dynamically related? We can answer this question
through the Granger causality test, and to perform it we chose to use p = 2
lags.

From Table 6.10.6, it seems that the shocks are not significantly dynami-
cally transmitted from Germany to France and Italy, while the reverse is not
true and there are cross-linkages across France and Italy.

As the Granger causality test only considers lagged relationships, in order
to better understand if there is correlation among contemporaneous shocks
in our VAR(2) model, and hence contemporaneous correlation across the
variables after conditioning on their lags, we can use an indirect method.
In the absence of cross equation correlations, the ordering of the variables
should not affect very much the behavior of the impulse response functions
obtained with a Cholesky factorization of the variance covariance matrix of
the VAR residuals. Hence, we can check whether this is the case.

We have tried two different orderings of variables to create the impulse
response functions from the estimated VAR(2). The responses are rather
similar for the two cases, here we present only results from the first order in
Figure 6.10.2. Results suggest that indeed the contemporaneous correlation is
limited, in line with economic reasoning that suggests that it takes some time
for the shocks to be transmitted across countries. The response functions also
indicate that there are positive spillovers across all countries, some of which
become significant only 2 - 3 quarters after the shock.

Which of the two estimated models (VAR(1) or VAR(2)) will perform
better from a forecasting point of view? We answer the question first for
the forecast sample, 2004 - 2006. Then, we re-estimate the models until
2006 and use the second forecast sample, spanning from 2007 to 2012, to
assess the robustness of the results and the performance of the models during
problematic times.

The stochastic one-step ahead forecasts for the period immediately before
the crisis are shown in Figure 6.10.3. The predicted series capture the overall
behavior of the actual variables, though not their smaller shifts, and this is a
common characteristic of both the deterministic and the stochastic forecast-
ing methods. The detailed forecast metrics confirm the graphical impression
that the VAR(2) is a little bit more precise in the prediction of the German
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Vector Autoregression Estimates
G (FR) G (GER) G (IT)

G FR(-1) 0.668 0.007 0.063
(0.074) (0.158) (0.135)
[ 9.064] [ 0.047] [0.470]

G GER(-1) 0.009 0.745 0.122
(0.042) (0.089) (0.076)
[0.214] [8.352] [1.606]

G IT(-1) 0.107 0.091 0.623
(0.057) (0.121) (0.104)
[1.893] [0.751] [6.008]

G US 0.172 0.105 0.099
(0.030) (0.065) (0.055)
[5.695] [1.632] [1.794]

D 1988Q1 1.068 0.838 1.213
(0.301) (0.644) (0.550)
[3.551] [1.301] [2.206]

D 1993Q1 -1.624 -2.141 -1.604
(0.310) (0.663) (0.566)
[-5.247] [-3.229] [-2.834]

D 2000Q1 0.711 0.723 1.079
(0.304) (0.651) (0.556)
[2.339] [1.110] [1.942]

Standard errors in () and t-statistics in []
R-squared 0.924 0.761 0.776
Adj. R-squared 0.917 0.739 0.755
Sum sq. resids 10.809 49.584 36.139
S.E.equation 0.411 0.880 0.751
F-statistic 129.747 33.982 37.044
Log likelihood -33.923 -88.000 -76.771
Akaike AIC 1.153 2.676 2.360
Schwarz BIC 1.376 2.899 2.583
Mean dep 2.202 1.923 1.898
S.D.dependent 1.426 1.722 1.520
Determinant resid covariance (dof adj.) 0.066
Determinant resid covariance 0.048
Log likelihood -194.456
Akaike information criterion 6.069
Schwarz criterion 6.738

Table 6.10.2: Estimation results of the VAR(1) for the period 1986 - 2003
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Lags LM-Stat Prob

1 19.908 0.018
2 12.179 0.203
3 24.141 0.004
4 31.144 0.000
5 14.147 0.117
6 12.920 0.166
7 17.845 0.037
8 11.977 0.215
9 13.564 0.139
10 16.843 0.051
11 10.129 0.340
12 11.498 0.243

Table 6.10.3: VAR(1) residuals serial correlation LM tests

VAR Heteroskedasticity Tests:
Joint test:
Chi-sq df Prob.
72.340 66 0.277

Individual components:

Dependent R-squared F(11,59) Prob. Chi-sq(11) Prob.

res1*res1 0.113 0.684 0.748 8.031 0.711
res2*res2 0.174 1.132 0.354 12.373 0.336
res3*res3 0.132 0.812 0.628 9.339 0.591
res2*res1 0.203 1.365 0.214 14.406 0.211
res3*res1 0.130 0.804 0.636 9.252 0.599
res3*res2 0.300 2.302 0.020 21.321 0.030

Table 6.10.4: VAR(1) residuals heteroskedasticity test

and French growth rates, but not of the Italian one.

As we expected, re-estimating the two VAR models in the longer sample
1986 - 2006 and producing forecasts for the period 2007 - 2012 proves more
challenging. We present the forecasts in Figure 6.10.4.

For all the countries, both the RMSFE and the MAFE are much larger
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VAR Residual normality Tests
Component Skewness Chi-sq df Prob.

1 -0.040 0.019 1 0.890
2 0.144 0.246 1 0.620
3 -0.333 1.311 1 0.252
Joint 1.576 3.000 0.665

Component Kurtosis Chi-sq df Prob.

1 2.541 0.623 1 0.430
2 3.543 0.873 1 0.350
3 4.112 3.661 1 0.056
Joint 5.157 3.000 0.161

Component Jarque-Bera df Prob.

1 0.642 2 0.725
2 1.118 2 0.572
3 4.972 2 0.083
Joint 6.732 6 0.346

Table 6.10.5: VAR(1) Residuals normality test

Pairwise Granger Causality Tests

Null Hypothesis: Obs F-Statistic Prob.

G GER does not Granger cause G FR 70 0.605 0.549
G FR does not Granger cause G GER 4.449 0.016

G IT does not Granger cause G FR 70 6.403 0.003
G FR does not Granger cause G IT 6.275 0.003

G IT does not Granger cause G GER 70 6.511 0.003
G GER does not Granger cause G IT 0.780 0.463

Table 6.10.6: Granger causality test among the three variables using the lag
length p = 2
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Figure 6.10.2: Impulse response function from the VAR(1) model with the
ordering (g fr,g ger,g it)

than during the first evaluation sample, often more than twice as large. Cap-
turing the sharp decrease in the growth rates of the three countries’ GDP
growth is indeed quite complex, and even more sophisticated models could
not achieve this goal at the time of the crisis. However, also in this sample
the VAR(2) model yields more accurate predictions than the VAR(1) for all
countries but Italy.

6.10.2 Monetary transmission mechanism

We can now analyze through a VAR model the transmission mechanism
of monetary policy, describing how policy-induced changes in the nominal
money stock or the short-term nominal interest rate impact real variables.
In this example, we use US monthly data from 1986 until 2012.The dataset
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Figure 6.10.3: One step ahead forecasts, stochastic method, from the VAR(1)
model (upper panels) and the VAR(2) model (lower panels) in the period 2004
- 2006

contains the following six variables:

• ly: the log of the index of industrial production, as an indicator of real
activity.

• lp: the log of the index of personal consumption expenditures less food
and energy, as an indicator of inflationary pressure.

• i: the federal funds rate, as an indicator of the monetary policy stance.

• lpcm: the log of the producer price index for all commodities.

• lsmtr: the log of reserve balances of depository institutions.

• lsmnbr: the log of non-borrowed reserves of depository institutions.

We conduct an analysis along the lines of Leeper, Sims, and Zha (1996).
Hence, we consider as a starting point a VAR model with three endogenous
variables (ly, lp, i), estimated over the period January 1986 to June 2007 in
order to exclude the financial crisis period and the switch in monetary policy
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Figure 6.10.4: One-step ahead forecasts, stochastic environment, from the
VAR(1) model (lower panels) and the VAR(2) model (upper panels) in the
period 2007 - 2012

to quantitative easing, after the interest rate reached the zero lower bound.
We start by estimating a VAR model with a long lag length p = 12, and then
we use standard lag selection criteria and sequential LR tests to reduce the
number of lags.

From Table 6.10.7, the most parsimonious specification is suggested by
both the Hannan-Quinn and the BIC criterion, with p = 2. Table 6.10.8
shows the resulting estimated coefficients for the VAR(2).

The majority of the VAR(2) parameters are significant, and the overall
model fit is extremely good, which is not surprising as the variables in levels
are highly persistent. Indeed, preliminary analysis of the three time series
suggests that both ly and i are non-stationary. Furthermore, a closer look
at the model diagnostics in Figure 6.10.5 shows that the residuals display
a few outliers and therefore some non-normality problems. More in depth
tests on these residuals (not reported here) confirm the need to correct this
non-normality problem through the use of dummy variables.

In particular, dummy variables need to be created for two months, Septem-
ber and October 2001, in correspondence of the terrorist attack at the World
Trade Center in New York. Indeed the two dummy variables are signifi-
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VAR Lag Order Selection Criteria

Lag LogL LR FPE AIC SC HQ

0 28.608 NA 0.000 -0.199 -0.157 -0.182
1 2431.464 4731.205 0.000 -18.756 -18.590 -18.689
2 2480.569 95.546 0.000 -19.066 -18.777* -18.950*
3 2488.235 14.738 0.000 -19.056 -18.643 -18.890
4 2500.958 24.164 0.000 -19.085 -18.548 -18.869
5 2514.379 25.178 0.000* -19.119* -18.458 -18.853
6 2522.058 14.227 0.000 -19.109 -18.324 -18.793
7 2531.022 16.399 0.000 -19.109 -18.200 -18.743
8 2533.830 5.070 0.000 -19.061 -18.028 -18.645
9 2536.803 5.301 0.000 -19.014 -17.857 -18.549
10 2548.146 19.961* 0.000 -19.032 -17.751 -18.517
11 2550.463 4.023 0.000 -18.980 -17.576 -18.416
12 2555.384 8.432 0.000 -18.949 -17.420 -18.334

* Indicates lag order selected by the criterion. LR: sequential test (each at
5% level), FPE: final prediction error, AIC: Akaike information criterion,

SC: Schwarz, HQ: Hannan-Quinn

Table 6.10.7: Lag length criteria for VAR for (ly, lp, i)

cant for lp and i, but not for ly, and the residuals’ behavior is substantially
improved.

The outliers related to the 9/11 period have been corrected but still the
residuals show some other aberrant observations as well as some significant
spikes in the correlogram. The normality test confirms that the null has
to be rejected, and also the heteroskedasticity test signals some problems,
see Tables 6.10.10 and 6.10.11. On top of that, some of the roots of the
characteristic polynomial lie on the unit circle, and this is something that we
expected given that we did not account for the non-stationarity of at least
two of our indicators.

Despite the mentioned problems, the VAR(2) reproduces some common
stylized facts related to the monetary transmission mechanism (MTM). How-
ever, it also gives rise to a puzzle. More specifically, let us have a look at the
impulse response functions of the model up to 48 months (four years), ob-
tained using the Cholesky structural factorization. The variables are ordered
as lp, ly and i, so that price (demand) shocks can have a contemporaneous
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Vector Autoregression Estimates
LP LY I

LP(-1) 1.011 0.106 17.505
(0.062) (0.289) (10.318)
[16.387] [0.369] [1.697]

LP(-2) -0.013 -0.100 -17.779
(0.062) (0.288) (10.303)
[-0.212] [-0.348] [-1.726]

LY(-1) -0.018 0.962 8.604
(0.013) (0.062) (2.217)
[-1.322] [15.514] [3.880]

LY(-2) 0.016 0.029 -8.347
(0.013) (0.062) (2.207)
[1.223] [0.478] [-3.783]

I(-1) 0.000 0.006 1.413
(0.000) (0.002) (0.054)
[1.389] [3.803] [25.978]

I(-2) -0.000 -0.006 -0.425
(0.000) (0.002) (0.054)
[-1.189] [-4.039] [-7.807]

C 0.016 0.013 0.103
(0.003) (0.016) (0.572)
[4.647] [0.813] [0.180]

Standard errors in () and t-statistics in []
R-squared 1.000 0.999 0.993
Adj. R-squared 1.000 0.999 0.993
Sum sq. resids 0.000 0.007 8.679
S.E.equation 0.001 0.005 0.182
F-statistic 918307.100 65977.590 6367.156
Log likelihood 1451.289 1037.938 79.353
Akaike AIC -10.778 -7.694 -0.540
Schwarz BIC -10.684 -7.600 -0.446
Mean dep 4.412 4.312 5.081
S.D. dep 0.157 0.196 2.189
Determinant resid covariance(dof adj.) 0.000
Determinant resid covariance 0.000
Log likelihood 2573.232
Akaike information criterion -19.047
Schwarz criterion -18.765

Table 6.10.8: VAR(2) model estimated for (ly, lp, i)
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Vector Autoregression Estimates
LP LY I

LP(-1) 1.223 0.087 11.502
(0.056) (0.300) (10.584)
[21.665] [0.289] [1.087]

LP(-2) -0.219 -0.076 -11.732
(0.057) (0.302) (10.632)
[-3.865] [-0.250] [-1.104]

LY(-1) -0.016 0.960 8.246
(0.012) (0.062) (2.188)
[-1.404] [15.455] [3.769]

LY(-2) 0.013 0.029 -8.009
(0.012) (0.062) (2.171)
[1.091] [0.471] [-3.690]

I(-1) 0.001 0.006 1.400
(0.000) (0.002) (0.054)
[2.379] [3.647] [25.847]

I(-2) -0.001 -0.006 -0.411
(0.000) (0.002) (0.054)
[-1.760] [-3.809] [-7.602]

D0109 -0.007 -0.005 -0.495
(0.001) (0.005) (0.181)
[-7.171] [-0.936] [-2.729]

D0110 0.007 -0.003 -0.236
)0.001) )0.006) )0.199)
[7.046] [-0.612] [-1.189]

Standard errors in () and t-statistics in []
R-squared 1.000 0.999 0.993
Adj.R-squared 1.000 0.999 0.993
Sum sq. resids 0.000 0.007 8.402
S.E.equation 0.001 0.005 0.180
F-statistic 1018404.000 56453.350 5616.953
Log likelihood 1486.321 1038.217 83.696
Akaike AIC -11.032 -7.688 -0.565
Schwarz BIC -10.925 -7.581 -0.458
Mean dep 4.412 4.312 5.081
S.D. dep 0.157 0.196 2.189
Determinant resid covariance (dof adj.) 0.000
Determinant resid covariance 0.000
Log likelihood 2611.999
Akaike information criterion -19.313
Schwarz criterion -18.992

Table 6.10.9: Estimated coefficient for the VAR(2) model for (ly,lp, i) in-
cluding also dummy variables for 9/11 as exogenous
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Figure 6.10.5: Empirical correlograms of the residuals of the VAR(2) model

effect on output and interest rate, output (supply) shocks can affect contem-
poraneously the interest rate (as indeed the Federal Reserve sets i by also
looking at real and nominal indicators), and interest rate (monetary) shocks
have only a delayed effect on output and prices, since it takes some time for
both variables to adjust.

Figure 6.10.6 displays the responses of lp, ly, and i to a unitary shock to
i at time 0 (first three panels) and the response of the policy variable i to
a unitary shock to lp and ly (last two panels). Coherently with the major
findings of the MTM literature, we see that i increases after demand and
supply shocks, though the reaction to higher prices is lower than to higher
output and not statistically significant.



i
i

i
i

i
i

i
i

296 CHAPTER 6. VAR MODELS

.000

.001

.002

.003

.004

.005

5 10 15 20 25 30 35 40 45

Response of LP to I

-.003
-.002
-.001
.000
.001
.002
.003

5 10 15 20 25 30 35 40 45

Response of LY to I

.0

.1

.2

.3

.4

5 10 15 20 25 30 35 40 45

Response of I to I

-.05

.00

.05

.10

.15

.20

5 10 15 20 25 30 35 40 45

Response of I to LP

-.05

.00

.05

.10

.15

.20

5 10 15 20 25 30 35 40 45

Response of I to LY

Figure 6.10.6: MTM in the pre-crisis period: Impulse response function from
the estimated VAR(2) model

However, in the first panels we see a puzzling result: after an increase
in the interest rate (contradictory monetary shock), both prices and output
increase. These puzzling results still persist even when the number of lags is
increased as suggested by other information criteria.

The MTM literature in general has tried to solve puzzles like the ones we
obtained by including other indicators in the VAR model, so as to eliminate
a possible omitted variable bias. For example, the price puzzle we obtained
might be due to the fact that the model lacks a leading indicator for infla-
tion: for this reason we can try and add the producer price index including
commodities lpcm. On the other hand, the fact that ly was increasing with
higher interest rates could be due to the fact the federal funds rate is not
enough to capture the policy actions implemented by the Fed: the literature
has then suggested to include in MTM models also some reserve aggregates,
which the Fed can control directly.

Once again, we follow the approach of Leeper, Sims, and Zha (1996)
and add to our indicators the borrowed (lsmtr) and non-borrowed reserves
(lsmnbr).

Besides the dummies we previously employed, the analysis of the residuals
underlined the need to add also a dummy for November 2001 and one for
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VAR Residual normality Tests

Component Skewness Chi-sq df Prob.

1 0.259 2.985 1 0.084
2 -0.112 0.565 1 0.452
3 -0.176 1.389 1 0.239
Joint 4.939 3 0.176
Component Kurtosis Chi-sq df Prob.

1 3.121 0.165 1 0.685
2 4.660 30.764 1 0.000
3 7.078 185.688 1 0.000
Joint 216.618 3 0.000
Component Jarque-Bera df Prob.

1 3.150 2 0.207
2 31.329 2 0.000
3 187.077 2 0.000
Joint 221.556 6 0.000

Table 6.10.10: Diagnostic test on residuals of the VAR(2) model with dummy
variables

January 1991. The chosen lag length this time is p = 1, and the results of
the estimation are reported in Table 6.10.12.

Notwithstanding the dummies, the residuals still show some heteroskedas-
ticity and non-normality problems. On the other hand, enlarging the set of
indicators seems to at least partially solve the puzzles we previously dis-
cussed, as it emerges from Figure 6.10.7. In fact, now after a unitary in-
crease in the federal funds rate at time 0, the reaction of both price measures
is close to zero and not significant, while there is a negative and significant
effect on output. Furthermore, both types of reserves decline as we expect.
We also note that none of the responses eventually goes to zero, a further
confirmation of the presence of stochastic trends in the system, which makes
the effects of the shocks persistent. We will see in the next chapter how to
properly handle this feature.
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VAR Heteroskedasticity Tests:

Jointtest:
Chi-sq df Prob.
144.113 84 0.000

Individual components:

Dependent R-squared F(14,253) Prob. Chi-sq(14) Prob.

res1*res1 0.069 1.343 0.182 18.540 0.183
res2*res2 0.047 0.887 0.574 12.538 0.563
res3*res3 0.188 4.174 0.000 50.288 0.000
res2*res1 0.048 0.913 0.546 12.883 0.536
res3*res1 0.126 2.602 0.002 33.731 0.002
res3*res2 0.069 1.344 0.182 18.556 0.183

Table 6.10.11: VAR(2) residuals heteroskedasticity tests
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Figure 6.10.7: Impulse response function on the VAR(1) model with the en-
larged set of indicators (lpcm, lp, ly, i, lsmtr, lsmnbr)
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Vector Autoregression Estimates
LPCM LP LY I LSMTR LSMNBR

LPCM(-1) 0.969 0.001 0.004 0.523 0.188 0.033
(0.014) (0.002) (0.009) (0.371) (0.123) (0.025)
[70.946] [0.911] [0.385] [1.410] [1.529] [1.302]

LP(-1) 0.040 1.000 -0.033 -2.633 -0.325 0.021
(0.026) (0.003) (0.018) (0.719) (0.239) (0.050)
[1.514] [325.470] [-1.829] [-3.661] [-1.362] [0.421]

LY(-1) 0.013 0.000 1.009 1.380 0.050 -0.030
(0.012) (0.001) (0.008) (0.324) (0.107) (0.022)
[1.114] [0.201] [123.070] [4.265] [0.469] [-1.347]

I(-1) -3.300 7.250 -0.001 0.964 -0.004 -0.001
(0.000) (3.900) (0.000) (0.009) (0.003) (0.001)
[-0.098] [1.849] [-2.219] [104.960] [-1.440] [-1.952]

LSMTR(-1) 0.007 0.001 -0.003 -0.026 0.985 0.010
(0.002) (0.000) (0.001) (0.057) (0.019) (0.004)
[3.284] [5.604] [-1.994] [-0.445] [51.72]0 [2.501]

LSMNBR(-1) -0.014 -0.002 0.012 0.334 0.044 0.980
(0.005) (0.001) (0.004) (0.141) (0.047) (0.010)
[-2.666] [-3.263] [3.273] [2.362] [0.938] [100.710]

D0109 -0.004 -0.007 -0.005 -0.566 1.227 0.318
(0.007) (0.001) (0.005) (0.202) (0.067) (0.014)
[-0.519] [-8.038] [-1.023] [-2.807] [18.351] [22.938]

D0110 -0.030 0.005 -0.007 -0.671 -0.745 -0.189
(0.007) (0.001) (0.005) (0.205) (0.068) (0.014)
[-3.942] [5.501] [-1.444] [-3.277] [-10.959] [-13.380]

D9101 0.001 0.003 -0.005 -0.263 -0.311 -0.000
(0.007) (0.001) (0.005) (0.203) (0.067) (0.014)
[0.117] [2.883] [-0.958] [-1.294] [-4.604] [-0.029]

D0111 -0.009 0.001 -0.008 -0.432 -0.305 -0.104
(0.007) (0.001) (0.005) (0.203) (0.067) (0.014)
[-1.220] [0.587] [-1.548] [-2.134] [-4.542] [-7.462]

Standard errors in () and t-statistics in []
R-squared 0.997 1.000 0.999 0.992 0.987 0.994
Adj.R-squared 0.997 1.000 0.999 0.992 0.987 0.994
Sum sq. resids 0.014 0.000 0.007 10.416 1.147 0.049
S.E.equation 0.007 0.001 0.005 0.201 0.067 0.014
F-statistic 9823.380 100859.000 44771.000 3537.160 2188.280 4706.770
Log likelihood 943.714 1523.120 1044.470 55.611 352.355 775.555
Akaike AIC -6.942 -11.250 -7.691 -0.339 -2.545 -5.692
Schwarz BIC -6.808 -11.116 -7.558 -0.205 -2.412 -5.558
Mean dep 4.828 4.410 4.311 5.093 9.709 10.679
S.D. dep 0.134 0.158 0.197 2.195 0.574 0.174
Determinant resid covariance 0.000
Determinant resid covariance 0.000
Log likelihood 4730.441
Akaike information criterion -34.724
Schwarz criterion -33.923

Table 6.10.12: Estimated coefficients for the VAR(1) model for the enlarged
set of indicators
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6.11 Concluding remarks

VAR models are a powerful tool for forecasting using time series methods.
From a statistical theoretical point of view, they can be considered as ap-
proximations to the infinite order multivariate MA representation of weakly
stationary processes implied by the Wold theorem. From an economic point
of view, they can capture the dynamic inter-relationship across the variables,
without imposing (too many) restrictions, as often done in more structural
models. In addition, estimation, testing, and forecasting are rather easily
considered theoretically and implemented empirically.

For these reasons, VARs have indeed been used extensively, and rather
successfully. However, three main caveats should also be kept in mind, in
addition to the usual warning that a careful specification and evaluation
is required. First, typically there are many parameters in VARs, whose
precise estimation in finite samples is problematic. Hence, just a few variables
are typically modeled, which can create an omitted variable problem. This
is more relevant for structural analysis than for forecasting, but also for
forecasting relevant information can be missed. Two possible approaches
can tackle this issue: either using Bayesian rather than classical estimation
(that will be considered in Chapter 8) or using alternative specifications for
large datasets such as factor models (considered in Chapters 11 and 13).

Second, the relationships across variables can be unstable, as well as the
variance of the shocks hitting them. As we have discussed, parameter in-
stability is indeed one of the main reasons for forecast failure. In this case,
simpler univariate models can produce better forecasts, an issue to be consid-
ered in empirical applications. Pooling a set of small-scale VAR models can
help (which also addresses the omitted variable problem mentioned above). A
careful use of dummy variables can also be useful to try to model the breaks.
As an alternative, models with time-varying parameters can be adopted, as
we will discuss in Chapters 9 - 11, even though this complicates parameter
estimation and forecasting.

Finally, in this chapter we have assumed that the variables are weakly
stationary. However, as we have seen in the previous chapter, often this is
not the case as stochastic trends are important drivers of several economic
and financial variables. Hence, in the next chapter we will consider how to
generalize the VAR analysis to handle stochastic trends and unit roots in a
multivariate context.
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Chapter 7

Error Correction Models

7.1 Introduction

Integrated variables can be made stationary by differencing, as we have dis-
cussed in the context of ARIMA models. However, in a multivariate context,
there also exists the possibility that linear combinations of integrated vari-
ables are stationary, a case known as cointegration.

From an economic point of view, the presence of equilibrium relations
among the variables, e.g., between consumption and income, interest rates at
different maturities, or among money, interest rate, output and prices, justi-
fies the presence of cointegration. In this sense, the stationary (cointegration)
relationships of the integrated variable can be considered as long-run (equi-
librium) relationships among the variables. Specifications of cointegrated
processes were implicit in the so-called error correction models proposed by
Davidson, Hendry, Srba, and Yeo (1978). Cointegration was introduced in
a series of papers by Granger (1983) and Granger and Weiss (1983). Subse-
quently, Engle and Granger (1987) provided a formal development for coin-
tegration and error-correction representations.

Since equilibrium relationships must be satisfied, at least in the long-run,
the presence of cointegration implies that the changes in the variables should
react to deviations from the equilibrium in such a way to bring them back
towards the equilibrium. This type of adjustment is missing in a VAR in
the first differences of the variables only, so that the latter is mis-specified
in the presence of cointegration. As we will see, cointegration implies that a
VAR in the levels of the variables remains correctly specified, but it can be
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conveniently reparameterized in the error correction form.
In the following sections, we consider the consequences of cointegration

for modeling and forecasting. There are a number of excellent surveys on
statistical issues in integrated and cointegrated systems, including Campbell
and Perron (1991), Phillips (1988), and Watson (1994). Excellent textbook
treatments can also be found in Banerjee, Dolado, Galbraith, and Hendry
(1993) and Hamilton (1994).

The chapter starts out with Section 7.2 on spurious regressions. Cointe-
gration and error correction models are covered in section 7.3, followed by
Section 7.4 which introduces the Engle and Granger cointegration test and
Section 7.5 the Johansen cointegration test. MA representations of cointe-
grated processes appear in Section 7.6, while forecasting in the presence of
cointegration is discussed in Section 7.7. The effects of stochastic trends on
forecasts is the subject of Section 7.8 An example using simulated series ap-
pears in Section 7.9, while two empirical applications are covered in section
7.10. Section 7.11 concludes the chapter.

7.2 Spurious regressions

The time series regression models discussed so far required all variables to
be I(0), and therefore standard statistical results for the linear regression
model hold. If some or all of the variables in the regression are I(1), then
the usual statistical results may or may not hold. A case that illustrates
this issue involves a simulation design considered by Granger and Newbold
(1974). They considered two completely unrelated random walks y1t and y2t

such that:

yit = yit−1 + εit where εit ∼WN(0, 1) i = 1, 2 (7.2.1)

and we regress y1t onto y2t, namely:

y1t = β0 + β1y2t + ut

Simulation evidence reported by Granger and Newbold featured properties
that later were formalized by Phillips (1986). In particular:

• β̂1 does not converge in probability to zero but instead converges in
distribution to a non-normal random variable not necessarily centered
at zero.
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• The usual t-statistic for testing β1 = 0 diverges as T → ∞

• The usual R2 from the regression converges to unity as T → ∞

The setting was dubbed “spurious regression” by Granger and Newbold.
This is obviously problematic if we think of forecasting since we can mis-
takenly conclude that y2 has high explanatory power for y1, while in reality
the relationship is spurious. The main signal of a spurious regression is high
serial correlation in the residuals ût, which turn out to be I(1), typically
associated with high R2s and high t-statistics.

7.3 Cointegration and error correction

models

Time series regressions that include integrated variables can behave very
differently from standard regression models, as we saw in the previous section.
Estimated coefficients in VARs with integrated components, can also behave
differently than estimators in covariance stationary VARs. To discuss this,
we can write a VAR(p) in the levels of yt,

Φ (L) yt = εt, (7.3.1)

as

∆yt = −(I − Φ1 − . . .− Φp)︸ ︷︷ ︸
Π

yt−1 +Γ1∆yt−1 + . . .+Γp−1∆yt−p+1 +εt, (7.3.2)

where Γi = −(Φi+1 + . . . + Φp). We know that yt is weakly stationary if
|Φ (z) | = 0 has all the roots z outside the unit circle. In the presence
of unit roots, it is instead |Φ (1) | = 0, which also implies that Φ (1) has
reduced rank, its rank is smaller than the number of variables m. Since
Φ (1) = I − Φ1 − . . . − Φp, we have that Φ (1) = Π. Therefore, the rank
of Π in (7.3.2) is associated with the presence of unit roots (and also of
cointegration, as we will see).

If all the m variables are stationary, Π will have full rank m. In this
case, the models in (7.3.1) and (7.3.2) are identical, and we can just use the
specification in levels in (7.3.1).
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If all the m variables are integrated and not cointegrated, we have Π = 0,
and a VAR(p-1) in first differences, such as

∆yt = Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + εt, (7.3.3)

is the appropriate specification. In principle, we could still use the speci-
fication in levels in (7.3.1), since it can be shown that the OLS estimators

remain consistent so that, in large samples, Φ̂1 + . . . + Φ̂p would converge
to the identity matrix, making (7.3.1) equivalent to (7.3.3). However, the
asymptotic distribution of the OLS estimators is non-standard, which com-
plicates inference, and in finite samples there can be a loss of efficiency from
not imposing the constraint I = Φ1 + . . . + Φp. Instead, the constraint is
imposed in the VAR in differences in (7.3.3), and the OLS estimators of its
parameters have standard properties.

If the variables are integrated and cointegrated, Π has rank r, with 0 <
r < m, where r represents the number of cointegration relations, namely, the
number of independent stationary linear combinations of the m integrated
variables. In this case, we can write

Π = α
m×r
· β′
r×m

, (7.3.4)

where the matrix β contains the coefficients of the r independent stationary
combinations of the m integrated variables,

β′yt−1 ∼ I(0).

The model (7.3.2) becomes

∆yt = −αβ′yt−1 + Γ1∆yt−1 + . . .+ Γp−1∆yt−p+1 + εt, (7.3.5)

where the matrix α contains, for each equation, the loadings of the r cointe-
grating relationships β′yt−1. The model in equation (7.3.5) is called (Vector)
Error Correction Model (ECM). The term error correction is related to the
fact that if β′yt−1 is different from zero, namely the long-run equilibrium
conditions are not satisfied, then ∆yt must adjust, by an extent measured by
−α, in order to reduce the disequilibrium.

Note that in the presence of cointegration, a VAR in differences, such as
(7.3.3), is mis-specified, since it omits the information on the cointegration
relationships. In other words, it assumes by mistake that Π = 0, which
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generates an omitted variable problem. A VAR in levels, such as (7.3.1),
remains correctly specified but, at least in finite samples, it is not efficient,
since it does not impose the reduced rank restriction on Π. Hence, it is
important for modeling to understand whether the variables under analysis
are integrated and cointegrated. Unfortunately, as in the case of the unit root
tests we discussed in the previous chapter, testing for cointegration cannot
be based on standard distribution theory.

7.4 Engle and Granger cointegration test

Engle and Granger (1987) suggest the following two-stage procedure to test
for the presence of cointegration among a set of I(1) variables. First, estimate
by OLS the regression:

y1t = β2y2t + . . .+ βmymt + εt. (7.4.1)

Second, test whether εt has a unit root. If it does, there is no cointegration.
If it is does not, then the variables are cointegrated.

The critical values for the unit root test in the second step of the proce-
dure, based on the Dickey Fuller (DF) or Augmented Dickey Fuller (ADF)
procedures discussed in Chapter 5, are different from those of the standard
DF (and ADF) tests. Intuitively, we have here the additional complication
that the test is run not on εt but on the estimated residuals of the first step
regression, ε̂t. Since ε̂t are OLS residuals, their variance will be minimized,
which could bias the test toward rejecting a unit root when using the DF
critical values. Engle and Granger (1987) provided proper critical values,
using simulation based methods since the asymptotic distribution of the test
is not standard. The values are typically reported in standard econometric
software.

We discussed in Section 7.2 what happens to the OLS estimators and
standard regression statistics when the variables are not cointegrated, β2 =
0, . . . , βm = 0, but we still run the model in (7.4.1). This is a case of spurious
regression, since we can conclude by mistake that the variables y2, . . . , ym
have high explanatory power for y1, while what they are capturing is just
spurious comovement due to the independent stochastic trends driving the
variables. The main signal of a spurious regression is high serial correlation
in the residuals ε̂t, which remain I(1). Therefore, a test for cointegration can
also be helpful to avoid the danger of a spurious regression.
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The Engle and Granger (1987) test is intuitive and rather easy to apply.
However, it is not efficient and it cannot be used to determine the number of
cointegrating relationships, r.Moreover, even in the presence of cointegration,
the distribution of the OLS estimator β̂ is not standard, which complicates
inference on the cointegration parameters, i.e., on the long-run relationships
across the variables. On the efficiency issue it is worth noting that several
asymptotically efficient single equation methods have been proposed. Phillips
(1991) suggests a regression in the spectral domain, Phillips and Loretan
(1991) suggest a non-linear error-correction estimation procedure, Phillips
and Hansen (1990) suggest an instrumental regression with a correction of
the Phillips-Perron type (cf. Section 5.5), Saikkonen (1991) suggests including
leads as well as lags in the polynomials of the error correction model in order
to achieve asymptotic efficiency, and Engle and Yoo (1991) suggest a three-
step estimator starting from the static Engle-Granger estimation. From all
of those estimators it is possible to obtain simple t-values for the short-term
adjustment parameters α.

7.5 Johansen cointegration test

Johansen (1995) developed a Maximum Likelihood (ML) procedure to test
for the cointegration rank r, obtain ML estimators of α and β, and test
specific hypotheses on their parameters. In order to apply it, we need the
additional assumption that the VAR errors are normally distributed.

The procedure, implemented in several standard econometric packages,
such as EViews, sequentially tests the following hypotheses:

H0 H1

(1) r = 0 r = 1
(2) r ≤ 1 r = 2
(3) r ≤ 2 r = 3

...
(m− 1) r ≤ m− 1 r = m

If at step (1) the test does not reject H0, we set r = 0. If at step (i) the test
rejects H0, we set r = i.

Johansen suggested two statistics to be used in each step of the above se-
quential procedure, the trace test and the maximum eigenvalue test. As their
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ranking is theoretically not clear-cut, it is common in practice to compute
them both and compare their outcomes. It should also be considered that,
as in the case of the ADF test, the asymptotic distribution of the test (and
therefore the proper critical values) depend on the deterministic component
included in the model. Also in this case, when economic theory does not
suggest a specific choice, it is common to compute the cointegration statis-
tics for different specifications of the deterministic component and compare
the results. Moreover, other variables included, such as dummy variables
or exogenous regressors, can also modify the limiting distribution, though in
general this is not considered in the implementation of the Johansen’s cointe-
gration test in standard econometric packages. We refer to Johansen (1995)
for additional details.

An alternative procedure to determine the cointegrating rank can be
based on the use of information criteria, such as the multivariate AIC and
BIC criteria that we discussed in Chapter 5. The criteria should be computed
for all different values of r and possibly also for the different values of the lag
order p. Then, the cointegrating rank (and possibly the lag order) are chosen
as the minimizers of the selected information criterion, see e.g., Aznar and
Salvador (2002) for more details.

Once r is determined, we need to identify the coefficients of the cointe-
gration vectors. In fact, for any invertible r × r matrix Q, it is

π = αβ′ = αQQ−1β′ = γδ′. (7.5.1)

Therefore, the cointegration coefficients and the loadings are not uniquely
identified. To obtain identification we have to impose a priori restrictions on
the coefficients of α and/or β, similar to those used in simultaneous equation
models or in the context of IRF analysis. For example, it can be shown that
if

β′
r×m

=

[
I
r×r

: β̃

]′
, (7.5.2)

then α and β′ are exactly identified. This is a common choice but of course
other identification schemes are possible.

Having determined r and identified α and β, estimation and inference for
the VECM model parameters is standard. For example, we can conduct an
LR test with an asymptotic χ2 distribution for specific null hypotheses on
the coefficients α and β.
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7.6 MA representations of cointegrated

processes

As in the univariate case, a stationary process admits an MA(∞) represen-
tation:

∆yt = C (L) εt, (7.6.1)

and using the same steps as in the univariate Beveridge and Nelson (1981)
(BN) decomposition covered in Chapter 5, we have

yt = C (1)
t∑

j=1

εt︸ ︷︷ ︸
PCt

+ C∗ (L) εt︸ ︷︷ ︸
TCt

,

where PCt and TCt stand for, respectively, permanent and transitory com-
ponents, and it is:

C (L) = C∗ (L) (I − L) + C (1) .

Looking closer at the permanent component, the presence of cointegration
imposes constraints on C (1) . Given that β′yt ∼ I (0) , it must be that β′C (1)
=0, as stationary variables should not be influenced by stochastic trends. We
can show, that

C (1) = I − α (β′α)
−1
β′, (7.6.2)

and
In = β⊥ (α′⊥β⊥)

−1
α′⊥ + α (β′α)

−1
β′, (7.6.3)

where β⊥ and α⊥ are m× (m− r) matrices of rank m−r, such that α′⊥α = 0
and β′⊥β = 0.

Therefore,
C (1) = β⊥ (α′⊥β⊥)

−1
α′⊥,

and

PCt = β⊥ (α′⊥β⊥)
−1
α′⊥

t∑
j=1

εj. (7.6.4)

Hence, the (m-dimensional) permanent component is driven by the m − r
stochastic trends

α′⊥

t∑
j=1

εj, (7.6.5)
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common to all the variables, where r is the cointegration rank. This result
highlights the relationship between cointegration relationships and common
stochastic trends: their number must sum up to m, the total number of
variables under analysis. Therefore, if there are q cointegrating relationships
there must be only m− q common stochastic trends driving the m variables,
and viceversa. In the absence of cointegration, r = 0, there are as many
stochastic trends as variables. In the case of stationary variables, r = m,
there are no stochastic trends.

Note that we can easily estimate both the PC in (7.6.4) and the stochastic
trends in (7.6.5) from the estimated VECM parameters and residuals. In
(7.6.4) the PC is a function of cumulative residuals. Other authors suggested
permanent components that directly depend on yt. Specifically, Gonzalo and
Granger (1995) GG proposed:

PCGGt = α′⊥yt,

while Johansen (1995) J suggested:

PCJt = β′⊥yt.

In practice, the different measures of the common component are typically
similar.

To illustrate the permanent-transitory decompositions in a multivariate
context and the cointegration (common trends) relationship, let us discuss
the following example. Following the theory of permanent income, the latter
(yp) rather than current income (y) should influence consumption (c). We
can therefore write

yt = yPt + vt,

yPt = µ+ yPt−1 + εt, (7.6.6)

ct = yPt .

where vt and εt are jointly white noise.
Note that yt and ct share the same stochastic trend, yPt , therefore they

are cointegrated. In fact, yt − ct = vt ∼ I (0) .
We can rewrite the equations for yt and ct as the VAR:[

yt
ct

]
=

[
µ
µ

]
+

[
0 1
0 1

] [
yt−1

ct−1

]
+

[
wt
εt

]
,
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where wt = vt + εt, or as the Vector ECM:[
∆yt
∆ct

]
=

[
µ
µ

]
+

[
−1 1
0 0

] [
yt−1

ct−1

]
+

[
wt
εt

]
,

from which

Π =

[
−1 1
0 0

]
=

[
−1
0

] [
1 −1

]
= αβ′.

To obtain the MA representation, we recall that yt − ct = vt, so that[
∆yt
∆ct

]
=

[
µ
µ

]
+

[
1 0
0 1

] [
wt
εt

]
+

[
−1 1
0 0

] [
wt−1

εt−1

]
,

from which [
∆yt
∆ct

]
=

[
µ
µ

]
+ C (1)

[∑t
j=1wj∑t
j=1 εj

]
+ C∗ (L)

[
wt
εt

]
with C (1) = β⊥ (α′⊥β⊥)−1 α′⊥ and therefore

C (1) =

[
0 1
0 1

]
=

[
1
1

] [[
0 1

] [1
1

]]−1 [
0 1

]
,

and

PCt =

[∑t
j=1 εj∑t
j=1 εj

]
.

The stochastic trend is
∑t

j=1 εj, which is coherent with equation (7.6.6).
Using the Gonzalo - Granger definition, we have

PCGGt = α′⊥yt = ct = yPt .

For the Johansen definition, it is

PCJt = β′⊥yt = yt + ct = 2yPt + vt.

Since PCt, PCGGt, and PCJt are cointegrated (they are all driven by the same
stochastic trend

∑t
j=1 εj) there can only be temporary deviations among

them.
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7.7 Forecasting in the presence of

cointegration

For forecasting, we can use the Vector ECM representation in (7.3.5), where
r and the unknown parameters are replaced by their ML estimates. Hence,
it is

∆ŷT+h = −α̂β̂′ŷT+h−1 + Γ̂1∆̂yT+h−1 + . . .+ Γ̂p−1∆̂yT+h−p+1, (7.7.1)

for h = 1, . . . , H, where as usual forecast values on the right hand side are
replaced by actual realizations when available. Forecasts for the levels can
be obtained as

ŷT+h = yT + ∆ŷT+1 + . . .+ ∆ŷT+h. (7.7.2)

In practice, we iterate between (7.7.2) and (7.7.1) to obtain the desired h-
steps ahead forecast for either differences or levels. From (7.7.1) we forecast
∆ŷT+1, from (7.7.2) we obtain ŷT+1 using ∆ŷT+1, from (7.7.1) we forecast
∆ŷT+2 using ŷT+1 and ∆ŷT+1, from (7.7.2) we obtain ŷT+2 using ŷT+1, ∆ŷT+1

and ∆ŷT+2, etc.
Alternative forecasts for ∆yT+h could be obtained from the VAR in differ-

ences in (7.3.3). As we have seen, in the presence of cointegration, the VAR
in differences is mis-specified due to the omission of the cointegration rela-
tionships β′yt−1. Hence, forecasts from (the estimated counterpart of) the
model in (7.3.3) are suboptimal. However, in the presence of unaccounted
changes in the cointegrating vectors β or in their loadings α, the forecasts
from (7.3.3) could be more robust than those from (7.3.5). In particular, as
we will see, the ECM model in (7.3.5) constraints the long-run forecasts to
satisfy the relationship β

′
ŷT+h ∼ I(0), which is good as long as the cointe-

grating relationship still holds in period T + h.
A third option is to forecast using the (estimated counterpart of) the

VAR model in levels in (7.3.1). As we have discussed, this model is correctly
specified but its parameters are not efficiently estimated, since the cointe-
gration restrictions are not imposed. But if the sample is long enough, the
OLS estimates, which remain consistent, will anyway reflect the cointegra-
tion restrictions. Moreover, the use of (7.3.1) does not require to test for the
cointegration rank r, which can be an advantage when there is uncertainty
on the choice of the proper r.

Clements and Hendry (1998) present detailed Monte Carlo experiments
to rank the forecasts from ECMs and VARs in differences and levels, finding
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that in general the ECM forecasts should be preferred, as long as there is
not substantial model mis-specification. Hence, a comparison of the three
forecasts could be useful in a specific application, and rather simple.

7.8 The effects of stochastic trends on

forecasts

To understand the effects of the stochastic trends on the forecasts, let us
start from the MA(∞) representation in (7.6.1). Assuming εj = 0, j ≤ 0
and y0 = 0, we can rewrite (7.6.1) as

yt =
t∑
i=1

t−i∑
j=0

Cjεi

and

yT+h =
T+h∑
i=1

T+h−i∑
j=0

Cjεi = (7.8.1)

=
T∑
i=1

T+h−i∑
j=0

Cjεi +
T+h∑
i=T+1

T+h−i∑
j=0

Cjεi.

Thus,

ŷT+h = E(yT+h|yT ) =
T∑
i=1

T+h−i∑
j=0

Cjεi. (7.8.2)

Given that

lim
h→∞

T+h−i∑
j=0

Cj = C(1),

and the Cj decay rapidly, we can write

T+h−i∑
j=0

Cj ≈ C(1),

and

ŷT+h ≈ C(1)
T∑
i=1

εi,
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so that, at least for long forecast horizons h, the forecasts are driven by the
stochastic trends.

Note that

β′ŷT+h ≈ β′C(1)
T∑
i=1

εi = 0

so that the long horizon forecasts are tied together by the presence of cointe-
gration among the variables under evaluation. This feature has also impor-
tant implications for the construction of proper forecast accuracy measures,
see Christoffersen and Diebold (1998) for more details.

From (7.8.1) and (7.8.2) we have

eT+h = yT+h − ŷT+h =
T+h∑
i=T+1

T+h−i∑
j=0

Cjεi =
h∑
i=1

h−i∑
j=0

CjεT+i,

and

Var(eT+h) =
h∑
i=1

[(
h−i∑
j=0

Cj

)
Σ

(
h−i∑
j=0

C ′j

)]
.

where Σ = V ar(εt). Hence, as in the case of a unit root in a univariate
context, the variance of the forecasts for the levels grows with the forecast
horizon, while lim

h→∞
Var(eT+h)/h converges to a well defined matrix.

Finally, it can be shown that Var(β′eT+h) converges to a proper matrix
when h increases, which is not surprising since β′yt is stationary.

7.9 Example using simulated series

In this example we explain how to practically deal with cointegrated series
using a dataset of simulated data generated by an ECM. More specifically,
we generate 600 observations from the following bivariate DGP:

∆yt = ε1t, (7.9.1)

∆xt = 0.5(yt−1 + xt−1) + ε2t,[
ε1t

ε2t

]
=

[
1 0
1 1

] [
v1t

v2t

]
,

[
v1t

v2t

]
iid∼ N

([
0
0

]
,

[
1 0
0 1

])
.
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The dataset also contains two variables that follow two independent random
walk DGPs:

∆zt = v3t with v3t
iid∼ N(0, 1), (7.9.2)

∆wt = v4t with v4t
iid∼ N(0, 1). (7.9.3)

Once again, in order to avoid dependence on the starting values, the first
100 observations are discarded and not included in the estimation sample.
We will use the methods described in this chapter to specify and estimate
an appropriate ECM model, and also to illustrate what are the dangers of
ignoring common stochastic trends and estimating spurious regressions.

From Figure 7.9.1, all series show very persistent deviations from their
average values, with even a trending behavior for w and z.
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Figure 7.9.1: The four generated series in the estimation time sample 101 -
600

Let us have a look at the correlogram of these four series, and also run
standard unit roots tests both on the variables in levels and in differences.
All this information is reported in Figure 7.9.2 and Table 7.9.1 for series y;
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the other three series deliver similar results. All the AC functions do not
seem to die out even beyond lag 20, and the PAC shows a large spike at
lag one. Parallel to this, the ADF tests performed on the variables in levels
cannot reject the null of a unit root at the conventional significance levels,
while the same test confirms that they are stationary in differences (rejects
the null of a unit root in the differences).

Autocorrelation Partial Correlation AC  PAC
1 0.985 0.9852 0.971 0.0243 0.957 0.0114 0.945 0.0445 0.935 0.0526 0.923 -0.0307 0.914 0.0748 0.905 0.0189 0.896 -0.01010 0.886 -0.03911 0.876 0.01012 0.867 0.00613 0.859 0.05014 0.849 -0.06615 0.841 0.07516 0.833 -0.01817 0.823 -0.07818 0.813 0.00119 0.800 -0.09520 0.788 -0.014

Figure 7.9.2: Correlogram of y

We discussed the problems related to spurious regressions, the regression
of unrelated variables driven by independent stochastic trends, and we now
evaluate them empirically. Specifically, the z and w variables have been
created as pure random walks with no connection between each other: what
happens if we regress z onto w?

Table 7.9.2 shows that the signs of spuriousness are all present: very high
R2, extremely high t statistics, and a very low Durbin-Watson statistic.
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ADF Unit Root Test on Y

t-Stat Prob.*

ADF test statistic -1.895 0.335
Test critical values: 1% level -3.443

5% level -2.867
10% level -2.570

*MacKinnon (1996) one-sided p-values.

ADF Unit Root Test on D(Y)

t-Stat Prob.*
ADF test statistic -23.999 0.000
Test critical values: 1% level -2.570

5% level -1.941
10% level -1.616

*MacKinnon (1996) one-sided p-values.

Table 7.9.1: Results of the unit root tests for y and dy

Variable Coefficient Std. Error t-Stat Prob.

C -15.194 0.521 -29.154 0.000
W -0.782 0.020 -38.360 0.000

R-squared 0.747 Mean dep var -29.440
Adjusted R-squared 0.747 S.D. dep var 16.244
S.E. of regression 8.176 Akaike IC 7.044
Sum squared resid 33292.510 Schwarz IC 7.061
Log likelihood -1759.089 Hannan-Quinn 7.051
F-statistic 1471.515 DW stat 0.026
Prob(F-statistic) 0.000

Table 7.9.2: Results of the spurious regression of z onto w
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Figure 7.9.3: Residuals of the spurious regression
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Figure 7.9.4: First-step regression of the Engle-Granger procedure: Residuals
of the regression

The residuals are plotted in Figure 7.9.3. The residuals clearly show first
order serial correlation, with a very persistent behavior. Indeed, in Table
7.9.3 we can see that we cannot reject the null hypothesis of no cointegration
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between z and w.

Null hypothesis: Series are not cointegrated

Dependent tau-statistic Prob.* z-statistic Prob.*
Z -2.067 0.493 -7.424 0.537
W -1.923 0.569 -6.772 0.588

*MacKinnon (1996) p-values.

Table 7.9.3: Engle-Granger test on the variables w and z

Let us now analyze the other two series x and y, which have been gener-
ated according to a cointegrated DGP. First, we can investigate the properties
of the residuals of an OLS regression of y onto x and a constant. According to
the Engle and Granger (1987) approach to cointegration, finding evidence of
their stationarity is an indication that x and y are linked by a cointegrating
relationship. The residuals present some serial correlation, but to a limited
extent.

Variable Coefficient Std. Error t-Stat Prob.

C -0.073 0.119 -0.611 0.541
X 0.993 0.007 133.917 0.000

R-squared 0.973 Mean dep var -14.238
Adjusted R-squared 0.973 S.D. dep var 7.442
S.E. of regression 1.225 Akaike IC 3.247
Sum squared resid 746.757 Schwarz IC 3.264
Log likelihood -809.752 Hannan-Quinn 3.254
F-statistic 17933.640 DW stat 0.864
Prob(F-statistic) 0.000

Table 7.9.4: First-step regression of the Engle-Granger procedure: Estimated
coefficients

Looking at the ADF test on the residuals in Table 7.9.5, there is a clear
rejection of the unit root, and hence evidence for cointegration, the existence
of a stationary linear combination of x and y which qualifies as a long-run
equilibrium relationship. The estimated coefficient on x, about 0.9, is close
to the theoretical value of 1, see Table 7.9.4 (recall that the distribution of
the parameter estimators is non-standard, so that we cannot use standard
t− and F−statistics to test hypotheses on the coefficients).
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ADF Test

t-Stat Prob.*
ADF test statistic -11.693 0.000

Test critical values: 1% level -2.570
5% level -1.941
10% level -1.616

*MacKinnon (1996) one-sided p-values.

Table 7.9.5: ADF test on the residuals of the first-step regression of the
Engle-Granger procedure.

The Johansen (1995) cointegration test provides an alternative, more ef-
ficient procedure, to the two-step Engle-Granger method. It also allows to
jointly examine more than two variables, determining the total number of
cointegrating relationships. As we know from theory, the Johansen’s ap-
proach differs from the one of Engle and Granger because it is not a residual-
based test but a VAR-based one.

The results of the test are shown in Table 7.9.6, where we note that the
results are compatible with what we found previously. Both the trace and
the maximum eigenvalue tests confirm that at the 5% significance level there
is evidence for one cointegrating relationship. The estimated parameter on
x, -1.001, is also closer to the true value of -1 than what we found with the
Engle and Granger method.

Coherently with what we expect, in the equation for ∆yt the adjustment
coefficient (called cointEq1 by default) is not significant, while it has a sig-
nificant estimated coefficient close to the true value, 0.5, in the equation
for ∆xt, see Table 7.9.7. Hence, in this ECM model y is weakly exogenous
and it is plausible to restrict the adjustment vector of the entire model to
α′ = (0, 0.5). Moreover, the coefficients of the long-run relationship could
plausibly be restricted to β = (1,−1).

The new VAR will now be estimated with the required restrictions on the
adjustment coefficients and on the long-run equation, and a LR test can be
computed to measure how binding is the restriction. All of this is reported
in Table 7.9.8, and we note that in this case the restrictions are not rejected
and, clearly, they yield to perfect identification of the cointegrating vector.

Let us now apply the different definitions of common trend we have seen
in the chapter to our estimated VECM model to have an idea of what is the
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Unrestricted Cointegration Rank Test (Trace)
Hypothesized Trace 0.050
No.of CE(s) Eigen value Statistic Critical Value Prob.**
None* 0.200 111.058 12.321 0.000
Atmost 1 0.000 0.014 4.130 0.923
Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

Unrestricted Cointegration Rank Test (Maximum Eigen value)
Hypothesized Max-Eigen 0.050
No.of CE(s ) Eigen value Statistic Critical Value Prob.**
None* 0.200 111.044 11.225 0.000
Atmost 1 0.000 0.014 4.130 0.923
Max-eigen value test indicates 1 cointegrating eqn(s) at the 0.05 level.
*denotes rejection of the hypothesis at the 0.05 level.
**MacKinnon-Haug-Michelis (1999) p-values.

Unrestricted Adjustment Coefficients (alpha)

D(Y) -0.060 0.005
D(X) -0.552 0.004

Cointegrating Equations(s) Log likelihood -1432.409

Normalized cointegrating coefficients std.err.in ()

Y X
1.000 -1.001 (0.006)

Adjustment coefficients standard error in ()
D(Y) 0.056 (0.043)
D(X) 0.512 (0.057)

Table 7.9.6: Johansen cointegration test on the variables y and x

estimated permanent component. It is

1. Beveridge-Nelson’s definition

PCBN=α
′
⊥

t∑
j=1

εj = (0 α12)

[∑t
j=1 εjx∑t
j=1 εjy

]
= α12 ·

t∑
j=1

εjy (7.9.4)

2. Gonzalo-Granger’s definition

PCGG = α′⊥yt =
[
0 α12

] [xt
yt

]
= α12 · yt (7.9.5)
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Vector Error Correction Estimates
Cointegrating Eq: Coint Eq1

Y(-1) 1.000 Det resid cov (dof adj.) 1.093
Det resid cov 1.080

X(-1) -1.001 Log likelihood -1432.409
0.006 Akaike information criterion 5.785
-165.677 Schwarz criterion 5.852

Error Correction: D(Y) D(X) D(Y) D(X)

Coint Eq 1 0.056 0.512 R-squared 0.007 0.166
0.043 0.057 Adj.R-squared 0.003 0.163
1.295 9.001 Sum sq.resids 534.512 925.880

S.E.equation 1.039 1.368
D(Y(-1)) -0.087 -0.184 F-statistic 1.724 49.329

0.064 0.084 Log likelihood -724.249 -861.047
-1.363 -2.185 Akaike AIC 2.921 3.470

D(X(-1)) 0.007 0.038 Schwarz BIC 2.946 3.495
0.046 0.061 Mean dep -0.049 -0.049
0.161 0.619 S.D. dep 1.041 1.495

Table 7.9.7: Estimation results of the Vector ECM(1) model for y and x

3. Johansen’s definition

PCJ = β′⊥yt =
[
1 1

] [xt
yt

]
= xt + yt (7.9.6)

The common trend calculated according to the Beveridge-Nelson defini-
tion and the one of Gonzalo-Granger are quite similar in this example, as
t∑

j=1

εjy ' yt.

From Figure 7.9.5, GG trend and BN trend are actually very close, while
J trend is much more volatile.

To evaluate the forecasting accuracy using simulated data, we perform a
simple exercise. First, the estimation sample 101 - 500 is used to estimate
a VAR(1) in levels, a VAR(1) in differences and the VECM. Then, one-step
ahead forecasts (both stochastic and deterministic) are computed for the
window 501 - 600.

Graphical results for the deterministic forecasts are reported in Figure
7.9.6 and the forecasting diagnostics are presented in Table 7.9.9. For the
y variable, which is not affected by the cointegratiing relationship, all three
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Vector Error Correction Estimates
Cointegration Restrictions:

B(1,1)=1,B(1,2)=-1,A(1,1)=0
Chi-square(2) 1.703349
Probability 0.427
Cointegrating Eq: Coint Eq1
Y(-1) 1.000 Det resid cov(dof adj.) 1.093

Det resid cov 1.080
X(-1) -1.000 Log likelihood -1433.261

Akaike information criterion 5.788
Schwarz criterion 5.856

Error Correction: D(Y) D(X) D(Y) D(X)

Coint Eq1 0.000 0.463 R-squared 0.007 0.166
(0.000) (0.042) Adj.R-squared 0.003 0.166
[NA] [11.043] Sum sq. resids 534.508 925.873

S.E.equation 1.039 1.368
D(Y(-1)) -0.087 -0.184 F-statistic 1.726 49.331

(0.064) (0.084) Log likelihood -724.247 -861.045
[-1.364] [-2.189] Akaike AIC 2.921 3.470

D(X(-1)) 0.007 0.037 Schwarz BIC 2.946 3.495
(0.046) (0.061) Mean dep -0.049 -0.049
[0.161] [0.618] S.D. dep 1.041 1.495

Standard errors in ()&t-statistics in []

Table 7.9.8: Results of the VECM model for y and x when the restriction
a11 = 0 is imposed, together with the long-run restriction β = (1,−1)

VAR (levels) y x

Deterministic Stochastic Deterministic Stochastic

RMSFE 0.926 0.920 1.302 1.302
MAFE 0.758 0.754 1.004 1.006

VAR (differences) y x

RMSFE 0.920 0.919 1.374 1.376
MAFE 0.750 0.751 1.095 1.095

VECM y x

RMSFE 0.935 0.935 1.305 1.302
MAFE 0.767 0.767 1.002 0.998

Table 7.9.9: One-step ahead forecast metrics (deterministic and stochastic)
for the three models under examination
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Figure 7.9.5: Common trends embedded in the estimated VECM model

models yield similar RMSFE and MAE. Instead, for the x variable, the per-
formance of the VAR in differences is much worse than that of the other two
models. The VAR in levels and the ECM are comparable, as the estimation
sample is very long in this example.

7.10 Empirical examples

7.10.1 Term structure of UK interest rates

As an example of cointegrated stochastic processes, let us analyze the term
structure of interest rates, i.e., the relationship linking interest rates at dif-
ferent maturities. If the efficient market hypothesis holds (together with
the assumption of agents’ perfect rationality), interest rates and bond yields
at different maturities should all be connected by a relationship known as
the yield curve. To be more precise, the so called Expectations Hypothesis
(EH) relates the T -period interest rate, the yield to maturity on T -period
bonds, Rt, to a weighted average of expected future one-period (short-term)
interest rates rt, rt+1, . . . plus a constant term premium TPT depending on
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Figure 7.9.6: Deterministic one-step ahead forecasts for the three models un-
der examination: the VAR(1) in the upper row, the VAR(1) in differences in
the middle, and the VECM in the lower row
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the maturity only:

Rt =
1

T

T−1∑
i=0

Et[rt+i] + TPT .
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Figure 7.10.1: The four interest rates under examination in the available
sample 1985 - 2012

Campbell and Shiller (1987) show that defining the spread St = Rt − rt
and doing some algebra, St can be written as

St =
T−1∑
i=1

(1− i/T )Et (∆rt+i) + TPT (7.10.1)

Hence, if the short term rate rt is I(1), then according to equation (7.10.1)
the spread St has to be stationary. So in this case we have two I(1) variables,

Rt and rt, such that their combination St = β
[
rt Rt

]′
with

β =
[
−1 1

]
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is stationary. The vector β is the cointegrating vector.
In this example we will consider four UK interest rates, three of them

have a short-term maturity and one has a longer maturity. More specifically
we will use:

• r1t the Libor interest rate with one month maturity.

• r3t the Libor interest rate with three months maturity.

• r6t the Libor interest rate with six months maturity.

• r24t the Libor interest rate with two years (24 months) maturity.

The dataset contains monthly data on these variables from 1985 to 2012,
all retrieved from DATASTREAM. It also contains the series of the real
effective exchange rate of the British pound real ex that will be used as an
exogenous variable. From Figure 7.10.1, the interest rate series clearly show
a similar pattern, characterized by persistent deviations from the mean, so
that it is worth conducting an in depth analysis of their (possibly common)
stochastic properties.

Table 7.10.1 confirms our conjecture that, for instance, the six-month
Libor interest rate is I(1); a similar result holds for other maturities, thereby
indicating that a cointegration approach should be used.

To do so, let us start by first estimating a simple VAR model with the lag
length p chosen as to minimize one of the usual information criteria. This
part of the analysis will be carried on in a reduced estimation sample 1985 -
2002, which will allow us to use the remaining data for an ex-post forecasting
analysis.

Before actually selecting the lag length p and estimating the VAR, we
create some exogenous variables which we will include in the estimation.
Three simple 0-1 dummy variables D 1987M05, D 1988M07, and D 1992M10
account for particularly complicated periods of the English history. Another
dummy variable is d twopc assuming value 1 whenever the growth rate of
r1 exceeds the threshold value of 2%. Finally, a group of variables called
“exogenous” is created containing the mentioned dummy variables and also
the growth rate of the real effective exchange rate g re.1

1As mentioned, the proper critical values should be adjusted for the inclusion of the
exogenous variables in the model. However, for the sake of simplicity, we will instead use
the standard critical values.
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ADF Unit Root Test on R6

t-Stat Prob.*

ADF test statistic -1.522 0.521

Test critical values: 1% level -3.461
5% level -2.875
10% level -2.574

*MacKinnon (1996) one-sided p-values.

ADF Unit Root Test on D(R6)

t-Stat Prob.*

ADF test statistic -10.404 0.000

Test critical values: 1% level -2.576
5% level -1.942
10% level -1.616

*MacKinnon (1996) one-sided p-values.

Table 7.10.1: Unit root tests on one of the four interest rate (six months
maturity) under examination

As suggested by the AIC information criterion, a VAR(4) model is es-
timated, with details reported in Table 7.10.2 (we omitted lag 3 and lag 4
estimated coefficients for the sake of clearness). The in-sample performance
of the model is quite good, although we know that the extremely high R2

could be due to non-stationarity.
The roots of the characteristic polynomial and the residuals behavior

in Figure 7.10.2 indicate that the specification could be further improved.
However, for illustration, we consider it satisfactory as a starting point for
the cointegration analysis, conducted using the Johansen’s procedure.
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Vector Autoregression Estimates
R1 R3 R6 R24 R1 R3 R6 R24

R1(-1) 0.735 0.289 0.217 0.255 D 1987M05 -0.935 -0.916 -0.815 -0.706
(0.197) (0.245) (0.284) (0.310) (0.207) (0.258) (0.300) (0.327)
[ 3.740] [ 1.179] [ 0.765] [ 0.821] [-4.500] [-3.548] [-2.717] [-2.157]

R1(-2) -0.141 0.115 0.183 0.101 D 1988M07 1.048 1.124 1.0238 0.865
(0.211) (0.263) (0.305) (0.333) (0.219) (0.273) (0.317) (0.345)
[-0.669] [ 0.436] [ 0.601] [ 0.304] [ 4.788] [ 4.121] [ 3.230] [ 2.503]

R3(-1) -0.027 -0.034 -0.698 -0.811 D 1992M10 -1.126 -1.557 -1.760 -1.844
(0.389) (0.485) (0.563) (0.614) (0.223) (0.277) (0.323) (0.351)
[-0.069] [-0.071] [-1.241] [-1.320] [-5.058] [-5.616] [-5.466] [-5.248]

R3(-2) -0.035 -0.198 -0.045 0.261 D TWOPC 0.354 0.422 0.414 0.399
(0.429) (0.535) (0.621) (0.677) (0.048) (0.059) (0.069) (0.075)
[-0.080] [-0.371] [-0.073] [ 0.385] [ 7.457] [ 7.132] [ 6.028] [ 5.325]

R6(-1) 0.543 0.908 1.199 0.013 G RE -2.542 -2.858 -2.571 -2.189
(0.450) (0.560) (0.650) (0.710) (0.923) (1.150) (1.336) (1.457)
[ 1.210] [ 1.621] [ 1.843] [ 0.018] [-2.753] [-2.485] [-1.925] [-1.501]

R6(-2) 0.722 0.634 0.637 0.621
(0.529) (0.659) (0.766) (0.836) R-squared 0.997 0.995 0.992 0.990
[ 1.364 [ 0.961] [ 0.832] [ 0.743] Adj. R-sq 0.996 0.994 0.992 0.989

Sum sq. resids 7.663 11.895 16.037 19.097
R24(-1) 0.029 0.123 0.549 1.790 S.E. equation 0.200 0.250 0.290 0.316

(0.247) (0.307) (0.357) (0.389) F-statistic 2788.9 1755.6 1239.2 948.4471
[ 0.116] [ 0.400] [ 1.540] [ 4.600] Log likelihood 51.120 4.510 -27.154 -45.668

Akaike AIC -0.284 0.156 0.454 0.629
R24(-2) -0.907 -0.909 -1.121 -1.344 Schwarz BIC 0.048 0.488 0.787 0.961

(0.343) (0.427) (0.496) (0.541) Mean dep 8.301 8.350 8.357 8.426
[-2.646] [-2.127] [-2.261] [-2.483] S.D. dep 3.262 3.228 3.152 3.013

Standard errors in ( ) & t-statistics in [ ]

Table 7.10.2: Estimation results of the VAR(4) in the 1985 - 2002 estimation sample
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Figure 7.10.2: Residuals’ behavior from the estimated VAR(4)

In line with economic theory, the cointegration test finds evidence for
three cointegrating relationships (Table 7.10.3, top panel). Therefore, we
proceed with three cointegrating vectors, and we also remove the constant in
the short-run dynamics as it proves insignificant. The estimated coefficients
are reported in the bottom panel of Table 7.10.3.

Estimation output for the resulting VECM model, whose lag length is
simply set as pvecm = pvar−1 = 3, is shown in Table 7.10.4, where coefficients
for lags bigger than one are again omitted for the sake of space.

The model displays a quite good in-sample fit (being a model in first
differences), and we also note that, in line with theory, all the exogenous
variables we have included are very significant. Moreover, the residuals be-
havior is similar to that of the VAR model, with not much autocorrelation
left but some signs of heteroskedasticity and non-normality. The lower part
of Table 7.10.3 reports the normalized cointegration coefficients and loadings.
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Unrestricted Cointegration Rank Test (Maximum Eigen value)

Hypothesized Max-Eigen 0.050
No. of CE(s) Eigenvalue Statistic Crit Val Prob.**

None* 0.162 37.319 27.584 0.002
Atmost 1* 0.155 35.498 21.132 0.000
Atmost 2* 0.091 20.049 14.265 0.005
Atmost 3 0.009 1.863 3.841 0.172

Max-eigen value test indicates 3 cointegrating eqn(s) at the 0.05 level
*denotes rejection of the hypothesis at the 0.05 level
**MacKinnon, Haug, and Michelis (1999) p-values.

3 Cointegrating Equation(s): Log likelihood 805.339

Normalized cointegrating coefficients (st er in parentheses)
R1 R3 R6 R24
1.000 0.000 0.000 -1.088

(0.027)
0.000 1.000 0.000 -1.077

(0.021)
0.000 0.000 1.000 -1.050

(0.013)

Adjustment coefficients (st er in parentheses)
D(R1) -0.939 0.978 0.106

(0.352) (0.766) (0.693)
D(R3) -0.427 0.070 0.484

(0.425) (0.924) (0.836)
D(R6) -0.456 0.518 -0.171

(0.468) (1.018) (0.922)
D(R24) -0.403 0.558 -0.239

(0.497) (1.080) (0.977)

Table 7.10.3: Johansen cointegration test results on the four interest rates
under examination
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Figure 7.10.3: One-step ahead forecasts (deterministic environment) for the three models under examination:
the VAR(4) in the upper row, the VAR(3) in differences in the middle, and the VECM in the lower row
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As we did in other examples, we now estimate a rival model of the VECM,
a simple VAR in first differences, where we ignore the possibility of a com-
mon stochastic trend and we eliminate the stationarity problem by simply
differencing the variables. We can use the same lag length we used for the
VECM. The estimated parameters are similar to those of the VECM, and
so are the residuals. Which of these models, the VAR in levels, differences
and VECM, will be more accurate in a forecasting exercise? To answer this
question we have computed and assessed forecasts from 2003 to 2012.

Figure 7.10.3 shows the results of the deterministic one-step ahead fore-
casts. Table 7.10.5 reports more detailed forecast diagnostics.

VAR(lev.) r1 r3 r6 r24
Det. Sto. Det. Sto. Det. Sto. Det. Sto.

RMSFE 0.274 0.275 0.309 0.309 0.264 0.265 0.264 0.265
MAFE 0.160 0.160 0.153 0.154 0.161 0.162 0.168 0.169
VAR(diff.) r1 r3 r6 r24
RMSFE 0.276 0.276 0.289 0.289 0.265 0.266 0.265 0.266
MAFE 0.152 0.153 0.134 0.135 0.153 0.154 0.161 0.162
VECM r1 r3 r6 r24
RMSFE 0.272 0.272 0.308 0.308 0.262 0.262 0.263 0.263
MAFE 0.161 0.161 0.155 0.155 0.162 0.162 0.172 0.172

Table 7.10.5: One-step ahead forecast metrics (deterministic and stochastic)
for the three models under examination.

All models yield quite precise results, with no significant differences of per-
formance between the deterministic and stochastic environment (reminder:
the former uses theoretical iterated formulas to compute the forecasts, while
the latter draws from the residuals to also compute interval forecasts, and
returns the average forecast, which is in general quite similar to the deter-
ministic forecast). Despite all the three models being quite accurate, we note
that for all indicators but r3t the lowest RMSFEs are those pertaining to the
VECM model, which indeed is the most appropriate instrument to handle
cointegration.

A different loss function, the MAFE, provides a different ranking of mod-
els in this example, favoring the VAR in differences. As we have discussed,
the MAFE assigns a smaller weight to large forecast errors than the RMSFE.
Hence, the finding suggests that the VAR in differences sometimes produces
rather large forecast errors, while it performs rather well in the remaining
times.
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Our conclusion from this example is that it is very important to acknowl-
edge the role of modeling and cointegration in producing forecasts. In par-
ticular, in our case VAR models either in levels or in differences are generally
worst forecasters than cointegrated VECM models according to the RMSFE.
Including additional dummies, using more sophisticated estimation methods
to capture structural breaks, adding other relevant exogenous variables, as
well as imposing over-identifying theory consistent restrictions, could proba-
bly further improve the performance of the VECM model we used. We leave
this as an interesting exercise for the reader.

7.10.2 Composite coincident and leading indexes

GDP is typically considered the best proxy of the overall economic situation.
However, GDP is typically released only on a quarterly basis, often with sub-
stantial delays and major revisions in the subsequent periods. Hence, more
timely indicators with a considerable coverage of the economy have been in-
troduced, in the form of composite coincident indicators (CCIs) that combine
in various ways information from a set of economic and/or financial time se-
ries. Similarly, composite leading indicators (CLIs) aim at anticipating the
future economic conditions, see e.g., Marcellino (2006) for an overview of the
construction and use of CCIs and CLIs.

In this example, we examine a simple way to use leading and coincident
indicators for forecasting purposes. In particular, we use the Conference
Board’s Leading Economic Index (cli) and Coincident Economic Index (cci)
for the United States. All through the exercise we will use two estimation
and forecasting subsamples: first we isolate data from 1985 to 2003, and
we predict from 2004 to 2006; then we extend the estimation sample from
1985 to 2006 and we try to forecast also the crisis period, using as a forecast
sample the period 2007 - 2013.

7.10.3 Predicting coincident and leading indices in
the period before the crisis

Let us start our analysis with the first sample called “pre-crisis,” which ranges
from 1985 to 2003. The two indicators under examination are plotted in
Figure 7.10.4.
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Figure 7.10.4: The two composite indices cci and cli

The two series display an upward trend, interrupted around the two re-
cessions of the early 1990s and early 2000s. They might therefore be driven
by a (possibly common) stochastic trend, hence the need to analyze them in
more detail.

Augmented Dickey-Fuller Unit Root Test on CCI

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -0.353 0.913

Test critical values: 1% level -3.459
5% level -2.874
10% level -2.574

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Unit Root Test on D(CCI)

t-Statistic Prob.*

Augmented Dickey-Fuller test statistic -2.675 0.008
Test critical values: 1% level -2.575

5% level -1.942
10% level -1.616

*MacKinnon (1996) one-sided p-values.

Table 7.10.6: Unit root test results for cci. The results for cli are similar
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The AC function shows marked persistence and for both series the Aug-
mented Dickey-Fuller test cannot reject the null hypothesis of a unit root for
the levels, while it strongly rejects it for the series in differences (see Table
7.10.6).

Let us then start formulating a VAR model for cci and cli in levels, which
will also be the starting point for cointegration testing. Once again, we first
specify a VAR model with p =12, a suitable starting lag order for a monthly
dataset as ours, and then reduce it to a more parsimonious model by using
conventional lag length selection criteria.

As three criteria out of five, including the AIC, select the same value, p =
4, it is reasonable to specify a VAR(4) model. The standard diagnostic tests
on the residuals of this model indicate that there is not much serial correla-
tion left. Furthermore, the serial correlation LM test cannot reject the null of
no serial correlation up to lag 12. Unfortunately, the multivariate version of
the White heteroskedasticity test finds some signs of neglected heteroskedas-
ticty in the residuals and the multivariate version of the normality test also
indicates that the residuals do not have a joint normal distribution, with the
univariate tests suggesting normality for the CCI residuals but not for the
cli ones. Overall, it seems that the specification of the VAR in levels could
be improved, likely with the inclusion of a proper set of dummy variables.
However, this would complicate the cointegration analysis and therefore for
the moment we just proceed with the VAR(4). Later on, we will use an alter-
native approach, the use of rolling estimation windows, to reduce the possible
effects of unaccounted for parameter breaks on the forecasting performance
of the model.

The Johansen cointegration test performed on the group containing the
two series cci and cli shows that there is indeed evidence for one common
stochastic trend for the more realistic choices of deterministic component
given our variables (see Table 7.10.7).

Next, and according to the cointegration analysis, we specify a VECM
model with intercept but no trend in the cointegrating relationship. As we see
from the estimation results in Table 7.10.8, most of the parameters are sig-
nificant, and the adjusted R2 for both equations are quite high for a model in
differences. The error correction coefficient is negative and significant, indi-
cating that the error correction mechanism is operational, and the estimated
long-run relationship is of the type ccit = 7.92 + 1.01clit, suggesting that the
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Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend: None None Linear Linear Quadratic
Test Type No Intercept Intercept Intercept Intercept Intercept

No Trend No Trend No Trend Trend Trend
Trace 2 1 1 1 2
Max-Eig 2 1 1 1 2

*Critical values based on MacKinnon, Haug, and Michelis (1999).

Table 7.10.7: Johansen cointegration test on the two series cci and cli, based
on the previously estimated VAR(4) model and different choices of determin-
istic component

difference between the coincident and the leading index is stationary.2

A possible rival model to this VECM is a VAR model in differences, which
attempts to remove the non stationarity of the two series not by exploiting
their common stochastic trend, but simply by removing it with the first
difference transformation. From a specification point of view, the VAR in
differences is mis-specified, since it omits the error correction term. However,
from a forecasting point of view, if either the error correction term is not
strongly significant or the cointegration relationship changes over the forecast
sample, then the VAR in differences could produce more accurate forecasts
than the ECM.

This time only the BIC and the Hannan-Quinn criteria agree on the
choice of a parsimonious p = 3. Nevertheless it is reasonable to follow this
indication since the model in levels was specified with p = 4.

Also this VAR(3) model fits the data quite well for a model in differ-
ences, although again the tests performed on the residuals display almost
the same problems that were already present for the other two specifications:
uncorrelated residuals but with some remaining heteroskedasticity and non-
normality. Again, these features are likely due to some parameter changes,
but rather than modeling those explicitly we will later on evaluate whether
the forecasting performance improves when using rolling estimation, which
is more robust than recursive estimation in the presence of breaks, but less
efficient in their absence.

We are now ready to evaluate the forecasting performance of the three
rival models: the VAR(4) in levels, the VAR(3) in differences, and the VECM.

2For reasons of space we do not report here the residuals’ diagnostic for the VECM
model.
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Vector Error Correction Estimates
Cointegrating Eq: CointEq1 Error Correction: D(CCI) D(CLI)
CCI(-1) 1.000 D(CLI(-1)) 0.082 0.327

(0.029) (0.076)
CLI(1) -1.015 [2.827] [4.307]

(0.023)
[-44.58] D(CLI(-2)) 0.053 0.212

(0.030) (0.078)
C -7.922 [ 1.782] [ 2.704]

(1.722)
[-4.600] D(CLI(-3)) 0.029 0.223

(0.030) (0.078)
Error Correction: D(CCI) D(CLI) [ 0.966] [ 2.835]
CointEq1 -0.035 -0.005 R-squared 0.404 0.300

(0.005) (0.014) Adj. R-squared 0.388 0.281
[-6.448] [-0.338] Sum sq. resids 5.014 34.21

S.E. equation 0.151 0.393
D(CCI(-1)) -0.2953 -0.3590 F-statistic 24.936 15.777

(0.077) (0.200) Log likelihood 111.63 -107.29
[-3.852] [-1.793] Akaike AIC -0.918 1.002

Schwarz BIC -0.812 1.108
D(CCI(-2)) 0.005 0.084 Mean dep 0.148 0.160

(0.078) (0.205) S.D. dep 0.192 0.464
[ 0.059] [ 0.411]

Det resid cov (dof adj.) 0.003
D(CCI(-3)) 0.164 0.215 Det resid cov 0.002

(0.077) (0.201) Log likelihood 41.27
[ 2.135] [ 1.070] Akaike information criterion -0.213

Schwarz criterion 0.043
Standard errors in ( ) & t-statistics in [ ]

Table 7.10.8: VECM estimates for the series cci and cli in the 1985 - 2003
sample

In this section the forecasting sample is 2004 - 2006, excluding the very
complex period of the great financial crisis. For simplicity, we only focus on
one-step ahead forecasts.

Figure 7.10.5 reports the results of the deterministic solution for the three
models’ forecasts. We note that all the forecast series track the actual values
quite closely in this evaluation sample, although this is slightly more evident
for cci than for cli. The upward trend of the series is captured by all the
models, although not all the small fluctuations around it are predicted, and
this is especially true for the VECM model (results of the stochastic approach
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Figure 7.10.5: Deterministic forecasts for cci (left side panels) and cli (right
side panels) produced through a VAR(4) (upper panels), a VAR(3) in differ-
ences (middle panels) and a VECM (bottom panels)

are similar).
It is now interesting to check whether using rolling rather than recursive

estimation changes the accuracy of the predictions. Using rolling windows of
60 months each, we re-estimate each of the three models and in turn produce
one-step ahead forecasts. The procedure is repeated until the whole forecast
sample 2004-2006 is covered.

Figure 7.10.6 shows the results of using this procedure for the three models
under examination.

In Table 7.10.9 we have calculated the standard forecast evaluation cri-
teria for all the models and for the three types of forecasting procedures we
have used so far. It seems that in this case using the rolling forecasts does
not improve the accuracy of our predictions. On the other hand, we can see
more clearly that in the prediction of cci, the VAR model in levels and the
VECM both perform quite well and without significant performance differ-
ences (both between each other and between the stochastic and deterministic
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Figure 7.10.6: Stochastic forecasts using rolling windows of 60 months for cci
(left side panels) and cli (right side panels) produced through a VAR(4) (up-
per panels), a VAR(3) in differences (middle panels) and a VECM (bottom
panels)

environment), while the results of the VAR in differences are slightly less pre-
cise. Looking at the results for cli instead, reveals that the VAR model in
levels is more precise than the other two approaches, with the deterministic
and stochastic solution results again behaving equally well.

7.10.4 Predicting coincident and leading indices
during the financial crisis

Our goal in this section is challenging: with the three types of models we pre-
viously specified, we want to predict the marked through that our indicators
displayed during the financial crisis (see Figure 7.10.4).

The same steps we carried on in the previous section can be re-run using
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Det Stoch Rolling Det Stoch Rolling
VAR (levels) cci cli
RMSFE 0.265 0.264 0.348 0.382 0.379 0.604
MAFE 0.191 0.192 0.253 0.305 0.303 0.519
VAR (differences) cci cli
RMSFE 0.281 0.281 0.362 0.403 0.401 0.523
MAFE 0.201 0.199 0.266 0.314 0.311 0.428
VECM cci cli
RMSFE 0.268 0.271 0.346 0.409 0.411 0.537
MAFE 0.188 0.185 0.252 0.323 0.325 0.446

Table 7.10.9: One-step ahead forecasts: Evaluation criteria for the three mod-
els under examination and for the three forecasting strategies used (determin-
istic, stochastic, and 60-month rolling windows)

the extended estimation sample, as clearly the stochastic properties of the
time-series do not change. Evidence for cointegration is again found, so two
VAR models, one in levels and one in differences, and a VECM model can
still be compared in terms of forecasting performance. This time, using the
BIC lag-selection criterion, p = 3 is chosen for the VAR in levels, hence we
set p = 2 for the VAR in differences and for the VECM.

The in-sample models’ performance is less impressive over the shorter
sample, but this is something we expected as adding the crisis period sub-
stantially increases the possibility of having structural instability.

Let us now consider how the models’ forecasting performance changes
when evaluated in the cumbersome period of the financial crisis. Specifically,
we consider the period from January 2007 to April 2013. Table 7.10.10
presents the forecasting statistics.

Now rolling forecasts do slightly better, as they are able to gradually
update and to predict the depth of the through occurred in 2009. On the
other hand, simple one-step ahead forecasts, either with the deterministic
or stochastic solution environment, are still quite precise even if cli seems
always to be more complicated to predict than cci. Finally, in this case it
seems that among the three models the VAR in differences displays the best
forecasting performance with respect to both indicators, which is again likely
due to the major instability related with the crisis.

In conclusion, we can be generally satisfied with the forecasting perfor-
mance of our models, since on average they capture the direction of the
changes happening to our composite indicators even during the crisis. Nev-
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Det Stoch Rolling Det Stoch Rolling
VAR (levels) cci cli
RMSFE 0.369 0.369 0.350 0.591 0.595 0.625
MAFE 0.263 0.262 0.249 0.476 0.478 0.492
VAR (differences) cci cli
RMSFE 0.301 0.301 0.359 0.562 0.561 0.632
MAFE 0.215 0.214 0.249 0.433 0.432 0.494
VECM cci cli
RMSFE 0.356 0.359 0.334 0.625 0.628 0.602
MAFE 0.258 0.260 0.235 0.495 0.495 0.477

Table 7.10.10: One-step ahead forecasts, crisis period: Evaluation criteria for
the three models under examination and for the three forecasting strategies
used (deterministic, stochastic, and 60-month rolling windows)

ertheless, for a complicated period like this one, it seems that using a more
rapid updating procedure of estimation and forecast sample, like the one in-
volved in rolling windows forecasts, improves the accuracy of the predictions.

7.11 Concluding remarks

In this chapter we studied the effects of cointegration for VAR models, where
cointegration is a special feature of a set of I(1) variables that can be such
that linear combinations of them are I(0). From a statistical point of view
this is a rather particular feature, but from an economic point of view it
is implied by several theories, and therefore it is a relevant property to be
considered when modeling and forecasting sets of economic and/or financial
variables.

We have seen that cointegration imposes particular restrictions on the
coefficients of a VAR for I(1) variables in levels. In particular, the model can
be written as a VAR in differences where the variables depend not only on
their own lags but also on one lag of the cointegrating relationships. The
latter are also called error correction terms, as they represent the deviations
from the long-run or equilibrium values of the variables, and the resulting
model is called Error Correction Model, or ECM.

The ECM encompasses both the VAR in levels, which is obtained when
there are as many error correction terms as variables under analysis, and
the VAR in differences, which is obtained when there are no error correction
terms, meaning no cointegration among the I(1) variables under analysis.
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Hence, the ECM also provides a general testing ground for the presence
and extent of cointegration. Specifically, we have seen that the number of
cointegration relationships (also called cointegration rank) can be tested by
means of an iterative procedure based on a sequence of likelihood ratio tests.
The tests have a non-standard asymptotic distribution, also dependent on
the deterministic component and eventual exogenous variables, whose criti-
cal values are however available by means of proper simulation methods and
typically included in standard econometrics software, such as EViews. This
method for cointegration testing, usually labeled Johansen’s procedure, ex-
tends a previous simpler single-equation approach, due to Engle and Granger,
based on testing whether the residuals of a regression among I(1) variables
are integrated or stationary with an ADF test, whose critical values are how-
ever slightly different from those of the original ADF test as the statistic
is here computed based on a generated variable (the estimated residuals).
More general testing procedures for cointegration are also available, and the
cointegration rank can also be determined by means of information criteria,
possibly jointly with the lag length.

We have also seen that the variables in differences, which are stationary,
admit a particular Wold - MA(∞) representation. It is such that, if there are
r cointegration relationships and N variables, then the variables in levels are
driven by N−r common stochastic (integrated) trends which are linear func-
tions of the cumulated errors, plus stationary variable-specific components.
The MA(∞) representation is convenient to compute both impulse response
functions and optimal, in the MSFE sense, forecasts for all variables under
evaluation. The latter are linked together in the long-run, in the sense that
they will also have to satisfy the cointegration relationships.

For forecasting, we noted that, in the presence of cointegration, a VAR
in levels is inefficient (as the cointegration relationships are not imposed,
even though they will hold asymptotically) while a VAR in differences is
mis-specified (as the error correction terms are omitted): the ECM (or its
corresponding MA(∞) representation) is the proper model to obtain optimal
forecasts. However, this is a theoretical result that empirically could be
challenged by the presence of additional complications, such as changes in
the number or composition of cointegrating vectors and/or of their loadings.

Finally, to illustrate the working of cointegration testing and ECM mod-
elling and forecasting we have presented a set of examples based on either
simulated or actual data, showing that, indeed, accounting for cointegration
can improve the forecast precision.
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Chapter 8

Bayesian VAR Models

8.1 Introduction

Recently there has been a resurgence of interest in applying Bayesian meth-
ods to forecasting, notably with Bayesian Vector Autoregressions (BVARs).
BVARs have a long history in forecasting, stimulated by their effectiveness
documented in the seminal studies of Doan, Litterman, and Sims (1984) and
Litterman (1986). In recent years, the models appear to be used even more
systematically for policy analysis and forecasting macroeconomic variables
(e.g., Kadiyala and Karlsson (1997), Koop (2013)). At present, there is also
considerable interest in using BVARs for these purposes in a large dataset
context.1

With regards to model specification, besides the choice of the prior dis-
tribution for the parameters, the researcher needs to address issues such as
(1) the choice of the tightness and of the lag length of the BVAR; (2) the
treatment of the error variance and the imposition of cross-variable shrink-
age; (3) whether to transform the variables to get stationarity, and whether
to complement this choice with the imposition of priors favoring cointegra-
tion and unit roots. In this chapter we briefly consider model specification,
estimation, and forecast construction, based on Carriero, Kapetanios, and
Marcellino (2011) and Carriero, Clark, and Marcellino (2015), and for ex-
ample Koop (2003) for an introduction to Bayesian econometrics. See also

1See e.g., Bańbura, Giannone, and Reichlin (2010), Carriero, Kapetanios, and Mar-
cellino (2009), Carriero, Kapetanios, and Marcellino (2011), Koop (2013), Carriero, Clark,
and Marcellino (2016) and Carriero, Clark, and Marcellino (2017).
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Canova (2007, Chapter 10) and Karlsson (2012) for further discussions and
references.

With regard to model estimation and forecast construction, under some
approaches, estimating and forecasting with a BVAR can be technically and
computationally demanding. For the homoskedastic BVAR with natural con-
jugate prior, the posterior and one-step ahead predictive densities have con-
venient analytical forms (Student t). However, even for this prior, multi-steps
predictive densities do not have analytical forms and simulations methods are
required. Under commonly used priors and posterior that treat each equation
symmetrically, Monte Carlo methods can be used to efficiently simulate the
multi-steps predictive densities, taking advantage of a Kronecker structure
to the posterior variance of the model’s coefficients.

To avoid costly simulation, Litterman’s (1986) specification of the Min-
nesota prior treats the error variance matrix as fixed and diagonal. Litterman
(1986) imposes such a strong assumption to allow for equation-by-equation
ridge estimation of the system; treating the error variance matrix as random
would have required MCMC simulations of the entire system of equations.
In the empirical examples we will concentrate on this type of prior.

More generally, in the theory part we focus on approaches that make the
computation of point and density forecasts from BVARs quick and easy, for
example by making specific choices on the priors and by using direct rather
than iterated forecasts (e.g., Marcellino, Stock, and Watson (2006)). In
most cases, the resulting forecasts represent approximations of the posterior
distribution. However, Carriero, Kapetanios, and Marcellino (2012), show
that, for users focused on point forecasts, there is little cost to methods that
do not involve simulation.

Section 8.2 contains a short introduction to Bayesian econometrics. Sec-
tion 8.3 covers the baseline BVAR case. Next we discuss forecasting with the
BVAR model in section 8.4. Examples using simulated and empirical data
appear in Sections 8.5 and 8.6. Section 8.7 closes the chapter.

8.2 A primer on Bayesian econometrics

In this section we aim at providing a basic introduction to Bayesian econo-
metrics, in order to make the Bayesian analysis of VAR models more acces-
sible. As our treatment is introductory, interested readers should consult a
book such as Koop (2003) or Zellner (1996) for additional details and a more
comprehensive treatment.
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8.2.1 Parameters as random variables

Let {yt}
iid∼ N(µ, σ2) be a sequence of random variables, sampled for t = 1,

. . . , T. We group the unknown parameters into the vector θ = [µ, σ2], and
we would like to use the sample realizations y1, . . . , yT to estimate θ.

In the classical perspective we adopted so far, the vector θ is a set of
unknown numbers. A (point) estimator for it is a vector of random variables
that should be informative about θ and have some optimality properties
(e.g., unbiasedness, consistency, efficiency). For example, the sample mean
and variance together form an estimator denoted θ̂.

In a Bayesian perspective, the parameters in θ are instead viewed as
random variables. We have some a priori (initial) beliefs about them, sum-
marized by (prior) probability distributions. The sample y1, . . . , yT provides
information about θ, summarized into the likelihood function associated with
the econometric model that we have specified (in the example, the econo-
metric model is the statement that {yt} is a set of i.i.d. random variables
distributed N(µ, σ2), so that the likelihood function would be a multivari-
ate normal density, considered as a function of the parameters µ and σ2).
Our initial beliefs about θ, the prior distribution, should be combined with
the information coming from the data and the chosen econometric model,
the likelihood function, to obtain a posterior distribution for the parameters,
which summarizes how our initial beliefs about θ have been updated given
the information in the data y1, ..., yT .

The posterior distribution plays a key role in Bayesian econometrics, for
example it is used in the computation of forecasts and impulse response
functions. Hence, next we consider how to obtain the posterior distribution.

8.2.2 From prior to posterior distribution

Let us denote the prior distribution of the random parameters θ as p(θ),
while the likelihood function for a given value θ is f(y1, ..., yT |θ). We can
define the joint distribution of the unknown parameters and data as:

f(y1, ..., yT , θ) = f(y1, ..., yT |θ) · p(θ). (8.2.1)

An additional object of interest is the marginal likelihood, which can be



i
i

i
i

i
i

i
i

348 CHAPTER 8. BAYESIAN VAR MODELS

obtained by integrating θ out of the joint density f(y1, ..., yT , θ):

f(y1, ..., yT ) =

∫
θ∈Θ

f(y1, ..., yT , θ)dθ (8.2.2)

=

∫
θ∈Θ

f(y1, ..., yT |θ) · p(θ)dθ.

At this point we have all the ingredients to derive the posterior distribution,
which is obtained by applying the so-called Bayes rule:

p(θ|y1, ..., yT ) =
f(y1, ..., yT , θ)

f(y1, ..., yT )
(8.2.3)

=
f(y1, ..., yT |θ) · p(θ)

f(y1, ..., yT )

As the marginal density in the denominator is independent of θ, the posterior
distribution is proportional (denoted by ∝) to the product of the prior, p(θ),
and of the likelihood, f(y1, ..., yT |θ):

p(θ|y1, ..., yT ) ∝ f(y1, ..., yT |θ) · p(θ).

The procedure outlined above to obtain the posterior distribution of the
parameters can be always applied. Some prior distributions allow for an an-
alytical derivation of the posterior distributions. When the latter are of the
same type of the former (for example, normal), we are in the so-called conju-
gate case. Even if the posterior distribution cannot be obtained analytically,
it can be approximated numerically by means of Monte Carlo simulation
methods. We will not consider this case but we refer, for example, to Herbst
and Schorfheide (2015) for a detailed treatment.

8.2.3 An example: The posterior of the mean when
the variance is known

Let us consider again our example where {yt}
iid∼ N(µ, σ2), with t = 1, . . . ,

T. Let us assume, for simplicity, that the variance, σ2, is known while the
mean µ, is unknown.

We specify the prior distribution for µ as µ ∼ N(m,σ2/ν) or, in expanded
notation:

f(µ;σ2) =
1

(2πσ2/ν)1/2
exp{−(µ−m)2

2σ2/ν
}.
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The key parameters in the prior distribution are m and v. The former is the
mean of the distribution that, due to the properties of the normal density,
also indicates the value to which we assign highest probability. The latter
controls the overall variance of the distribution. Hence, the larger v is, the
more our prior beliefs about µ are concentrated around the value m.

The likelihood function is:

f(y1, ..., yT |µ, σ2) =
1

(2πσ2)T/2
exp{− 1

2σ2

T∑
t=1

(yt − µ)2}.

To obtain the posterior distribution, f(µ|y1, ..., yT ;σ2), we apply Bayes rule
in (8.2.3). This gives:

f(µ|y;σ2) =
1

[2πσ2/(ν + T )]1/2
exp{− (µ−m∗)2

2σ2/(ν + T )
},

where

m∗ =
ν

ν + T
m+

T

ν + T
ȳ, ȳ =

1

T

T∑
t=1

yt.

Hence, we are in the conjugate case where the prior and posterior are within
the same class of distribution, namely the posterior distribution is also nor-
mal, N(m∗, σ2/(ν + T )). Moreover, the posterior mean, m∗, is a linear com-
bination of the prior mean, m, and of the sample mean, ȳ. The weights
depend on the “tightness” parameter, v, and on the sample size, T . For
fixed T , the larger is v the closer is m∗ to m. In fact, when v is large, i.e.,
the prior distribution is highly concentrated around m, then the prior plays a
relatively larger role than the likelihood in the determination of the posterior
distribution. In other words, if we have strong beliefs that µ is close to m,
it will be difficult to change those beliefs substantially based on the sample
data t = 1, . . . , T. On the other hand, if v is close to zero (“diffuse” prior),
we are very uncertain about µ, and we are willing to put a lot of weight on
the sample information. Moreover, note that when T grows, the weight on ȳ
increases and that on m decreases, for fixed v. Hence, as sample information
accumulates, we are willing to give a larger weight to it in the determination
of the posterior. Finally, both v and T have the same effect on the variance
of the posterior distribution: it diminishes when the tightness is large and/or
the sample size is large.
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8.2.4 The Bayesian linear regression model

Let us now consider the Bayesian treatment of the linear regression model.
This is particularly relevant because, as we have seen in Chapter 6, a VAR can
be split into a set of linear regression models where each variable is regressed
on its own lags and on the lags of all the other variables (plus possibly some
deterministic components). Hence, the Bayesian analysis of the VAR model
presented in the next section will rely heavily on the methods introduced for
the linear regression model.

Recall from Chapter 1 that we can write a linear regression as:

yt = X1tβ1 +X2tβ2 + . . . Xktβk + εt, (8.2.4)

and we work under the strong OLS assumptions, so that εt is
iid∼ N(0, σ2).

This specification also implies that yt is
iid∼ N(Xtβ, σ

2), and the expected
value of yt is Xtβ, while it was µ in the example in the previous subsection.
Note also that normality of the errors was not required to derive most of the
properties of the OLS estimator, while it is crucial in the Bayesian framework
in order to characterize the likelihood function. Using again matrix notation,
the likelihood function can then be written as:

f(y|β, σ2, X) =
1

(2πσ2)T/2
exp{−(y −Xβ)′(y −Xβ)

2σ2
}. (8.2.5)

We will consider first the case where σ2 is fixed and known, similar to the
example in the previous subsection and to simplify the derivations. Next we
will relax this assumption.

Known variance

We assume that the prior distribution of the vector β is multivariate normal,
N(m,σ2M), or in expanded form:

f(β;σ2) =
1

(2πσ2)k/2
|M |−1/2 exp

{
−(β −m)

′
M−1(β −m)

2σ2

}
. (8.2.6)

The key parameters that control the first two moments of β are m and M.
Applying Bayes rule in this model, we have:

f(β|y,X;σ2) =
f(y|β, σ2, X) · f(β;σ2)

f(y|σ2, X)
(8.2.7)
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The expressions for the likelihood and the prior in the numerator are those in,
respectively, (8.2.5) and (8.2.6). The marginal likelihood in the denominator
can be obtained by integrating β out of f(y, β|σ2, X). Combining this yields
the posterior distribution:

f(β|y,X;σ2) =
1

(2πσ2)k/2
∣∣M−1 +X ′X

∣∣1/2 · (8.2.8)

· exp−(β −m∗)′(M−1 +X ′X)(β −m∗)
2σ2

.

Not surprisingly, we are again in the conjugate case and the posterior distri-
bution is N(m∗, σ2M∗), with

m∗ = (M−1 +X ′X)−1(M−1m+X ′y),

M∗ = (M−1 +X ′X)−1.

Let us now briefly discuss how one obtains the above analytical expressions
for m∗ and M∗. The first possibility is to just do all the calculations by ex-
panding on (8.2.7). The second option is to realize that the prior distribution
is imposing a set of stochastic constraints on the β parameters of the linear
regression model (see, e.g., Theil and Goldberger (1961)). Namely, the prior
implies that

β = m+ εβ, εβ ∼ N(0, σ2M),

which we can also write as

m = β + εβ, εβ ∼ N(0, σ2M), (8.2.9)

since the sign of the error term does not really matter. We can then group
these constraints with the linear regression model, and write{

m = β + εβ, E(εβε
′
β) = σ2M

y = Xβ + ε, E(εε′) = σ2IT

or
y∗ = X∗β + ε∗, (8.2.10)

where

y∗ =

[
m
y

]
, X∗ =

[
Ik
X

]
E[ε∗ε∗′] = σ2

[
M 0
0 IT

]
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The errors in the extended linear regression model appearing in (8.2.10)
are heteroskedastic so that, in a classical context, we would estimate the β
parameters by GLS, namely:

β̂GLS =

[
X∗

′
(
σ2M 0

0 σ2IT

)−1

X∗

]−1 [
X∗

′
(
σ2M 0

0 σ2IT

)−1

y∗

]
=

= (M−1 +X ′X)−1(M−1m+X ′y) = m∗.

Moreover,

V ar[β̂GLS] =

[
X∗

′
(
σ2M 0

0 σ2IT

)−1

X∗

]−1

=

= σ2(M−1 +X ′X)
−1

= σ2M∗.

Therefore, the Bayesian posterior distribution for the regression parameters
β is centered on the classical GLS estimator of the regression parameters in
the model where the prior is interpreted as a set of stochastic constraints.
Moreover, the posterior variance coincides with the variance of the GLS es-
timator. A similar approach for the derivation of the posterior moments can
be also applied in the VAR context.

Unknown variance

Let us now consider the more general case where the error variance is un-
known and random. The posterior distribution becomes:

f(β, σ2|y,X) =
f(y|β, σ2, X) · f(β|σ2) · f(σ2)

f(y|X)
. (8.2.11)

The expression for the likelihood, f(y|β, σ2, X), remains as in (8.2.5). The
prior distribution for β and σ2 is written as the product of the conditional
f(β|σ2) and the marginal f(σ2). The conditional distribution f(β|σ2) is the
same as that in (8.2.6), so that we only need to specify the prior f(σ2).

We choose an inverse-gamma distribution, or inverted gamma, σ2 ∼
IG(λ, v), which guarantees positivity of the variance and is in line with what
is commonly done for the BVAR case. Equivalently, one could use a gamma
distribution for σ−2, σ−2 ∼ G(λ, v), which helps with the interpretation of
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the parameters, see for example Koop (2003). In particular, it is

G(λ, v) ∝ (σ−2)
v−2
2 exp(−σ

−2v

2λ
),

and E(σ−2) = λ, var(σ−2) = 2λ2/v.
With the stated priors, the posterior distribution for f(β|σ2, y,X) re-

mains the same as in (8.2.8). The posterior for σ2, f(σ2|y,X), is instead
IG(λ∗, v∗), see for example Koop (2003) or Zellner (1996) for the details of
the derivations. These references also show that the marginal posterior dis-
tribution for β, i.e., without conditioning on σ2, f(β|y,X) is a multivariate
Student t distribution.

8.3 Baseline Bayesian VAR case

8.3.1 Baseline BVAR specification

Our baseline specification is a BVAR with a normal-inverted Wishart (N-
IW) conjugate prior, as in the case of the linear regression model.2 Given N
different variables grouped in the vector yt = (y1t y2t ... yNt)

′, we consider
the following VAR

yt = Φc + Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + εt; εt
iid∼ N(0,Σ), (8.3.1)

where t = 1, . . . , T. Each equation has M = Np+ 1 regressors. By grouping
the coefficient matrices in the N×M matrix Φ

′
= [Φc Φ1 ... Φp] and defining

xt = (1 y′t−1 ... y
′
t−p)

′ as a vector containing an intercept and p lags of yt, the
VAR can be written as

yt = Φ′xt + εt. (8.3.2)

An even more compact notation is

Y = XΦ + E, (8.3.3)

where Y = [y1, .., yT ]′, X = [x1, .., xT ]′, and E = [ε1, .., εT ]′ are, respectively,
T × N , T ×M and T × N matrices. If we apply the vec operator to both

2The inverted Wishart or inverse-Wishart distribution is the multivariate generalization
of the inverse-gamma distribution discussed in the previous section.
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sides of (8.3.3) we get vec(Y ) = (I ⊗X) vec(Φ) + vec(E), which is a linear
regression model similar to that analyzed in the previous section.

Finally, for representing multi-steps forecasts, another useful notation is
the companion form

xt+1 = Φ+xt + ε̃t, (8.3.4)

where ε̃t is a M×1 vector containing εt and 0’s elsewhere and Φ+ is a M×M
matrix defined as

Φ+ =


1 01×N 01×N ... 01×N

Φc Φ1 Φ2 ... Φp

0N×1 IN 0N×N ... 0N×N
... 0N×N

. . .
...

0N×1 0N×N IN 0N×N

 . (8.3.5)

Note that in this notation yt corresponds to rows 2, ..., N + 1 of xt+1, so
we can write yt = sxt+1, defining s to be a selection matrix selecting the
appropriate rows (i.e., row 2 to row N +1) of xt+1. With this representation,
multi-steps forecasts can be obtained as x̂t+h = (Φ+)hxt.

8.3.2 Prior parameterizations

As a prior density for the VAR parameters, we use the conjugate N-IW
prior, that we introduced in the previous section in the context of the linear
regression model:

vec (Φ) |Σ ∼ N(Φ0,Σ⊗ Ω0), Σ ∼ IW (S0, v0). (8.3.6)

As the N-IW prior is conjugate, the conditional posterior distribution of this
model is also N-IW (Zellner (1996)):

vec (Φ) |Σ, Y ∼ N(Φ̄,Σ⊗ Ω̄), Σ|Y ∼ IW (S̄, v̄). (8.3.7)

Defining Φ̂ and Ê as the OLS estimates, then Φ̄ = (Ω−1
0 +X ′X)−1(Ω−1

0 Φ0 +
X ′Y ), Ω̄ = (Ω−1

0 + X ′X)−1, v̄ = v0 + T , and S̄ = Φ0 + Ê ′Ê + Φ̂′X ′XΦ̂ +
Φ′0Ω−1

0 Φ0−Φ̄′Ω̄−1Φ̄. These formulas are the multivariate counterpart of those
that we derived in the previous section for the univariate regression model.
For example, the posterior mean of Φ is just a linear combination of the prior
mean and of the OLS estimator, with weights depending on the tightness of
the prior and on the sample size.
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In the case of the natural conjugate N-IW prior, the marginal posterior
distribution of Φ is matrix-variate-t with expected value Φ̄.

We further assume the prior expectation and standard deviation of the
coefficient matrices to be:

E[Φ
(ij)
k ] =

{
Φ∗ if i = j, k = 1
0 otherwise

, st.dev.[Φ
(ij)
k ] =

{ λ1λ2
k

σi
σj
, k = 1, ..., p

λ0σi, k = 0
(8.3.8)

where Φ
(ij)
k denotes the element in position (i, j) in the matrix Φk. The prior

mean Φ∗ is set to 1 in the VAR in levels specifications and to 0 in the VAR
in growth rates specification. For the intercept we assume an informative
prior with mean 0 and standard deviation λ0σi. The shrinkage parameter
λ1 measures the overall tightness of the prior: when λ1 → 0 the prior is
imposed exactly and the data do not influence the estimates, while as λ1 →
∞ the prior becomes loose and the prior information does not influence the
estimates, which will approach the standard OLS estimates. The parameter
λ2 implements additional shrinkage on lags of other variables than for lags
of the dependent variable. We refer to this as the cross-shrinkage parameter,
and in our baseline specification we set it to λ2 = 1, which implies that
no cross-variable shrinkage takes place, as required for the normal-inverted
Wishart case.

To set each scale parameter σi the common practice (see e.g., Litterman
(1986) and Sims and Zha (1998)) is to set it equal to the standard deviation
of the residuals from a univariate autoregressive model. Most of the studies
cited above have considered the following parameterization for the prior:

λ0 = 1; λ1 = 0.2; λ2 = 1, (8.3.9)

and we will make similar choices in the empirical examples. Carriero et
al. (2015), among others, discuss methods for the optimal choice of these
parameters, as well as of the VAR lag length.

Note that the prior beliefs in (8.3.8), defining the traditional Minnesota
prior, only include the prior mean and variances of the coefficients, and do not
elicit any prior beliefs about the correlations among the coefficients. Doan,
Litterman, and Sims (1984) and Sims (1993) have proposed to complement
the prior beliefs in (8.3.6) with additional priors that favor unit roots and
cointegration, and introduce correlations in prior beliefs about the coefficients
in a given equation. Both these priors were motivated by the need to avoid
having an unreasonably large share of the sample period variation in the data
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accounted for by deterministic components (Sims (1993)). These priors are
also in line with the belief that macroeconomic data typically feature unit
roots and cointegration. We refer to these papers for additional details.

8.4 Forecasting with the BVAR

In this section we discuss forecasting using the BVAR model. We first de-
scribe the proper method, which though can be computationally demanding
in several cases for multi-steps forecasting. Hence, next we discuss two alter-
native approaches for multi-steps forecasting, that are less elegant but tend
to perform well for point forecasts (not necessarily for density forecasts).

8.4.1 The proper method

Under the standard N-IW prior described above, the full distribution of the
one-step ahead forecasts is given by:

y′T+1|x′T+1 ∼MT (x′T+1Φ̄, (x′T+1Ω̄xT+1 + 1)−1, S, v), (8.4.1)

where MT denotes the matrix-variate t-distribution.
Multi-steps ahead forecasts obtained by iteration are not available in

closed form, but can be simulated using an MC algorithm that draws a
sequence of Σ and parameters Φ from (8.3.7) and shocks and at each draw

j computes the implied path of ŷ
(j)
t+h. Drawing a sequence of Φ can be in

general rather demanding from a computational point of view, but in this
specific case the matrix-variate structure of the N-IW prior ensures that
there are efficient algorithms that considerably speed up the computations.
An intuitive way to draw Φ, conditionally on a draw of the error variance Σ,
is to vectorize it and draw from a multivariate normal. In this case a draw
of Φ from (8.3.7) is obtained as follows:

vec(Φ) = vec(Φ̄) + chol(Σ⊗ Ω̄)× v (8.4.2)

where v is a MN × 1 standard Gaussian vector process. The Cholesky
decomposition above requires (MN)3 elementary operations. The scheme
outlined in (8.4.2) does not take advantage of the matrix-variate structure of
the distribution of Φ. Indeed, by organizing the elements of v in a M × N
matrix V such that v =vec(V ), one could draw the matrix Φ as follows:

Φ = Φ̄ + chol(Ω̄)× V × chol(Σ)′. (8.4.3)
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This can considerably speed up the computations, because the two Cholesky
decompositions chol(Ω̄) and chol(Σ) require only M3 + N3 operations, but
can only be implemented when the variance matrix of the prior coefficients
has a Kronecker structure.

8.4.2 The pseudo-iterated approach

As an alternative, one can choose to approximate the results by just integrat-
ing out the uncertainty in the coefficients and then using the posterior mean
of the coefficients to produce posterior means of the multi-steps forecasts. In
this case the multi-steps point forecast is computed as:

ŷt+h = s · (Φ̄+)hxt+1. (8.4.4)

This method has been used e.g., by Bańbura, Giannone, and Reichlin (2010),
and we label it the “pseudo-iterated” approach. Of course, this approach
has a clear computational benefit but it is, strictly speaking, inaccurate as it
ignores the non-linearity inherent in multi-steps forecasting.

In some cases there can be little choice but to use the “pseudo-iterated”
approach. If one departs from the N-IW conjugate prior, which ensures
both a closed form solution for the joint posterior density of the parameters
and a particularly convenient Kronecker structure of the posterior coefficient
variance matrix, the computational costs involved in simulating the joint pos-
terior distribution of the parameters increase rapidly with the dimension of
the system, because to draw a sequence of Φ one must resort to manipulation
of an MN ×MN variance matrix without the efficient Kronecker structure
of (8.3.7) and (8.4.3). The computational costs rise sharply with the number
of lags and, in particular the number of variables, see e.g., Kadiyala and
Karlsson (1997) and Karlsson (2012).

Moreover, the use of the pseudo-iterated approach may be necessary for
some practitioners relying on common software packages, such as EViews,
that do not provide simple, direct commands for simulating BVARs. These
packages produce posterior moments, but do not permit direct simulation
of the posterior distributions. Instead, users are required to write their own
programs, as would also be the case for packages such as Matlab.

Finally, empirical results in Carriero, Kapetanios, and Marcellino (2009),
indicate that the gains for point forecasts from the proper simulation-based
approach with respect to the pseudo-iterated method are negligible. There-
fore, if one is only interested in point forecasts, the loss from the quick and
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easy pseudo iterated approach is small. On the other hand, if the focus is on
multi-steps density forecasts, the pseudo-iterated approach would not help
from a computational point of view. Indeed, while one could compute a set
of desired quantiles from an (approximate) predictive density based on an it-
eration of equation (8.4.1), the proper production of a whole density forecast
would still require simulation methods.

8.4.3 The direct forecasting approach

Another way to overcome the problem of non-linearity in the multi-steps fore-
casts is to use the direct approach, which we have seen in previous chapters.
Consider the following VAR:

yt = Φc,h + Φ1,hyt−(h−1)−1 + Φ2,hyt−(h−1)−2 + ...+ Φ1,hyt−(h−1)−p + εt. (8.4.5)

Note that in the above model the vector yt is regressed directly onto yt−h
and p − 1 additional lags, and that for each forecast horizon h a different
model is employed. Such an approach has been implemented in a Bayesian
framework by, e.g., Koop (2013).

As we discussed in previous chapters, generally, the iterated (or powering-
up) approach is more efficient in a classical context, as the used estimators
are equivalent to maximum likelihood, under correct model specification. It
is, however, dangerous in the presence of mis-specification, because in general
the mis-specification will inflate with the forecast horizon when the forecasts
are computed recursively. In addition, the direct approach implies that the
h-steps ahead forecast is still a linear function of the coefficients (because
a different model is used for each forecast horizon), while in the traditional
powering-up approach the multi-steps forecasts are highly non-linear func-
tions of the estimated coefficients. As a result, there is an exact closed form
solution for the distribution of the h-steps ahead forecasts computed using
(8.4.5), while computing the forecasts resulting from the powering up strat-
egy requires the use of simulation methods, as discussed above.3

Carriero, Clark, and Marcellino (2015) show that in their empirical exam-
ples and for horizons shorter than six-steps ahead, there is little loss in using
the direct approach rather than the iterated one. However, as the forecast
horizon increases, the direct method is outperformed.

3Admittedly, however, the closed form solution obtained with a direct forecasting ap-
proach assumes the error terms of the model are serially uncorrelated, which will not
actually be the case with forecast horizons of more than one period.
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Figure 8.5.1: Results of the forecasting exercise for the BVAR(1) model: the
upper panels present the dynamic h-steps ahead forecasts and the lower panels
the static one-step ahead forecasts

8.5 Example with simulated data

In order to evaluate the benefits of a Bayesian approach when using VARs,
a first example is conducted by means of simulated data. The same DGP of
the example in Chapter 6 is applied: a VAR(1) bivariate stationary model.
By choosing the same random seed, we can reproduce the same artificial
series used previously. Also in this framework, a correct specification with
one lag is compared to a mis-specified counterpart with four lags. But in this
example, both correct and mis-specified specifications will be estimated with
both frequentist (as in Chapter 6) and Bayesian techniques.

As in most Bayesian applications, setting the prior is important. For
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MAFE VAR(1) VAR(4) BVAR(1) BVAR(4)

Stochastic
x y x y x y x y

Static 0.788 0.890 0.785 0.894 0.793 0.895 0.783 0.886
Dynamic 2.069 1.634 2.068 1.617 2.051 1.629 2.062 1.632

Deterministic

x y x y x y x y
Static 0.788 0.893 0.789 0.893 0.789 0.892 0.786 0.888
Dynamic 2.063 1.632 2.068 1.633 2.066 1.634 2.069 1.634

RMSFE VAR(1) VAR(4) BVAR(1) BVAR(4)

Stochastic
x y x y x y x y

Static 0.975 1.107 0.992 1.100 0.979 1.112 0.978 1.101
Dynamic 2.486 1.942 2.473 1.917 2.458 1.929 2.475 1.936

Deterministic

x y x y x y x y
Static 0.974 1.107 0.998 1.101 0.976 1.105 0.979 1.100
Dynamic 2.477 1.939 2.479 1.939 2.478 1.939 2.479 1.940

Table 8.5.1: Mean absolute error and root mean squared error for each model
and type of forecast

example, consider the Litterman/Minnesota prior. Recalling the following
structure for the moments of the prior:

E[Φ
(ij)
k ] =

{
Φ∗ if i = j, k = 1
0 otherwise

, st.dev.[Φ
(ij)
k ] =

{ λ1λ2
k

σi
σj
, k = 1, ..., p

λ3σi, k = 0
,

the tightness parameter λ1 is set to 0.2, the relative cross-variable weight
λ2 to 0.99, the decay hyper-parameter λ3 to 1, and, given the stationarity
of both artificial series, the VAR(1) diagonal coefficients mean Φ∗ is set to
0. This allows the researcher to incorporate some pre-existing information
within the estimation phase.

In the VAR(1) case, the estimation results are not much different between
the Bayesian and the classical approaches, while a more pronounced differ-
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ence can be noticed in the mis-specified VAR(4) case, probably because of
the decay pattern for lags higher than 1 prescribed by the prior. In order
to assess any forecasting benefits for the Bayesian technique, it is important
to show and compare forecasts between the different estimation approaches
across models. In particular, as in Chapter 6, both stochastic and determin-
istic VAR forecasts are computed for each model (1 lag and 4 lags) and with
each estimation approach (Bayesian with Minnesota Prior and classical).

Figure 8.5.1 reports the static (one-step) and dynamic (h-step) forecasts
for the BVAR(1) model in both the deterministic and stochastic cases. By
comparing this picture with its classical approach counterpart (in Chapter
6 section 6.9), no relevant differences can be noticed. Similar conclusions
can be made for the VAR(4)/BVAR(4) graphical comparison. The RMSFE
and MAFE for each set of specifications are reported in Table 8.5.1. From
the table it emerges that the BVAR performs better in many instances, even
though the differences in many cases are minor in size as the number of
variables is small and the sample size large.

As for the structural analysis, both the impulse responses and the vari-
ance decompositions are very similar in shape, and present very small numer-
ical differences with respect to the classical VAR for this small dimensional
example. When dealing with larger models, the differences can be more
pronounced.

8.6 Empirical examples

8.6.1 GDP growth in the Euro area

The same example with real data reported in Chapter 6 is now analyzed
using Bayesian VARs, while keeping the same specifications, i.e., a VAR(1)
and a VAR(2). As in Chapter 6, the data used are GDP growth rates of three
major countries in the Euro area, namely, France, Germany, and Italy, along
with the US GDP growth as an exogenous reference point outside the EU. For
each country there are 108 quarterly observations from 1986Q1 to 2012Q4
of the growth rates of real GDP expressed as percentage change from the
previous year, downloadable from DATASTREAM. The Bayesian VAR is
implemented adopting a Minnesota prior, with decay hyper-parameter equal
to 1, tightness parameter to 0.2 and, because of stationarity of growth rates,
AR(1) prior mean equal to zero (basically the same prior used in the example
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BVAR(1) G FR G GER G IT

det stoch det stoch det stoch
RMSFE 0.875 0.866 0.349 0.346 0.427 0.432
MAFE 0.727 0.735 0.263 0.263 0.355 0.361

BVAR(2) G FR G GER G IT

det stoch det stoch det stoch
RMSFE 0.853 0.860 0.328 0.339 0.460 0.469
MAFE 0.708 0.709 0.250 0.244 0.400 0.395

Table 8.6.1: One-step ahead forecast evaluation statistics 2003 - 2006

BVAR(1) G FR G GER G IT

det stoch det stoch det stoch
RMSFE 1.565 1.575 0.799 0.803 1.623 1.629
MAFE 0.978 0.981 0.615 0.616 1.264 1.268

BVAR(2) G FR G GER G IT
det stoch det stoch det stoch

RMSFE 1.546 1.542 0.765 0.760 1.647 1.650
MAFE 0.974 0.974 0.592 0.598 1.333 1.327

Table 8.6.2: One-step ahead forecast evaluation statistics 2007-2012

with simulated data). The forecasts and the structural analysis give very
similar results to the classical ones. It is then useful to look at the forecast
evaluation statistics, in order to measure the tiny differences (Tables 8.6.1
and 8.6.2). However, also looking at diagnostics, there does not seem to be a
clear ranking of the alternative estimation approaches. Bayesian models may
offer advantages when forecasting with larger models, an issue we consider
in the next example.

8.6.2 Multi-country inflation rates

In this example, we consider inflation rate forecasting, exploiting the cross-
country linkages in inflation rates. A larger VAR example is implemented
using the log-differences of the monthly HICP index for 6 large Western coun-
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BVAR(4) VAR(4)

dp fra
det stoch det stoch

RMSFE 0.144 0.144 RMSFE 0.160 0.159
MAFE 0.114 0.114 MAFE 0.129 0.129

dp ger

det stoch det stoch
RMSFE 0.182 0.181 RMSFE 0.172 0.172
MAFE 0.137 0.137 MAFE 0.137 0.137

dp ita

det stoch det stoch
RMSFE 0.157 0.156 RMSFE 0.165 0.165
MAFE 0.125 0.125 MAFE 0.135 0.135

dp spa

det stoch det stoch
RMSFE 0.248 0.248 RMSFE 0.257 0.256
MAFE 0.192 0.193 MAFE 0.203 0.203

dp uk

det stoch det stoch
RMSFE 0.163 0.164 RMSFE 0.178 0.178
MAFE 0.121 0.122 MAFE 0.139 0.139

dp usa

det stoch det stoch
RMSFE 0.306 0.305 RMSFE 0.305 0.306
MAFE 0.203 0.203 MAFE 0.222 0.222

Table 8.6.3: One-step ahead forecast evaluation statistics July 2008 - October
2014 for HICP inflation
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tries: France, Germany, Italy, Spain, the United Kingdom and the United
States. A total of 191 observations for the period 1998M12-2014M10 were
downloaded from the EUROSTAT database.

A VAR model with 4 lags is estimated both with a classical and with a
Bayesian approach with Minnesota prior. As in previous examples, dealing
with stationary variables, a zero AR(1) prior mean is used for the Minnesota
prior implementation. Given the larger number of coefficients to be estimated
(more than 100), a higher benefit is expected from adopting a Bayesian strat-
egy.

Recursive forecasting is implemented for the forecasting window 2008M7
- 2014M10, which includes the recent financial crisis. Figures 8.6.1 and 8.6.2
report the static stochastic forecasts for each variable for both BVAR(4) and
VAR(4) models. From the picture it emerges a more stable pattern for the
forecasts when using the Bayesian approach.

Table 8.6.3 contains the forecast measures for each variable and each
model. The figures confirm the suggestions of the graphical inspection: the
BVAR(4) has a clearly better performance than the VAR(4) in almost all
instances, though the differences are small.

8.7 Concluding remarks

In this chapter we have presented the Bayesian version of VARs, known
as BVARs. They combine the flexibility of classical VAR models with the
shrinkage that characterizes Bayesian estimation, reducing the curse of di-
mensionality. As classical VARs, they can be used both for forecasting and
for more structural analysis. We have briefly discussed model specification
and estimation, and introduced alternative methods for computing forecasts,
based either on analytical or simulation methods and either on proper models
or on approximations.

The applications confirmed that BVARs tend to forecast in general at
least as well as classical VARs.
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Figure 8.6.1: Stochastic forecasts 2006M7 - 20141M10 for HICP log-
differences using a BVAR(4) specification
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Figure 8.6.2: Stochastic forecasts 2006M7 - 20141M10 for HICP log-
differences using a VAR(4) specification
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Chapter 9

TAR and STAR Models

9.1 Introduction

All the models we have considered so far are linear and feature stable pa-
rameters. These are convenient assumptions since they simplify parameter
estimation and forecast construction. However, there can be cases where
they are invalid, based on either theory or empirical evidence.

For example, in the case of a Cobb Douglas production function, output
(Y ) is related to capital (K) and labor (L) according to the relationship

Yt = AtK
α
t L

β
t , (9.1.1)

where At measures technological progress and has both a deterministic and
a random component, At= Cεt, while parameters α and β are related to the
returns to scale.

The model in (9.1.1) is clearly non-linear in the parameters α and β, and
in addition the error term εt enters in a multiplicative form. However, if we
apply the logarithmic transformation to both sides of (9.1.1) and denote the
log of a variable with a lower case letter, we obtain

yt = c+ αkt + βlt + log εt, (9.1.2)

which is again a linear model, though likely with non-normal errors. Sim-
ilarly, if the parameters α, β, or c in (9.1.2) are not constant but switch
to new values at a known date T ∗, the model has time-varying parameters.
However, we can transform it in a constant parameter model by the proper
use of dummy variables, as we have seen in Chapter 2.
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Unfortunately, it is not always possible to transform a non-linear or time-
varying parameter model into a linear constant parameter specification. For
example, the model could be

yt = f(xt, zt; θt) + εt, (9.1.3)

where f is a generic known function linking the explanatory variables x and
z to the dependent variable y, according to the time-varying parameters θt.

Abandoning the linear constant parameter modeling framework creates a
set of additional problems. First, model specification is more complex. For
example, in (9.1.3) we need to define the functional relationship (f) that
links x and z to y, and specify the process governing the evolution of the
parameters θt. Second, parameter estimation is much more complex, and
typically analytical solutions for the parameter estimators are not available.
Finally, the derivation of optimal forecasts can be cumbersome, and again
analytical expressions for them are generally not available.

In this third part of the book we introduce a set of specific non-linear
and/or time-varying parameter models, focusing on those most commonly
used in empirical applications and that proved useful in a forecasting con-
text. We start in this chapter with the Threshold Autoregressive (TAR) and
Smooth Transition Autoregressive (STAR) models. In Section 9.2 we discuss
model specification and parameter estimation in Section 9.3, while testing for
non-linearity is covered in Section 9.4. Diagnostic checking and forecasting
are the topics of the next two sections. We also devote a section (namely
9.7) to artificial neural networks and related literature.

A set of examples using simulated and actual data are presented in Sec-
tions 9.8 and 9.9. Section 9.10 concludes the chapter. Additional details
on TAR and STAR models can be found, e.g., in Granger and Teräsvirta
(1993), Franses and Van Dijk (2000), Teräsvirta, Tjøstheim, and Granger
(2010), Teräsvirta (2006) and Van Dijk, Teräsvirta, and Franses (2002).

Note that we have focused on univariate models for simplicity, but mul-
tivariate versions are also feasible, see for example Artis, Galvão, and Mar-
cellino (2007), as well as structural applications, even though computation
of the impulse response functions to structural shocks is more complex, see
e.g., Koop, Pesaran, and Potter (1996).
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9.2 Specification

Let us consider the model:

yt =

{
φ0,1 + φ1,1yt−1 + εt if qt ≤ c
φ0,2 + φ1,2yt−1 + εt if qt > c

This is an AR(1), but its parameters change depending on whether the vari-
able qt is above or below the threshold value c. It is therefore called Threshold
AR (TAR). If qt = yt−d, e.g., yt−1, then the model is called Self Exciting TAR
(SETAR). More lags or a more general deterministic component can be in-
serted in the model.

From an economic point of view, the rationale of TAR and SETAR models
is that when qt exceeds a certain value the dynamics of yt changes. For
example, if inflation goes beyond a certain level, then hyperinflation can
emerge, changing the dynamics of inflation itself. Or when the budget deficit
goes beyond a threshold value, the dynamics of GDP growth can change
since consumers and firms can expect massive future increases in taxation or
cuts in public transfers.

Note that we can rewrite a SETAR (or TAR) as a single equation, such
as:

yt = (φ0,1 + φ1,1yt−1)(1− I(yt−1 > c))

+(φ0,2 + φ1,2yt−1) I(yt−1 > c) + εt (9.2.1)

where I is the indicator function. This form will be more convenient for
estimation. It also highlights that the resulting model is non-linear in the
parameters.

In the SETAR model the transition between sets of parameter values is
abrupt and discontinuous. As an alternative, we can consider a smoother
transition between the two regimes, by using a different transition function.
In particular, instead of the indicator function I in (9.2.1), we could use the
logistic function G, with

G(qt; γ, c) =
1

1 + exp(−γ[qt − c])
. (9.2.2)

The resulting model is called Logistic Smooth Transition AR (LSTAR or
simply STAR). The parameter γ determines the smoothness: when γ is very
large the model becomes similar to the TAR model, while for γ = 0 the model
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becomes linear. There can be a more complex deterministic component,
additional lags, and possibly exogenous explanatory variables and their lags.

A few further comments are worth making. First, in general the auto-
correlation and partial autocorrelation functions (AC and PAC) also change
over time when yt follows a TAR or STAR model. Second, it is possible to use
information criteria (IC) to determine the lag length, even if computational
costs are higher than in the standard ARMA case due to additional estima-
tion complexity and larger number of models to evaluate. For example, with
maximum lag length of p1 and p2 in the two regimes, p1× p2 models have to
be estimated and IC computed and compared. Note that IC can also be used
to select the transition variables. Third, it is possible to allow for more than
two regimes. Given that the STAR model with two regimes can be rewritten
as

yt = φ′1xt + (φ2 − φ1)′xtG(qt; γ, c) + εt, (9.2.3)

where xt = (1, yt−1) and φj = (φ0,j, φ1,j)
′
, j = 1, 2, for 3 regimes we have

yt = φ′1xt+(φ2−φ1)′xtG1(q1t; γ1, c1)+(φ3−φ2)′xtG2(q2t; γ2, c2)+εt. (9.2.4)

It is also possible that the regimes are determined by more than one
variable, see, e.g., Van Dijk and Franses (1999).

Contrary to the linear case, in the non-linear world it can be better to
start with a specific model and then generalize it if necessary. In particular,
Granger (1993) suggested the following procedure:

1. specify a linear model (e.g., an AR(p));

2. test the null hypothesis of linearity against a specific form of non-
linearity (e.g., SETAR or STAR);

3. if linearity is rejected, estimate the specific non-linear model;

4. run diagnostics on the model and modify it if necessary;

5. use the model for the required application, e.g., forecasting or compu-
tation of impulse response functions.

Let us now consider these steps in some detail, starting with estimation,
which is also required for testing linearity against STAR type non-linearity.
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9.3 Estimation

If we denote the conditional mean of yt by F (xt; θ), for example F = φ′1xt +
(φ2−φ1)′xtG(yt−1; γ, c)) and θ = (φ1, φ2, γ, c) in the case of the STAR model
in (9.2.3), then we can derive the parameter estimators θ̂ as the minimizers
of the objective function:

T∑
t=1

(yt − F (xt; θ))
2 =

T∑
t=1

ε2
t . (9.3.1)

This is the same objective function as the one we used in Chapter 1 to derive
the OLS estimators for the linear regression model parameters. However, now
an analytical solution is in general no longer available, so that the minimizers
of (9.3.1) must be determined numerically.

The resulting estimators are called NLS, θ̂NLS. Under mild conditions
on the functional form F , which are satisfied for the case of STAR and
TAR models, θ̂NLS is consistent and

√
T θ̂NLS has an asymptotically normal

distribution, see, e.g., Gallant and White (1988) and White (2014).
In the case of TAR (or SETAR) models, a simpler estimation procedure

is provided by conditional least squares. Indeed, conditioning on a given
threshold variable and threshold value c, these models are linear, since for
example I(yt−1 > c) in (9.2.1) is just a dummy variable. Hence, we can obtain
OLS estimators for φ = (φ0,1, φ0,2, φ1,1, φ1,2). To highlight the dependence of

φ on c let us use the notation φ̂(c). For each choice of c and associated OLS
estimators φ̂(c), we can then estimate the variance of the error term, σ̂2(c),
using the standard formula. Finally, among a set of preselected values for
c, we choose the one that minimizes σ̂2(c), say ĉ, with associated estimators
φ̂(ĉ) and σ̂2(ĉ).

Two issues that deserve attention in the case of STAR models are the
choice of the starting values for the numerical optimization procedure under-
lying NLS, and the estimation of γ, the smoothing parameter.

To select proper starting values we can follow a grid search procedure
similar to the one for the TAR model. First, we decide a set of values for
γ and c, which form the grid. Then, we fix a value for γ and c, say γ̄ and
c̄. Conditional on these values, the model becomes linear in φ1 and φ2, since
G(yt−1; γ, c) is just a dummy variable, though with a logistic pattern. Hence,



i
i

i
i

i
i

i
i

374 CHAPTER 9. TAR AND STAR MODELS

we can estimate φ1 and φ2 by OLS as

φ̂(γ, c) = (X ′tXt)
−1Xtyt, (9.3.2)

withXt = (x′t(1−G(yt−1; γ̄, c̄)), x′tG(yt−1; γ̄, c̄)). Using the resulting residuals,
we can calculate σ̂2

ε(γ̄, c̄). Next, we repeat the estimation for all the other
values of γ and c in the grid. Finally, we select the values of γ and c as those
with the minimum associated σ̂2

ε(γ, c). The resulting values, say γ∗, c∗, φ̂∗1,
and φ̂∗2 are used as starting values for the numerical optimization procedure
that will deliver the NLS estimators of all the parameters.

About the estimation of the γ parameter, when γ is large the G function
changes only a bit for changes in γ. More generally, a precise estimate of γ
requires many observations around the threshold value c, which often are not
available. Hence, in general, the standard errors of γ̂NLS are very large, and
the parameter is not statistically different from zero according to a t−test.
Therefore, we could wrongly conclude that γ = 0 and the model is linear.
Hence, it is better not to use a t−statistic for γ = 0 when interested in testing
for linearity against STAR. The proper procedure will be described in the
next section.

9.4 Testing for STAR and TAR

The problem of testing for a linear versus a STAR model is that under the null
hypothesis, that can be written as (φ2 − φ1)′ = 0 in (9.2.3), the parameters
c and γ are unidentified, they can take any value. The null can also be
written as γ = 0, but then c, φ1 and φ2 are unidentified. This problem
– the presence of nuisance parameters under the null hypothesis – is well
known in the literature and substantially complicates the derivation of the
test statistics limiting distribution. Yet, it is possible to apply an alternative
testing procedure with an asymptotic χ2 distribution. To derive the test, let
us rewrite the model in (9.2.3) as

yt =
1

2
(φ1 + φ2)′xt + (φ2 − φ1)′xtG

∗(qt; γ, c) + εt, (9.4.1)



i
i

i
i

i
i

i
i

9.4. TESTING FOR STAR AND TAR 375

where G∗(qt; γ, c) = G(qt; γ, c)− 1
2
. Note that when γ = 0, G∗ = 0. Then, let

us approximate G∗(qt; γ, c) with a first order Taylor expansion around zero:

T1(qt; γ, c) ≈ G∗(qt; 0, c) + γ
∂G∗(qt; γ, c)

∂γ

∣∣∣∣
γ=0

=
γ

4
(qt − c),

since G∗(qt; 0, c) = 0. Now, we substitute T1 for G∗ in (9.4.1) and reparama-
terize the model as:

yt = α′ + β′x̃t + δ′x̃tqt + ut, (9.4.2)

where x̃t = yt−1 (x̃t = yt−1, ..., yt−p if in the original model there were more
lags), and the exact relationship between the parameters in (9.4.1) and (9.4.2)
can be found in Franses and Van Dijk (2000) or Luukkonen, Saikkonen, and
Teräsvirta (1988) who introduced this testing procedure.

Then, it can be shown that γ = 0 if and only if δ′ = 0. Therefore, we can
use a standard F−statistic for δ′ = 0 to test linearity versus STAR, and the
asymptotic distribution is χ2

p, where p is the number of restrictions we are
testing (p = 1 in the STAR(1) model considered).

The above test has no power when only the intercept changes across
regimes. Luukkonen, Saikkonen, and Teräsvirta (1988) suggest this problem
can be resolved by taking a third order instead of a first order expansion of
G∗, which implies more variables in the “instrumental” regression (9.4.2).

Teräsvirta (1996) suggests using this test to also choose the transition
variable from a pre-specified list. The idea is to select the variable minimizing
the p-value when testing linearity versus STAR.

Finally, when the alternative hypothesis is TAR or SETAR, we can use
an F−statistic to test for linearity, and we can write it as

F (c) =
RSS1 −RSS2

σ̂2
2(c)

, (9.4.3)

where RSS1 and RSS2 are the residual sum of squares from, respectively,
the linear and TAR models, and σ̂2

2(c) is the residual variance from the TAR
model for the threshold c.

Since the threshold is unknown, Hansen (1997) suggested to use the supre-
mum among the F-statistics computed for all possible thresholds, i.e.,

Fs = sup
ci∈C

F (ci),
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where C is the set of all possible values of the threshold. The distribution
of Fs is not known analytically, but it can be computed using numerical
techniques, see e.g., Hansen (2000) for details.

9.5 Diagnostic tests

Since the error terms in the TAR and STAR models still enter additively, the
tests for homoskedasticity, no correlation, and normality that we discussed
in Chapter 2 in the context of the linear regression model are in general still
applicable. Note, however, that they only have an asymptotic justification,
see Eitrheim and Teräsvirta (1996) for details and Franses and Van Dijk
(2000) for some applications and a discussion of the additional complications
arising from testing in the TAR case.

One test of interest is whether there exists an additional regime. The
approach is similar to the one introduced above for linearity testing. Let us
start from the model in (9.2.4). Then, we take a first-order expansion of G2

around γ2 = 0 and substitute it into the model to get:

yt = β′0xt + (φ2 − φ1)′xtG1(q1t; γ, c) + β′1x̃tq2t + ut, (9.5.1)

and we test for β′1 = 0. Again, Eitrheim and Teräsvirta (1996) provide addi-
tional details.

9.6 Forecasting

9.6.1 Point forecasts

Computing point forecasts and standard errors is much more involved with
non-linear models. Let us assume for simplicity that yt only depends on yt−1,
(more complex models can be treated along the same lines) and write the
model in general form as

yt = F (yt−1; θ) + εt,

where εt
iid∼(0,σ2

ε) and t = 1, . . . , T. Then, the optimal (in the MSFE sense)
h-steps ahead forecast is

ŷT+h = E(yT+h|IT ),
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with IT = yT in this case. For h = 1, the computation of ŷT+1 is simple since

ŷT+1 = F (yT ; θ),

or
ŷT+1 = F (yT ; θ̂),

if the parameters θ are unknown. For h = 2, additional issues to consider
arise. Even assuming that θ is known, we have:

ŷT+2 = E[F (yT+1; θ)] 6= F (E[yT+1]; θ) = F (ŷT+1; θ).

In other words, we can no longer use the simple iterative procedure for h-steps
forecasting that we adopted in the context of linear models, where unknown
future values were simply replaced by their forecasts. Of course we could use
ỹT+2 = F (ŷT+1; θ) as a two-steps ahead forecast, but in general it would be
biased and certainly not optimal. The optimal two-steps ahead forecast is

ŷT+2 = E[F (F (yT ; θ) + εT+1; θ)|IT ] (9.6.1)

= E[F (ŷT+1 + εT+1; θ)|IT ]

=

∫
F (ŷT+1 + εT+1; θ)f(ε)dε.

The main problem with the expression for ŷT+2 in (9.6.1) is that it is quite
difficult to compute the integral analytically. As an alternative, we can use
Monte Carlo or bootstrapping to approximate numerically the integral, ob-
taining:

ŷ
(mc)
T+2 =

1

R

R∑
i=1

F (ŷT+1 + εi; θ), (9.6.2)

where εRi=1. We draw the entire distribution, not the individual εi. We can
either drawn from a pre-specified distribution (Monte Carlo) or re-sampled
from the in-sample estimated errors (bootstrap). In general, both approaches
work rather well in empirical applications.

The computational problems increase with the forecast horizon. For ex-
ample, to compute analytically ŷT+h we should solve an h − 1 dimensional
integral. In this case, even Monte Carlo or bootstrap methods become cum-
bersome, in particular when the forecast has to be computed recursively over
many periods and/or for many variables. A further option to compute h-
steps ahead forecasts from non-linear models is direct estimation. As we saw
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in Chapter 5, direct estimation is based on a specification that directly re-
lates yt to the information available in period t−h, so that a one-step ahead
forecast from the direct model produces the required h-steps ahead forecast
for y. In the linear context, the direct model remains linear. Instead, in the
non-linear context in general the direct model should have a different func-
tional form with respect to the starting model. However, in practice, when
constructing direct forecasts the same functional form is assumed, perhaps
allowing for a richer dynamic specification, so that the forecast error also
includes a component related to the functional form mis-specification. We
would therefore consider the specification

yt = F (yt−h; η) + ut,

and construct the direct h-steps ahead forecast as ỹ
(dir)
T+h = F (yT ; η).

9.6.2 Interval forecasts

We have seen in Chapter 1 in the case of linear models with normal er-
rors we can construct (symmetric) forecast intervals knowing that yT+h ∼
N(ŷT+h,Var(eT+h)). Specifically, we represented a [1− α]% forecast interval
as

ŷT+h − cα/2
√

Var(eT+h); ŷT+h + cα/2
√

Var(eT+h), (9.6.3)

where cα/2 is the (α/2)% critical value for the standard normal density. A
similar procedure can be used in the context of non-linear models, with the
additional complication that the density function of yT+h can be asymmetric
and even bimodal. Let us consider, for example, Figure 9.6.1, where a dot
indicates the point forecast and PF the corresponding value of the density.
There are now three alternative methods to construct an interval forecast.
First, we can use a symmetric interval (S) around the point forecast, contain-
ing yT+h with a (1− α)% probability. Second, we can construct the interval
(Q) between the α/2 and (1−α)/2 density quantiles. Finally, we can choose
the highest density region (HDR), namely, the smallest region containing
yT+h with a (1 − α)% probability. In practice, in Figure 9.6.1 we can draw
the horizontal line gσ and move it downward until the integral of the density
over the intervals identified by the intersection of the horizontal line and the
density equals (1 - α). As the figure indicates, the HDR can be disjoint.

The three intervals (S), (Q) and (HDR), which coincide in the normal
density case, can in general be rather different. Without specifying a loss
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Figure 9.6.1: Types of interval forecasts with a bimodal density for yT+h : (S)
is symmetric, (Q) is quantile based, (HDR) is highest density region

function, there is no generally optimal choice of an interval forecasting strat-
egy.

9.7 Artificial neural networks

Artificial neural network (ANN) models can provide a valid approximation
for the generating mechanism of a vast class of non-linear processes, see e.g.,
Hornik, Stinchcombe, and White (1989) and Swanson and White (1997) for
their use as forecasting devices. On the negative side, they are a kind of
“black-box,” whose parameters, and therefore forecasts, are hardly inter-
pretable. To alleviate these issues, it is possible to add an ANN component
to an otherwise linear model, so that the latter has the usual interpretation
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while the former captures possible non-linearities in the relationship between
the dependent and independent variables.

A univariate single layer feed-forward neural network model with n1 hid-
den units (and a linear component) is specified as

yt = ζt−hβ0 +

n1∑
i=1

γ1iG(ζt−hβ1i) + εt, (9.7.1)

where yt is the target variable, G is an activation function (typically the
logistic function, G(x) = 1/(1 + exp (x))), and ζt = (1, yt, yt−1, yt−p+1). In
the ANN terminology, the variables in ζt are the inputs that enter the hid-
den layer represented by the activation functions g(ζt−hβi) with connection
strengths β1i i = 1, . . . , n1, and through the weights γ1i determine the output
layer y.

The non-linear component of (9.7.1), namely
∑n1

i=1 γ1iG(ζt−hβ1i) can be
interpreted as a set of time-varying intercepts, whose time-variation is driven
by the evolution of the logistic functions G(ζt−hβ1i) i = 1, . . . , n1. For this
reason, when n is large enough, the model can basically fit very well any type
of temporal evolution.

Even more flexibility can be obtained with a double layer feed-forward
neural network with n1 and n2 hidden units:

yt = ζt−hβ0 +

n1∑
i=1

γ2iG

(
n2∑
j=1

β2jiG(ζt−hβ1i)

)
+ εt,

Due to their high non-linearity, ANN models are estimated by non-linear
least squares, but particular attention should be paid to the existence of mul-
tiple local minima.1 While the parameters γ1i and β1i, i = 1, . . . , n1, gen-
erally do not have an economic meaning, a plot of the estimated non-linear

component, G(ζt−hβ1i) or
∑n1

i=1 γ2iG
(∑n2

j=1 β2jiG(ζt−hβ1i)
)
, can provide in-

formation on the type/shape of detected non-linearity. For example, it could
indicate whether the ANN is capturing true non-linearities, such as changes
in regimes, or just outliers or other anomalous effects. Standard diagnostic
tests, with an asymptotic justification, can be applied to the residuals.

1An efficient estimation algorithm for macroeconomic forecasting applications was de-
veloped by Stock and Watson (1999). It also carefully considers the specification of starting
values.
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Note that the ANN models above are based on direct estimation (or direct
forecasting). Iterative estimation is also feasible and can improve forecast
accuracy, at the cost of increased computational complexity as multi-steps
ahead forecasts require simulation methods, as discussed in Section 9.6.

Typically, various choices for n1, n2, and p are considered, with either
information criteria used to select the preferred specification, or combination
of the resulting forecasts. For example, Marcellino (2004a) and Marcellino
(2004b) evaluate recursively the forecasting performance of a variety of non-
linear and time-varying models for Euro area macroeconomic time series,
and of combinations of them. For ANN, he reports results for the following
specifications: n1 = 2, n2 = 0, p = 3; n1 = 2, n2 = 1, p = 3; n1 = 2, n2 =
2, p = 3; AIC or BIC selection with n1 = (1, 2, 3), n2 = (1, 2), p = (1, 3).
Recursive evaluation is relevant because, due to their flexibility, ANN are
prone to overfitting. In practice, the dataset can be split into three subsets
for, respectively, training/estimation, validation, and testing. The training
set is used to adjust/estimate the weights of the network; the validation set
is used to minimize the overfitting through proper choice of the specification.
Finally, the testing set is used to assess the actual out-of-sample predictive
power of the model.

In terms of empirical applications, the performance of ANN models is
mixed for macroeconomic variables. For example, ANN models produce the
best forecasts for about 20% of the many euro area variables considered by
Marcellino (2004a) and Marcellino (2004b), with an even larger fraction for
US variables in the analysis of Stock and Watson (1999), whose time series
are much longer than those for the Euro area. However, sometimes the ANN
can produce large forecast errors, typically due to estimation problems, in
particular in short samples. Hence, their automated implementation requires
the introduction of some “insanity filters,” which trim forecasts that are too
different from previously observed values, see e.g., Stock and Watson (1999)
for an example.

It is worth mentioning that ANN models are also extensively used in the
context of machine learning, for example in the context of deep learning,
see e.g., Hinton and Salakhutdinov (2006). Deep learning has been mostly
applied in the economic context for financial applications based on big data.
For example, Giesecke, Sirignano, and Sadhwani (2016) use it to analyze
mortgage risk using a dataset of over 120 million prime and subprime US
mortgages between 1995 and 2014. Heaton, Polson, and Witte (2016) and
Heaton, Polson, and Witte (2017) also employ neural networks in the context
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of portfolio theory.
The capacity of handling big datasets in a nearly fully automated way

makes neural network-based methods, and more generally machine learning,
appealing for specific applications, in particular in finance. Yet, a comparison
with more traditional and user-driven approaches is generally suggested, to
have a better understanding of the actual forecasting ability of ANN methods
in a specific application. Finally, the interpretation of ANN-based forecasts
and the analysis of the sources of forecast errors is generally difficult, due to
the highly non-linear specification.

9.8 Example: Simulated data

For this example, simulated series are generated with either discontinuous
or smooth transition between two states, i.e., adopting a TAR and STAR
models respectively as DGP. Artificial series will be generated for both TAR
and STAR models, separately. A unit threshold and only one lag are used
for simplicity. In both cases, normally distributed homoskedastic errors are
assumed. The TAR DGP is

yt = (θ0,1 + θ1,1yt−1)(1−Dt) + (θ0,2 + θ1,2yt−1)Dt + εt, εt
iid∼ N(0, σε)

Dt = I(yt−1 > 1)

with additional details about the parameters reported in Table 9.8.2. The
STAR DGP is:

yt = θ0,1 + θ1,1yt−1 + (θ0,2 + θ1,2yt−1)G(yt−1; γ, c) + εt,

G(yt−1; γ, c) =
1

1 + exp (−γ (yt−1 − 1))
εt

iid∼ N(0, σε).

A sample of 600 observations is generated, the first 100 observations are
discarded, and the last 100 observations are used to test the predictive power
of the estimated models. The sample containing observations from 100 to 500
is called “estimation” sample, while the last 100 observations “forecasting”
sample. The estimation models will resemble the DGP to avoid additional
issues related to mis-specification.

9.8.1 Testing for linearity versus non-linearity

As working with non-linear models is rather complex as we have seen, it is
important to test whether any non-linear model fits the data statistically
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Figure 9.8.1: Simulated series for TAR model

better than a linear specification. To discriminate between a linear and a
TAR model, we apply to the data simulated according to the TAR DGP
the Hansen (1997) procedure described in Section 9.4. In this example we
use the bootstrap method to simulate the distribution of the Fs statistic
and to determine the acceptance (or rejection) region. For the simulated
data, a 95% acceptance region of Fs for the null hypothesis of linearity is:
[1.897751, 10.50999]. Since the outcome of the test is 54.92206, the linear
specification is rejected in favor of the non-linear (TAR model).

In order to test for linearity versus the STAR model on the simulated
STAR data, the procedure discussed in Section 9.4 is implemented, see
Luukkonen, Saikkonen, and Teräsvirta (1988) or Van Dijk and Franses (1999)
for more details. Specifically, we use an F-statistic to test for δ′ = 0 in the
augmented model:

yt = α′ + β′x̃t + δ′x̃tqt + ut, (9.8.1)

where qt = γ
4
(yt−1 − c), x̃t = yt−1, and for simplicity we us the true values of

γ and c. Given that δ′ is a scalar coefficient, a simple significance t test can
be considered. The test outcome is presented in Table 9.8.1.
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Coefficient Std. Error t-Statistic Prob.

ETA(1) 2.810 1.171 2.399 0.017
ETA(2) 0.586 0.201 2.916 0.004
DELTA(1) -0.055 0.014 -3.834 0.000

R-squared 0.061 Mean dep var 6.151
Adjusted R-squared 0.056 S.D. dep var 1.149
S.E. of regression 1.116 Akaike IC 3.065
Sum squared resid 495.899 Schwarz IC 3.095
Log likelihood -611.582 Hannan-Quinn 3.077
F-statistic 12.871 DW stat 1.962
Prob(F-statistic) 0.000

Table 9.8.1: Outcome of the augmented regression required for the linearity
test on the simulated STAR data

At the 1% confidence level the null hypothesis δ′ = 0 is rejected, i.e.,
there is significant evidence against the linear model and in favor of a STAR
specification.

9.8.2 Estimation

Since analytical formulas for the parameter estimators of TAR and STAR
models are not available, we need to apply numerical solution techniques to
solve the NLS problem as discussed in section 9.3. For the TAR model, we
proceed as follows:

• Step 1: Prepare a grid of M values for the threshold parameter, c in
our notation.

• Step 2: In the loop for each iteration i, where i = 1, ..,M, for each
value ci create a dummy variable Di such that

Di = I(yt−1 > ci) for i = 1, ..,M.

• Step 3: Using OLS, estimate the following model for each i = 1, ..,M :

yt = (φ0,1 + φ1,1yt−1)(1−Di) + (φ0,2 + φ1,2yt−1)Di + εt, εt
iid∼ N(0, σε).
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• Step 4: For each i and resulting estimates of φi = (φ0,1, φ0,2, φ1,1, φ1,2)
find the variance of the error term, σ̂2

ε(ci).

• Step 5: Search for c∗ = arg min
{ci}Mi=1

[σ̂2
ε(ci)], namely, among the set of pre-

selected values for c, we choose the one that minimizes σ̂2
ε(ci) as the

estimator for c. The other estimated parameters φ∗ are those associated
with the value c∗.

The series is generated using an actual threshold parameter ctrue = c∗ = 1.
Figure 9.8.1 depicts the simulated series. Following the steps of the algorithm
described above, we create a grid of 200 values for the threshold parameter
c in the interval [−.05; 1.5]. After going through Steps 2 to 5, we get the
function of the estimated variance, σ̂2

ε(ci), in Figure 9.8.2. As a result of
estimation, we then get the parameter values reported in Table 9.8.2. The
resulting estimators are rather precise perhaps with the exception of φ0,2.

Parameter True value (simulation) Estimate

c 1 1
φ0,1 0.5 0.441
φ1,1 -0.3 -0.288
φ0,2 0.1 0.466
φ1,2 0.8 0.669

Table 9.8.2: Results from estimates: estimated against true values (TAR)

The numerical algorithm for the estimation of the STAR model is similar
to the TAR counterpart, except that the additional smoothing parameter γ
needs to be estimated. Therefore, the algorithm has the following steps:

• Step 1: Choose the appropriate grid for c, the threshold parameter,
and γ, the smoothing parameter (of size M and K respectively);

• Step 2: For each combination of γi and cj, where i =1, . . . , K and j =
1, . . . , M, calculate the function:

Gi,j(yt−1; γi, cj) =
1

1 + exp (−γi (yt−1 − cj))
.

• Step 3: Using OLS, estimate the following linear model:

yt = φ0,1 +φ1,1yt−1 +(φ0,2 +φ1,2yt−1)Gij(yt−1; γi, cj)+εt, εt
iid∼ N(0, σε).
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• Step 4: For each pair of γi and cj and resulting estimates of the pa-
rameters φ, calculate the variance of the error term, σ̂2(γi, cj);

• Step 5: Among all pairs of γi and cj choose the one that minimizes
σ̂2(γi, cj), i.e., find (γ∗, c∗) = arg min

{γi,cj}i.j
[σ̂2(γi, cj)]. The φ∗ parameters are

those associated with γ∗, c∗.

1.46
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Figure 9.8.2: Variance of residuals for different values of ci

The simulated series using the STAR model as DGP is represented in Figure
9.8.3. As for the estimation, we obtain the parameter values reported in
Table 9.8.3.

From Table 9.8.3, it turns out that the estimated values are rather close
to the true ones, except for the smoothing parameter γ. This is unfortu-
nately a common result in practice as already noted in section 9.3, as precise
estimation of γ requires a very long sample and a finer grid for c and γ.

9.8.3 Forecasting

For the forecasting exercise, the “forecasting” sample containing the last 100
observations (of the simulated 600 observations) is considered. The optimal
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Figure 9.8.3: Simulated series for STAR

(in the MSFE terms) h-steps ahead forecast for the non-linear model is:

ŷT+h = E (yT+h|IT ) ,

where yt = F (yt−1; θ) + εt. In the special case h = 1, we then get:

ŷT+1 = F (yt; θ̂),

which can be computed analytically.
For the TAR model, the vector of parameters is θ = (c;φ0,1, φ0,2, φ1,1, φ1,2).

Then, the one-step ahead forecast can be computed as:

ŷT+1 = (φ∗0,1 + φ∗1,1yT )(1− I(yT > c∗)) + (φ∗0,2 + φ∗1,2yT )I(yT > c∗).

For the STAR model, the vector of parameters is θ = (c, y;φ0,1, φ0,2, φ1,1, φ1,2).
Then, the one-step ahead STAR forecast is:

yt+1 = φ∗0,1 + φ∗1,1yt + (φ∗0,2 + φ∗1,2yt)G(yt; γ
∗, c∗).

The one-step ahead (recursive) forecasts for the TAR model are presented in
Figure 9.8.4, in comparison with a linear AR(1) specification as benchmark.
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Parameter True value (simulation) Estimate

c 6 6
γ 5 8.6
φ0,1 2 1.97
φ1,1 0.9 0.9103
φ0,2 3 3.7815
φ1,2 -0.8 -0.9099

Table 9.8.3: Results from estimates: estimated against true values (STAR)

The one-step ahead (recursive) STAR forecasts are presented in Figure
9.8.5, including the corresponding AR(1) benchmark forecasts. In both cases,
from a graphical inspection, the non-linear forecasts track the actual values
more closely than the linear counterparts. However, to have a precise grasp of
the forecasting performance of these non-linear models, some diagnostics have
been computed: the TAR forecasts obtained a RMSFE of 1.08525 against
a RMSFE of 1.2266 of the linear AR(1) benchmark; the STAR forecasts
obtained a RMSFE of 0.9596 against 1.04395 of the linear benchmark. In
both cases the non-linear models prove themselves to better perform with
respect to a linear model, when tested on simulated data with non-linear
DGP.

9.8.4 Two-steps ahead forecasting

Performing non-linear forecasting for h > 1 is more complex than in the
linear case. Indeed, as discussed in Section 9.6, the linear properties of the
expectation operator no longer apply. For this reason, the computation of the
correct conditional expectation requires some integration. Specifically, the
following procedure generates a simulation based two-steps ahead forecast
for the TAR and STAR models.

Let us assume that we are in observation T, and estimate the model
parameters θ̂ using the sample 1, . . . , T (where the model is either TAR or
STAR). Next, we compute the one-step ahead forecast as discussed above,
namely,

E[yT+1|IT ] = E[F (yT ; θ̂) + εT+1|IT ] = F (yT ; θ̂).

Then, we have

E[yT+2|IT ] = E[F (yT+1; θ̂) + εT+2|IT ] = E[F (F (yT ; θ̂) + εT+1; θ̂)|IT ].
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Figure 9.8.4: One-step ahead forecast comparison: TAR model against AR(1)

Given a distributional assumption on εT+1, such as εT+1 ∼ N (0, σ2
ε) , it is

possible to simulate the distribution for yT+1 by generating random errors
from N (0, σ̂2

ε) , where σ̂2
ε is the in-sample estimate, obtaining an empirical

distribution of yT+1 = F (yT ; θ̂) + εT+1. Hence, for a given value yiT+1 of
the empirical distribution of yT+1, the non-linear two-steps ahead forecast is
ŷiT+2 = F (yiT+1; θ̂). Repeating this procedure for all the values yiT+1, i= 1, . . . ,

B, generates an empirical distribution for the two-steps forecast,
(
ŷiT+2

)B
i=1

.

Finally, the sample average of
(
ŷiT+2

)B
i=1

can be used to approximate the
optimal two-steps forecast E[yT+2|IT ]:

ŷsimT+2 ≈ E[yT+2|IT ] =
1

B

B∑
i=0

ŷiT+2.

A simpler possibility is to compute the two-steps forecast by simply iterating
the non-linear operator without any integration, that is,

ŷplainT+2 = F
(
F (yT ; θ̂); θ̂

)
.

As we have discussed in the theory part, ŷplainT+2 is generally biased due to the
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Figure 9.8.5: One-step ahead forecast comparison: STAR model against
AR(1)

non-linearity of the F function.
A third alternative is to use the direct forecasting technique, again de-

scribed in Section 9.5. This implies estimating the non-linear model using
only the second lag both in the switching function and in the equation, so
that the non-linear operator depends already on the twice lagged variable,
and the forecast is simply

ŷdirT+2 = F2(yT ; θ̂),

where F2 (·) is the non-linear operator that depends directly on the two-steps
lagged information. Unfortunately, ŷdirT+2 is also generally biased, as the direct
model assumes the same functional relationship F as in the original model,
but this is in general incorrect as in this case the original model is not linear.

The three types of two-steps ahead forecasts (optimal, plain, and direct)
are computed and compared using the last 100 simulated data. Using the
artificial series generated by the TAR DGP, we get the outcome reported in
Figure 9.8.6 and Table 9.8.4. According to the RMSFE and in line with the-
ory, the simulation based two-steps forecast is the best performing, followed
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by the direct forecast, and then the plain forecast and that resulting from
the linear benchmark.
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Figure 9.8.6: Two-steps ahead forecasts from TAR versus actual data

Model RMSFE
Linear 1.393
TAR, simulated 1.344
TAR, direct 1.354
TAR, plain 1.371

Table 9.8.4: Root mean square errors of two-steps ahead forecasts (TAR vs.
Linear)

The same exercise performed for the STAR DGP data gives the results
presented in Figure 9.8.7 and Table 9.8.5.

As in the TAR case, the simulation based forecast is the best performer,
but now the linear forecast wins over the direct method.
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Model RMSFE
Linear 1.072
STAR, simulated 1.060
STAR, direct 1.084
STAR, plain 1.183

Table 9.8.5: Root mean square errors of two-steps ahead forecasts (STAR vs.
Linear)

9.9 Example: Forecasting industrial

production growth

To perform a real data exercise, we consider the growth rate for the United
States industrial production index downloaded from the FRED database.
The full quarterly sample available in the database covers more than eight
decades, from 1930Q1 to 2014Q4. A longer sample is useful to detect non-
linearities in the data. Therefore, the estimation sample is set to start in
1930Q1 and end in 2000Q1, while the forecasting sample covers the period
from 2000Q2 to 2014Q4. Figure 9.9.1 presents the data in both estimation
and forecasting samples. The first step of the analysis is to determine whether
a TAR model is more appropriate than a linear model. To do so we use the
Hansen’s sup-LR test.

The benchmark linear specification for the growth rate of US industrial
production is set to be an AR(2) specification. Therefore the TAR/STAR
specification is adapted to have two lags and two regimes, the regime de-
pending only on the first lag as for the simulated data. The estimated AR(2)
appears in Table 9.9.1.

To test the linear specification versus the TAR model, we need to de-
termine the grid for the threshold parameter. Since using real data the
true threshold parameter is unknown, in general the range of possible values
should be wide enough to cover reasonable values. Moreover, economic con-
siderations could help. For example, as we could imagine the dynamics of
industrial production growth differs in expansions and recessions, we use the
interval [−1.00; 4.00], and construct a grid of 200 points.

The Hansen’s sup-LR test produces an F sup equal to 56.9106. Using
the bootstrap procedure described above, it is possible to build the distri-
bution of the F sup statistic under the hypothesis of linearity. According
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Figure 9.8.7: Two-steps ahead forecasts from STAR versus actual data

Variable Coefficient Std. Error t-Statistic Prob.

C 0.703 0.239 2.939 0.004
Y(-1) 0.400 0.060 6.667 0.000
Y(-2) -0.079 0.060 -1.316 0.189

R-squared 0.143 Mean dep var 1.030
Adjusted R-squared 0.137 S.D. dep var 4.128
S.E. of regression 3.836 Akaike IC 5.537
Sum squared resid 4060.311 Schwarz IC 5.576
Log likelihood -769.437 Hannan-Quinn 5.553
F-statistic 23.039 DW stat 1.957
Prob(F-statistic) 0.000

Table 9.9.1: Estimation output for an AR(2) model

to the simulated distribution, a 95% confidence interval for the F sup is
[4.106512, 17.88015]. Therefore, it is possible to reject linearity; the test pro-
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Figure 9.9.1: Series for industrial production

vides enough evidence that the TAR model better describes the data when
compared with the linear AR(2) model.

Performing the estimation of the TAR model, the variance of the residuals
is minimized among the grid of possible threshold values. These variances are
plotted in Figure 9.9.2 as a function of the threshold, while the full estimation
results for the model

yt = (φ0,1 + φ1,1yt−1 + φ2,1yt−2)(1−Di) + (φ0,2 + φ1,2yt−1 + φ2,2yt−2)Di + εt

are presented in Table 9.9.2. The variance is minimized at the threshold
c = 2.375 (which is larger than zero as on average over the sample average
industrial production growth was indeed around 1). We also note that there
is a substantial increase in the adjusted R2 with respect to the linear case,
from about 0.14 to about 0.25.

As for the STAR model, estimation is conducted as illustrated with the
simulated data. The model with two lags and two regimes is given by

yt = φ0,1 + φ1,1yt−1 + φ2,1yt−2 +

(φ0,2 + φ1,2yt−1 + φ2,2yt−2)Gij(yt−1; γi, cj) + εt, εt
iid∼ N(0, σε).
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Variable Coefficient Std. Error t-Statistic Prob.

C 0.450 0.254 1.773 0.077
DUMMY C EST(-1) 2.912 0.835 3.489 0.001
Y(-1)*DUMMY C EST(-1) 0.200 0.125 1.601 0.111
Y(-1)*(1-DUMMY C EST(-1)) 0.367 0.084 4.355 0.000
Y(-2)*DUMMY C EST(-1) -0.532 0.093 -5.711 0.000
Y(-2)*(1-DUMMY C EST(-1)) 0.165 0.069 2.385 0.018

R-squared 0.267 Mean dep var 1.030
Adjusted R-squared 0.253 S.D. dep var 4.128
S.E. of regression 3.567 Akaike infocriterion 5.403
Sum squared resid 3474.043 Schwarz IC 5.481
Log likelihood -747.684 Hannan-Quinn 5.434
F-statistic 19.868 DW stat 1.847
Prob(F-statistic) 0.000

Table 9.9.2: Estimation output for a TAR model

Differently from the TAR model, the variance is minimized for boundary
grid values of the γ and c parameters, reaching γ = 0.2 and c = 4. This
is probably due to the fact that the estimation is trying to smooth further
between the two regimes and simultaneously to polarize the regimes, implying
that probably a higher number of regimes would be needed. The results of
the estimation is contained in Table 9.9.3. There is a further increase in the
adjusted R2, to about 0.28, and the information criteria are generally lower
than for the TAR model (and for the linear specification).

Having estimated the two models, a recursive forecasting exercise is per-
formed using the TAR, the STAR, and the linear AR(2) specifications. Graph-
ical results are displayed in figure 9.9.3 for the case h = 1.

From a graphical inspection it seems that the linear model has a poorer
forecasting performance during the crisis, when compared with the non-linear
models. Table 9.9.4 compares the RMSFEs for the different models and shows
the p-values resulting from a Diebold-Mariano test. It turns out the RMSFE
of the TAR and STAR models are lower than the AR(2) specification. How-
ever, we never reject the null hypothesis of same forecasting accuracy for
each pair of models.
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Figure 9.9.2: Variance of residuals for different threshold values in the grid

Variable Coefficient Std. Error t-Statistic Prob.

C -1.962 2.046 -0.959 0.338
G EST 8.913 6.235 1.430 0.154
(1-G EST)*Y(-1) 0.189 0.196 0.962 0.337
G EST*Y(-1) 0.153 0.287 0.534 0.594
(1-G EST)*Y(-2) 0.382 0.086 4.426 0.000
G EST*Y(-2) -1.004 0.141 -7.141 0.000

R-squared 0.294 Mean dep var 1.030
Adjusted R-squared 0.281 S.D. dep var 4.128
S.E. of regression 3.502 Akaike IC 5.366
Sum squared resid 3347.206 Schwarz IC 5.444
Log likelihood -742.495 Hannan-Quinn 5.397
F-statistic 22.690 DW stat 1.817
Prob(F-statistic) 0.000

Table 9.9.3: Estimation output for STAR model



i
i

i
i

i
i

i
i

9.10. CONCLUDING REMARKS 397

-6
-5
-4
-3
-2
-1
0
1
2
3

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14
Y Y_STAR
Y_TAR Y_LINEAR

Figure 9.9.3: One-step ahead forecast comparison: AR(2), TAR, and STAR
versus actual data

RMSFE p- value
AR TAR

AR 1.167 - 0.18
TAR 1.112 0.18 -
STAR 1.113 0.26 0.48

Table 9.9.4: Root mean square errors and Diebold-Mariano tests for AR,
TAR, and STAR.

9.10 Concluding remarks

In this chapter we have discussed forecasting with non-linear models, focus-
ing on two interesting types of specifications characterized by time-varying
parameters. In TAR models, the parameters change abruptly over time when
a threshold variable reaches a threshold value. In STAR models the same
happens, but the transition from the old to the new parameter values is
smoother. Estimation of TAR and STAR models requires the use of non-
linear least squares, with starting values generally obtained from a proper
grid search. Testing for linearity versus TAR or STAR is complicated by the
presence of nuisance parameters, but simple procedures to address this prob-



i
i

i
i

i
i

i
i

398 CHAPTER 9. TAR AND STAR MODELS

lem can be designed. Finally, multi-steps point forecasting with non-linear
models is complicated, as well as the derivation of interval forecasts, but sim-
ulation based methods can be applied. Empirically, they seem to work fairly
well, according to the results we obtained with both simulated and actual
data.
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Chapter 10

Markov Switching Models

10.1 Introduction

Econometric models in a time series context are subject to parameters in-
stability, for a variety of reasons. Therefore, a constant parameter model,
which does not allow for any change of parameters across time, can lead to
substantial estimation bias and a poor forecasting performance.

Let us consider as an example the model

yt = (φ01 + φ11yt−1)St + (φ02 + φ12yt−1)(1− St) + εt, (10.1.1)

where εt ∼ iid N(0, σ2) and St ∈ {0, 1} . This is an AR(1) whose coefficients
are either φ01 and φ11 or φ02 and φ12, depending on the value (also called
regime) of the binary variable St.

If the values of St are known, we can just use St as a dummy variable, as
we have seen in Chapter 2. However, often the values of St are not known,
either in sample or, more importantly from a forecasting perspective, out of
sample.

If St is not known but depends on observable variables, we can use a
specification similar to that used in the previous chapter for the TAR model,
e.g., St = I(yt−1 > c), where c is an unknown threshold value. We can also
allow for a more general form of parameter transition, as e.g., in the STAR
model, where St = G(yt−1; γ, c).

If St is not observable, we need to make assumptions about its generating
mechanism. If St is a continuous variable, we could for example assume that
it follows an AR model, as will be further discussed in the next chapter. If
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instead, as in (10.1.1), St is a discrete binary variable, the simplest hypothesis
is to assume that St is a Markov chain. This is the case we will consider in
this chapter, as it underlies an important class of time varying parameter
models, known as Markov Switching (MS) models.

The chapter is structured as follows. In Section 10.2, we review some basic
notions about Markov chains. In Section 10.3 we consider the case where
φ11 = φ12 = 0 (i.e., yt is a mixture of i.i.d. distributions with different means,
φ01 and φ02). In Section 10.4 we discuss the more general dynamic case, with
a focus on forecasting. In Sections 10.5 and 10.6 we present examples using,
respectively simulated and actual data. Conclusions appear in Section 10.7.
For additional details and generalizations, see Hamilton (1994, Chapter 22),
which is the main reference for the theoretical framework adopted in this
chapter.

10.2 Markov chains

Let us consider the random variable St that takes integer values {1, 2, . . . , N} .
From an economic point of view, the states of St (or regimes) could describe
for example the unobservable conditions of the economy, e.g., expansion
(St = 1) or recession (St = 0), or whether the central bank is credible or
not, or a high-, medium-, or low-risk level in the financial sector.

Let us assume that

P {St = j|St−1 = i, St−2 = k, . . .} = P {St = j|St−1 = i} = pij, (10.2.1)

so that only the previous state influences the probability of the following
state. St is then called an N -state Markov chain, with transition probabilities
{pij}i,j=1,...,N , where pij is the probability that state i will be followed by state
j. Note that

pi1 + pi2 + . . .+ piN = 1.

Let us group the transition probabilities into the transition matrix P :

P =


p11 p21 . . . pN1

p12 p22 . . . pN2

. . .
p1N p2N . . . pNN

 (10.2.2)
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Let us now define the vector ξt as

ξt
N×1

=


(1, 0, . . . , 0)′ if St = 1
(0, 1, . . . , 0)′ if St = 2
...
(0, 0, . . . , 1)′ if St = N

(10.2.3)

Note that

E(ξt) =


1 ∗ P {St = 1}+ 0 ∗ P {St = 2}+ . . .+ 0 ∗ P {St = N}
0 ∗ P {St = 1}+ 1 ∗ P {St = 2}+ . . .+ 0 ∗ P {St = N}

...
0 ∗ P {St = 1}+ 0 ∗ P {St = 2}+ . . .+ 1 ∗ P {St = N}



=


P {St = 1}
P {St = 2}

...
P {St = N}

 =


π1

π2
...
πN

 (10.2.4)

where the vector π = (π1, . . . , πN)′ contains the unconditional probabilities
of the states. Similarly,

E(ξt+1|St = i) =


pi1
pi2
. . .
piN

 ,

so that E(ξt+1|St = i) is equal to the ith column of the transition matrix P.
Moreover, when St = i, ξt = (0, 0, . . . , 1, 0, . . . , 0)′, which is the ith column

of IN . Therefore, we can write

E(ξt+1|ξt) = Pξt.

For example,

E(ξt+1|St = 1) = E(ξt+1|(1, 0, . . . , 0)′)

=


P11 P21 . . . PN1

P12 P22 . . . PN2

. . .
P1N P2N . . . PNN




1
0
. . .
0

 =


P11

P12

. . .
P1N

 .
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From the Markov property,

P (St+1 = i|St = j, St−1 = k, . . .) = P (St+1|St = j),

it follows that
E(ξt+1|ξt, ξt−1, . . .) = Pξt.

As a consequence, we can write

ξt+1 = Pξt + υt+1, (10.2.5)

vt+1 = ξt+1 − E(ξt+1|ξt, ξt−1, . . .).

In other words, ξt+1 follows a VAR(1) process, and υt+1 is a (zero mean) one-
step ahead forecast error. Using the standard formula for VARs, it follows
that

E(ξt+m|ξt, ξt−1, . . .) = Pmξt, (10.2.6)

and since the jth element of ξt+m = 1 only if St+m = j (= 0 otherwise), the
jth element of E(ξt+m|ξt, ξt−1, . . .) indicates the probability that the system
will be in state j in period t+m conditional on the state in period t.

An implication of this result is that the m−period ahead transition matrix
is given by Pm. For example, P (St+m = 2|St = 1) is the (2, 1) element of Pm.

Finally, we derive a formula that links the conditional and unconditional
transition probabilities. Taking unconditional expectations of the VAR rep-
resentation for ξt+1 yields

E(ξt+1) = PE(ξt) + E(υt+1),

and, using (10.2.4) and (10.2.5), we have

π = Pπ.

Moreover, defining i′ = (1, 1, . . . , 1), it holds that

i′π = 1.

Therefore, we can write [
IN − P
i′

]
N+1×N

π
N×1

=

[
0N
1

]
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or

Aπ
N+1×N

=

[
0N
1

]
,

and hence

Pr


St = 1
St = 2
. . .

St = N

 = π = (A′A)−1A′
[
0N
1

]
, (10.2.7)

which is a convenient formula to compute the unconditional probabilities of
each state from the conditional probabilities in P (which is contained in A).

10.3 Mixture of i.i.d. distributions

Before discussing the general dynamic case, let us consider in details the sim-
plest model whose parameters change with the unobservable discrete random
variable St, which in turn follows a Markov chain. Let us assume that

yt = µSt + εt, (10.3.1)

with εt ∼ N(0, σ2
St

) and St = {1, 2, . . . , N} . In this case

f(yt|St = j; θ) =
1√

2πσ2
j

exp

{
−(yt − µj)2

2σ2
j

}
, (10.3.2)

for j = 1, . . . , N , with θ = {µ1, . . . , µN , σ
2
1, . . . , σ

2
N} . Let us also assume that

P {St = j; θ} = πj

j = 1, . . . , N , so that now θ = {µ1, . . . , µN , σ
2
1, . . . , σ

2
N , π1, . . . , πN} .

Since f(x, y) = f(x|y)f(y), we have that the joint density of yt and St is

P (yt, St = j; θ) = f(yt|St = j; θ)P (St = j; θ) (10.3.3)

=
πj√
2πσ2

j

exp

{
−(yt − µj)2

2σ2
j

}
.

To obtain the marginal density of yt, we integrate out St,

f(yt; θ) =
N∑
j=1

P (yt, St = j; θ). (10.3.4)
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This is the relevant density to describe the actual data, since the regime St
is unobserved. It can also be used to construct the likelihood function, as we
will see later on.

Another quantity of interest is the probability that a given regime was
responsible for producing the observation yt (e.g., expansion or recession).
Again using the formula for conditional probabilities, we have

P (St = j|yt; θ) =
P (yt, St = j; θ)

f(yt; θ)
(10.3.5)

=
πjf(yt|St = j; θ)

f(yt; θ)
.

With this formula we can make (probabilistic) statements about the unob-
servable variable St given the observable variable yt. For example, we could
say what is the probability of being in a recession given an observed level
of GDP growth, or what is the probability that the central bank is credible
given a certain discrepancy between long-term inflation expectations and the
inflation target.

All the distributions we have considered so far are known, assuming that
θ is known. Since in practice θ is not known, we now consider how it can
be estimated. Applying the chain rule, the log likelihood function for the
observed data is

L(θ) =
T∑
t=1

log(f(yt; θ)). (10.3.6)

Therefore, the maximum likelihood estimator (MLE) for θ solves

θ̂ ≡ argmax
θ
L(θ)

s.t.

N∑
j=1

πj = 1, πj ≥ 0, j = 1, . . . , N.

The first order conditions (F.O.C.) are (see e.g., Hamilton (1994, Appendix
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to Chapter 22)) for j = 1, . . . , N :

(F1) : µ̂j =
T∑
t=1

yt
P (St = j|yt; θ̂)∑T
t=1 P (St = j|yt; θ̂)

, (10.3.7)

(F2) : σ̂2
j =

T∑
t=1

(yt − µ̂j)2 P (St = j|yt; θ̂)∑T
t=1 P (St = j|yt; θ̂)

, (10.3.8)

(F3) : π̂j = T−1

T∑
t=1

P (St = j|yt; θ̂). (10.3.9)

These F.O.C. have an intuitive interpretation. Consider the expression for
µ̂j. With one regime only, we would estimate µ as µ̂ =

∑T
t=1 yt/T. If µ =

µ1 for t = 1, . . . , T1 and µ = µ2 for t = T1 + 1, . . . , T, we would use µ̂1

=
∑T1

t=1 yt/T1 and µ̂2 =
∑T

t=T1+1 yt/(T − T1). Here, in (F1), we take the
weighted average of the observed yt, where the weights are proportional to
the probability that regime j is responsible for observation yt, t = 1, . . . , T.

A similar interpretation holds for σ̂2
j in (F2), while π̂j in (F3), the uncon-

ditional probability P (St = j|θ), is obtained by averaging the probabilities
conditional on yt.

The F.O.C. are a system of 3N non-linear equations in 3N unknowns, θ̂
=(µ̂j, σ̂

2
j , π̂j, j = 1, . . . , N). To solve them, one could use either a numerical

method, or the following iterative algorithm.

• First, start with a guess for θ̂, say θ(1). With θ(1), calculate P (St =
j|yt; θ(1)) from (11.2.1). Using these quantities and θ(1), get θ(2) =
(µ̂j, σ̂

2
j , π̂j)

N
j=1 from the F.O.C.

• Second, use θ(2) to compute P (St = j|yt; θ(2)) and θ(3) = (µ̂j, σ̂
2
j , π̂j)

N
j=1

from the F.O.C.

• Next, keep iterating until the difference between θ(m+1) and θ(m) is
smaller than some specified value.

This algorithm is a special case of the Expectation Maximization (EM) al-
gorithm of Dempster, Laird, and Rubin (1977).
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10.4 Markov switching dynamic models

Let us now consider the general case where yt depends on its own lags, on
a set of exogenous variables x and their lags, and the dependence varies in
different regimes. Let us group all the observations on y and x up to period
t into

Yt = (yt, yt−1, . . . , x
′
t, x
′
t−1, . . .)

′.

If at date t the system is in regime j, the conditional density of yt is

f(yt|St = j, xt, Yt−1;α), j = 1, . . . , N. (10.4.1)

Let us group the N densities for different values of j into the vector ηt, such
that

ηt =

 f(yt|St = 1, xt, Yt−1;α)
. . .

f(yt|St = N, xt, Yt−1;α)

 . (10.4.2)

For example, if the model is the Markov switching AR(1)

yt = φ0,St + φ1,Styt−1 + εt,

εt
iid∼ N(0, σ2), St = {1, 2} ,

then xt = 1, α = (φ0,1, φ0,2, φ1,1, φ1,2, σ
2) and

ηt =

[
f(yt|St = 1, Yt−1;α)
f(yt|St = 2, Yt−1;α)

]
=

 1√
2πσ2

exp
{
− (yt−φ0,1−φ1,1yt−1)2

2σ2

}
1√

2πσ2
exp

{
− (yt−φ0,2−φ1,2yt−1)2

2σ2

} .
Back to the general case, let us also assume that

P (St = j|St−1 = i, St−2 = k, . . . , xt, Yt−1) = P (St = j|St−1 = i) = pij.

To start with, we are interested in the probability that a given regime is
responsible for the observation yt. In the i.i.d. case we saw that this proba-
bility depends on yt only. Now, because of the dynamics, it will in general
depend on the whole history of y, and possibly of x. Therefore, we want to
evaluate

P (St = j|Yt; θ), j = 1, . . . , N, (10.4.3)

where θ groups α and the pijs. We have:

P (St = j|Yt; θ) = P (St = j|yt, xt, Yt−1; θ) =
P (yt, St = j|xt, Yt−1; θ)

f(yt|xt, Yt−1; θ)
.
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Now:

P (yt, St = j|xt, Yt−1; θ) = P (St = j|xt, Yt−1; θ)f(yt|St = j, xt, Yt−1;α)

= P (St = j|Yt−1; θ)f(yt|St = j, xt, Yt−1;α),

assuming that xt does not influence St.Then,

f(yt|xt, Yt−1; θ) =
N∑
j=1

P (yt, St = j|xt, Yt−1; θ)

=
N∑
j=1

f(yt|St = j, xt, Yt−1;α)P (St = j|xt, Yt−1; θ)

=
N∑
j=1

f(yt|St = j, xt, Yt−1;α)P (St = j|Yt−1; θ).

Therefore,

P (St = j|Yt; θ) =
P (St = j|Yt−1; θ)f(yt|St = j, xt, Yt−1;α)∑N
j=1 P (St = j|Yt−1; θ)f(yt|St = j, xt, Yt−1;α)

, (10.4.4)

with j = 1, . . . , N. In order to find a more compact notation for (10.4.4), we
define

ξt|t
N×1

=


P (St = 1|Yt; θ)
P (St = 2|Yt; θ)

.

.

.
P (St = N |Yt; θ)

 , ξt|t−1
N×1

=


P (St = 1|Yt−1; θ)
P (St = 2|Yt−1; θ)

.

.

.
P (St = N |Yt−1; θ)

 .

Then, we can write (10.4.4) as

ξt|t =
ξt|t−1 � ηt

i′(ξt|t−1 � ηt)
, (10.4.5)

where � indicates element-by-element multiplication and i′ = (1, 1, . . . , 1) is
of dimension 1×N.

We saw before that for a Markov chain:

ξt+1 = Pξt + υt+1, (10.4.6)
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where P is the matrix of transition probabilities with generic element pij.
Taking expectations conditional on Yt yields

E(ξt+1|Yt) = PE(ξt|Yt) + E(υt+1|Yt)

or
ξt+1|t = Pξt|t, (10.4.7)

which is the formula to forecast future states (or more precisely the proba-
bility of each future state).

Given (10.4.4), (10.4.7) and a starting value ξ1|0, we can calculate ξt|t (and
ξt+1|t) for any t. A possible starting value is the vector of unconditional prob-
abilities (π) which we derived in the section on Markov chains (see equation
(10.2.7)).

Let us now consider forecasting future values of y. The starting point is
the conditional density

f(yt|St = j, xt, Yt−1;α). (10.4.8)

If Yt, xt+1 and St+1 are known in period t, the optimal (in the MSFE sense)
forecast is

E(yt+1|St+1 = j, xt+1, Yt;α) =

∫
yt+1f(yt+1|St+1 = j, xt+1, Yt;α)dyt+1,

(10.4.9)
with j = 1, . . . N. Yet, typically, the future regime St+1 is not known. There-
fore, the forecast must be

E(yt+1|xt+1, Yt;α) =
N∑
j=1

P (St+1 = j|Yt; θ)E(yt+1|St+1 = j, xt+1, Yt;α).

(10.4.10)
If we group the state dependent forecasts E(yt+1|St+1 = j, xt+1, Yt;α) into
the N × 1 vector ht, then we can write E(yt+1|xt+1, Yt;α) = h′tξt+1|t.

Similar techniques can be used to forecast yt+m. Note also that the co-
variance matrix of the errors will, in general, change across time.

A third object of interest from a forecasting point of view is the duration
of a regime, i.e., if today we are in regime j, how long will we remain in this
regime? To answer this question, let us assume for simplicity that the model
is such that

P (St = j|St−1 = i, St−2 = k, . . . , Yt) = P (St = j|St−1 = i) = pij.
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Let us consider the following events and associated probabilities:

D = 1, if St = j and St+1 6= j; Pr(D = 1) = (1− pjj),
D = 2, if St = j, St+1 = j and St+2 6= j; Pr(D = 2) = pjj(1− pjj),
D = 3, if St = j, St+1 = j, St+2 = j and St+3 6= j; Pr(D = 3) = p2

jj(1− pjj),
. . .

Then, the expected duration of regime j is

E(D) =
∞∑
i=1

iPr(D = i) =
1

1− pjj
.

So far we have assumed that θ (which includes α and the pijs) are known.
Let us now see how to get MLEs for θ. The log-likelihood function is given
by

L(θ) =
T∑
t=1

logf(yt|xt, Yt−1; θ). (10.4.11)

We have

f(yt, St = j|xt, Yt−1; θ) = P (St = j|xt, Yt−1; θ)f(yt|St = j, xt, Yt−1;α)

= P (St = j|Yt−1; θ)f(yt|St = j, xt, Yt−1;α). (10.4.12)

Therefore, the elements to be inserted into (10.4.11) are

f(yt|xt, Yt−1; θ) =
N∑
j=1

P (St = j|Yt−1; θ)f(yt|St = j, xt, Yt−1;α)

= i′(ξt|t−1 � ηt) (10.4.13)

where i′ = (1, 1, . . . 1). The maximizer of (10.4.11), θ̂, can be found either
numerically or using a modified version of the EM algorithm we have seen
for the i.i.d. case, see, e.g., Hamilton (1994, Chapter 22) for details.

We also assumed that the number of regimes, N, is known. In practice
this is not the case, and testing for the proper value of N is not easy. Em-
pirically, as in the STAR model case, it is easier to start with two regimes
and check whether there is evidence of model misspecification. The opposite
strategy, i.e., starting with three regimes and testing two versus three creates
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complications since parameters of the third regime are not identified under
the null hypothesis of two regimes.

Psaradakis and Spagnolo (2006) studied the performance of information
criteria, finding that the AIC, BIC, and HQ criteria perform well for select-
ing the correct number of regimes and lags as long as the sample size and
the parameter changes are large enough. Smith, Naik, and Tsai (2006) pro-
posed a new information criterion for selecting simultaneously the number of
variables and the lag length of the Markov switching model.

10.5 Empirical example: Simulated data

In the first part of the example we illustrate estimation and forecasting a
Hamilton-type Markov switching regression model with intercept and some
autoregressive terms that vary across regimes, using simulated data. The
DGP is the following:

yt =

{
α1,1 + α2,1 · yt−1 + α3,1 · yt−2 + εt, if state = 1
α1,2 + α2,2 · yt−1 + α3,2 · yt−2 + εt, if state = 2

The data was simulated using the following parameters:

State 1 State 2
α1 -0.2 0.2
α2 1.2 0.4
α3 -0.3 -0.3

To generate the series we use the following procedure:

1. Generate the Markov chain state variable. In this exercise we use a
two-state Markov chain with the following transition matrix P ,

P =

[
0.83 0.17
0.25 0.75

]

2. Conditional on the generated state variable, we simulate the series with
AR(2) dynamics and state-dependent intercept.
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The simulated series contains 600 observations. In order to avoid depen-
dence on the starting values, the first 100 observations will be discarded.
The data is represented in Figure 10.5.1. The available sample is divided
into two parts: estimation sample, from the 101st observation to the 500th
observation, and forecasting sample, from the 501st to the 600th observation.

-4

-3

-2

-1

0

1

2

3

150 200 250 300 350 400 450 500 550 600

Figure 10.5.1: Series for simulated MS-AR(2)

The Markov switching AR specification will be compared with a linear
model specification, i.e., an AR(2) model

yt = α1 + α2yt−1 + α3yt−2 + εt, εt
iid∼ N

(
0, σ2

)
.

As we can see from the results reported in Table 10.5.1, the estimated
coefficients are significantly different from zero, but also different from those
of the DGP (except for the AR(2) coefficient, α3).

We estimate a MS model with the first lag and intercept coefficients
changing between two regimes and the coefficient of the second lag remaining
constant, i.e., the following model

yt = (α1,1 + α2,1 · yt−1) · I (st = 1) + (α1,2 + α2,2 · yt−1) I (st = 2)

+α3 · yt−2 + εt, εt
iid∼ N

(
0, σ2

)
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Coefficient Std. Error t-Statistic Prob.

ALPHA(1) -0.056 0.029 -1.938 0.053
ALPHA(2) 0.956 0.047 20.267 0.000
ALPHA(3) -0.342 0.047 -7.259 0.000

R-squared 0.565 Mean dep var -0.142
Adjusted R-squared 0.563 S.D. dep var 0.856
S.E. of regression 0.566 Akaike IC 1.708
Sum squared resid 127.325 Schwarz IC 1.738
Log likelihood -338.631 Hannan-Quinn 1.720
F-statistic 257.576 DW stat 2.025
Prob(F-statistic) 0.000

Table 10.5.1: Estimation output for AR(2) model

where st is a Markov process with two states. The estimation results are
shown in Table 10.5.2. The estimated value of the intercept term for the first
regime is equal to −0.1268 (s.e.=0.06743), while that for the second regime
is equal to 0.1676 (s.e.=0.0493). Both estimated intercepts are reasonably
close to the actual DGP parameters, and significant at 10% confidence level.
All the autoregressive terms estimates are significant and close to the DGP
counterparts. The estimated transition matrix using the simulated data is
reported in Table 10.5.3.

Forecasting

In this part of the example we assess the forecasting performance of the
following two types of models for the simulated data: the AR(2) model and
the Markov switching model with intercept and first lag changing between
regimes (while the second lag and the error variance remain constant across
regimes). We consider one-step ahead recursive forecasts for the last 100
observations in the sample. The results are presented in Figure 10.5.2.

From a graphical inspection, the AR(2) and MSAR forecasts seem very
close. Table 10.5.4 presents the associated RMSFE of both models, from
which the forecasting performance of the MSAR model comes out to be
slightly better than that of the AR(2) model even if a Diebold-Mariano test
fails to reject the null hypothesis of equal forecasting accuracy.
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Variable Coefficient Std. Error z-Statistic Prob.

Regime 1
C -0.127 0.067 -1.881 0.060
AR(1) 1.391 0.049 28.256 0.000
Regime 2
C 0.168 0.049 3.403 0.001
AR(1) 0.536 0.060 8.957 0.000
Common
AR(2) -0.404 0.045 -9.067 0.000

Log(Sigma) -0.956 0.048 -19.899 0.000
Transition Matrix Para.
P11-C 0.604 0.255 2.371 0.018
P21-C -0.408 0.454 -0.900 0.368

Mean dep var -0.142 S.D. dep var 0.856
S.E. of regression 0.570 Sum squared resid 128.137
DW stat 2.028 Log likelihood -282.828
Akaike IC 1.454 Schwarz IC 1.534
Hannan-Quinn 1.486

Table 10.5.2: Estimation output for Markov switching AR(2)

10.6 Empirical example: Industrial

production

To illustrate the estimation of a Markov switching model with real economic
data, the growth rate of the United States industrial production index from
the FRED database is used, as in Chapter 9. Also in this case, the sample
used runs from 1930Q1 to 2014Q4. The estimation sample is set to start in
1930Q1 and end in 2000Q1, while the forecasting sample covers the period
from 2000Q2 to 2014Q4.

We estimate a Hamilton-type Markov switching regression model with
intercept and first AR lag changing between regimes.
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pij j = 1 j = 2
i = 1 0.601 0.399
i = 2 0.354 0.647

Table 10.5.3: Estimated transition probabilities
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Figure 10.5.2: One-step ahead forecast comparison: AR(2) vs Markov switch-
ing AR(2)

The estimation results are represented in Table 10.6.1. Both the intercept
and the coefficient of the first autoregressive lag turn out to be quite different
in the two regimes. The smoothed probabilities for the regimes are displayed
in Figure 10.6.1. It can be seen that the first regime is estimated mainly in
the first part of the sample, associated with the Great Depression and a few
instance in the 1950s and 1960s.

For comparison, Table 10.6.2 provides results from estimation of a simple
AR(2) specification. It runs out that there is a slight deterioration both in
the explanatory power and in the information criteria.
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Model RMSFE DM pval
AR(2) 0.555 -
MSAR 0.550 0.248

Table 10.5.4: Forecast evaluation comparison between AR model and MSAR
model: Root mean squared errors and p-value for a Diebold-Mariano test
(H0: same forecasting accuracy)
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Figure 10.6.1: Smoothed probabilities for the two regimes

Forecasting

In this part of the example we compare the forecasting performance of the
AR(2) against the Markov switching models. Recursive one-step ahead fore-
casts are computed using both models over the sample 2000Q2 - 2014Q4,
which contains 59 observations.

The forecasts are plotted in Figure 10.6.2, together with actual values.
Already from a graphical inspection, the MSAR forecasts show a better

performance than their AR(2) counterpart. To have a more accurate measure
of performance, Table 10.6.3 reports the RMSFE for both models’ forecasts.

The Markov switching model forecasting performance is much better than
that of the AR(2) model, and the difference is statistically significant accord-
ing to a Diebold-Mariano test. We can also compare these results with the
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Variable Coefficient Std. Error z-Statistic Prob.

Regime 1
C 4.563 0.411 11.105 0.000
AR(1) -0.591 0.076 -7.745 0.000
Regime 2
C -0.021 0.174 -0.119 0.905
AR(1) 0.926 0.052 17.827 0.000
Common
AR(2) -0.339 0.044 -7.725 0.000

Log(Sigma) 0.886 0.044 20.086 0.000
Transition Matrix Para.
P11-C 0.792 0.540 1.465 0.143
P21-C -3.452 0.398 -8.671 0.000

Mean dep var 0.863 S.D. dep var 3.820
S.E. of regression 3.438 Sum squared resid 3946.807
DW stat 2.341 Log likelihood -829.383
Akaike IC 4.926 Schwarz IC 5.016
Hannan-Quinn 4.962

Table 10.6.1: Estimation output for a Markov switching AR model

Coefficient Std. Error t-Statistic Prob.

ALPHA(1) 0.572 0.197 2.906 0.004
ALPHA(2) 0.420 0.054 7.797 0.000
ALPHA(3) -0.074 0.054 -1.372 0.171

R-squared 0.160 Mean dep var 0.863
Adjusted R-squared 0.155 S.D. dep var 3.820
S.E. of regression 3.512 Akaike IC 5.359
Sum squared resid 4156.312 Schwarz IC 5.393
Log likelihood -908.024 Hannan-Quinn 5.372
F-statistic 32.042 DW stat 1.975
Prob(F-statistic) 0.000

Table 10.6.2: Estimation output for AR model
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Figure 10.6.2: One-step ahead forecast comparison: AR vs. MS vs. actual
data

Model RMSFE DM pval
AR(2) 1.149 -
MSAR 0.881 0.023

Table 10.6.3: Forecast evaluation comparison between AR model and MSAR
model: Root mean squared errors and p-value for a Diebold-Mariano test
(H0 : same forecasting accuracy)

ones obtained with the threshold models (TAR and STAR) in Chapter 9.
The forecasting performance of the MS model is statistically better than the
one of a TAR or STAR model in Chapter 9.

10.7 Concluding remarks

Markov switching models represent an interesting specification choice for eco-
nomic variables, whose behavior could change during different phases of the
business cycle or different policy stances. In this chapter we have considered
specification, estimation and forecasting with Markov switching models, il-
lustrating their practical use with simulated and actual data. In both cases,
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the MS model turned out to be better than a linear specification, highlighting
the importance of taking parameter change into proper account.
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Chapter 11

State Space Models

11.1 Introduction

A large set of econometric models can be cast into a so-called state space
form, where observable variables are related to a set of unobservable (state)
variables, and the law of motion of the latter is specified. We will consider the
case where all the aforementioned relationships are linear and with normally
distributed errors, though more general specifications are possible.

Once a model is written in state space form, the Kalman filter provides a
procedure forecasts of both the observable and unobservable variables. The
filter also yields the likelihood function for the model, which can be used to
derive maximum likelihood estimators of the parameters. The procedure is
named after Rudolf E. Kalman, who wrote a seminal paper on the topic (see
Kalman (1960)).

The Kalman filter has numerous applications in technology. A common
application is for guidance, navigation, and control of vehicles, particularly
aircraft and spacecraft. Furthermore, the Kalman filter is a widely applied
concept in time series analysis, especially in fields such as signal processing,
linear systems control theory, robotic motion control, central nervous sys-
tem’s control of movement, trajectory optimization and last but not least
econometrics.

The algorithm works in a two-step process. In the prediction step, the
Kalman filter produces estimates of current state variables, along with their
uncertainties. Once the outcome of the next measurement (affected by some
type of error, such as random noise) is observed, these estimates are updated

419
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using a weighted average, where more weight is attributed to estimates with
higher certainty. The algorithm is recursive. It can run in real time, using
only the current input measurements, the previously calculated state and its
uncertainty matrix; no additional past information is required.

In general, the Kalman filter does not require any assumption that the er-
rors are Gaussian. However, the filter yields an exact conditional probability
estimate in the special case that all errors are normally distributed.

Extensions and generalizations to the method have also been developed,
such as the extended Kalman filter and the unscented Kalman filter that work
on non-linear systems. The underlying model is a Bayesian model similar
to a hidden Markov model but where the state space of latent processes is
continuous and all variables, hidden or observed, have Gaussian distributions.

In this chapter, we will show how to cast a model in state space form,
illustrating the procedure with a number of examples. Then we will derive
the main components of the Kalman filter. Finally, we will discuss some ex-
amples using both simulated and actual data. In particular, we will consider
models with continuous parameter evolution and dynamic factor models. Ad-
ditional details, examples and a more complete treatment can be found, e.g.,
in Hamilton (1994, Chapter 14) and Harvey (1993, Chapter 4).

Section 11.2 covers state models, while the Kalman filter is discussed
in section 11.3. Examples involving simulated and empirical data are in
respectively Sections 11.4 and 11.5. Concluding remarks appear in Section
11.6.

11.2 Models in state space form

A general formulation of a (linear) state space form is

αt = Tαt−1 +Rηt, (11.2.1)

yt = Zαt + Sξt, (11.2.2)

[
ηt
ξt

]
iid∼ N

([
0
0

]
,

[
Q 0
0 H

])
, (11.2.3)

where αt is a vector containing the unobservable state variables, yt is a vector
of observable variables, the state equation (11.2.1) describes the evolution of
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the state variables, the transition or measurement equation (11.2.2) models
observable processes as a linear function of state variables and noise. The
error terms ηt and ξt are zero mean, jointly normally distributed and uncor-
related random variables, as in (11.2.3). A word of caution before proceeding
further. There is no unique way of formulating state space models. Equa-
tions (11.2.1) through (11.2.3) reveal this already. Indeed, we will not be able
to separately identify the matrices R and Q, nor the matrices S and H. Yet,
we will keep the representation as it appears in the above equations because
it will be convenient in the context of the various examples that follow.

In some cases there can be no state variables in the model we are in-
terested in, but we just introduce some ad hoc state variables in order to
rewrite the model of interest in state space form. While in other cases the
model includes already unobservable variables, that can be treated as state
variables. Let us discuss a few examples to illustrate these points.

11.2.1 An ARMA(2,2) model

The model is

yt = a1yt−1 + a2yt−2 + εt + b1εt−1 + b2εt−2, (11.2.4)

with εt
iid∼ N(0, σ2). Let us introduce four state variables, labeled α1t, α2t,

α3t, α4t. The state equations are
α1t

α2t

α3t

α4t

 =


a1 a2 1 0
1 0 0 0
0 0 0 1
0 0 0 0



α1t−1

α2t−1

α3t−1

α4t−1

+


1
0
b1

b2

 ηt (11.2.5)

or, in compact notation
αt = Tαt−1 +Rηt.

As transition equation (a single one in this example), we have

yt =
[
1 0 0 0

]
αt, (11.2.6)

so that Z =
[
1 0 0 0

]
and S = 0 in (11.2.2). To make sure that the state

space form in (11.2.5) - (11.2.6) is equivalent to the ARMA model in (11.2.4),
let us proceed as follows. From the first state equation in (11.2.5) we obtain

α1t = a1α1t−1 + a2α2t−1 + α3t−1 + ηt.
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We can then replace α2t−1 and α3t−1 with their expressions from the second
and third state equations, obtaining

α1t = a1α1t−1 + a2α1t−2 + α4t−2 + b1ηt−1 + ηt.

From the fourth state equation, it is α4t−2 = b2ηt−2, and the previous equation
becomes

α1t = a1α1t−1 + a2α1t−2 + b2ηt−2 + b1ηt−1 + ηt.

From the transition equation in (11.2.6), it is yt = α1t, so that we can rewrite
the equation above as

yt = a1yt−1 + a2yt−2 + b2ηt−2 + b1ηt−1 + ηt,

which is indeed an ARMA(2,2) model. To conclude, we noted earlier that
state space model representations are not unique. Indeed, the same model
can be cast in different state space forms, see, e.g., Hamilton (1994, Chapter
14) for an alternative representation of the ARMA(2,2) model.

11.2.2 A time-varying parameters (TVP) regression
model

In the previous chapters we have considered models whose parameters where
changing either deterministically (based on dummy variables) or stochasti-
cally, depending on either some observable continuous variables (as in TAR
and STAR models) or some discrete unobservable variable (as in MS models).
Another option is to consider models with continuous and unobserved time
variation in the parameters. In particular, let us consider the specification

yt = Xtβt + εt, (11.2.7)

βt = βt−1 + ηt,[
εt
ηt

]
iid∼ N

([
0
0

]
,

[
σ2
ε 0

0 λQ

])
.

In (11.2.7) Xt is a 1× k vector of explanatory variables, βt is a k × 1 vector
of time-varying regression coefficients, each of which evolves as a random
walk, with the random walk models possibly correlated among themselves
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but uncorrelated with εt. The scalar parameter λ controls the overall amount
of parameter time variation, with stable parameters when λ = 0.

The model in (11.2.7) is already in state space form. With respect to the
general formulation in (11.2.1)-(11.2.2) it is βt = αt, T = R = I, S = 1,
H = σ2

ε , and Z = Zt = Xt. The fact that Z is time varying can be easily
accommodated.

11.2.3 A model with stochastic volatility

Most of the models we have considered so far have homoskedastic residuals,
possibly after variable transformation and model re-specifications. However,
in certain cases, and in particular for financial variables, the errors can be
truly heteroskedastic (see Chapter 14). While in general neglecting this fea-
ture does not affect sensibly the computation of point forecasts, it is quite
important for interval and density forecasts.

More generally, the estimation of models with heteroskedastic errors can
be of interest by itself. A general form of heteroskedasticity is known as
stochastic volatility (SV). Hence, we now consider a simple model with SV
and show how to cast it in state space form, following the discussion in
Harvey (1993, Chapter 8).

We have

yt = σtεt, (11.2.8)

σ2
t = exp(ht),

ht = γ + φht−1 + ηt,[
εt
ηt

]
iid∼ N

([
0
0

]
,

[
1 0
0 σ2

η

])
.

We can transform the model in (11.2.8) as

log y2
t = ht + log ε2

t ,

where E(log ε2
t ) = −1.27 and var(log ε2

t ) = 4.93, see Harvey (1993, Chapter
8). Let us define ε∗t = log ε2

t + 1.27, so that E(ε∗t ) = 0, and qt = log y2
t + 1.27.

Then we have

qt = ht + ε∗t , (11.2.9)

ht = γ + φht−1 + ηt,
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which is a state space form similar to that in (11.2.1)-(11.2.2), with qt being
the observable variable and ht the state.

The main difference with respect to (11.2.1)-(11.2.2) is that ε∗t in (11.2.9)
is not normally distributed. Hence, the resulting parameter estimators will
only be quasi-maximum likelihood estimators. Since estimation of SV models
is quite complex and requires simulation methods, this approximation can
be useful.1

11.2.4 A dynamic factor model

Factor models decompose each variable into a common and an idiosyncratic
component. The latter is variable specific while the former is driven by a
limited number of forces, the factors, which are common across all variables.
This feature makes factor models particularly suited to represent economic
variables, which theoretically are driven by a limited number of key shocks,
e.g., demand, supply, or monetary conditions, tend to co-move and share not
only trends but also cyclical fluctuations.

Estimation of factor models is complicated by the fact that factors are
unobservable. However, we can now treat them as state variables in a state
space representation. In particular, let us assume that n stationary variables
grouped in the vector yt share a single common factor and that the effects of
this factor on variables are dynamic (in the sense that variables are affected by
current and past values of the factor), and that both factor and idiosyncratic
components evolve as AR processes. Specifically, let us consider the model

yt = γ(L)∆ft + ut, (11.2.10)

φ(L)∆ft = vt,

D(L)ut = εt,[
vt
εt

]
iid∼ N

([
0
0

]
,

[
σ2
v 0

0 Σε

])
where D(L) and Σε are diagonal matrices, and all the lag polynomials are
of order 2. To make the state space as similar as possible to the general for-
mulation in (11.2.1)-(11.2.2), we write the dynamic factor model in (11.2.10)

1See however Jacquier, Polson, and Rossi (1994) for an elaborate discussion of situations
where the state space Kalman filter performs poorly.
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as: 
∆ft

∆ft−1

ut
ut−1

ft−1

 =


φ1 φ2 0 0 0
1 0 0 0 0
0 0 D1 D2 0
0 0 I 0 0
1 0 0 0 1




∆ft−1

∆ft−2

ut−1

ut−2

ft−2

+


1 0
0 0
0 I
0 0
0 0


[
vt
εt

]
, (11.2.11)

which is of the form
αt = Tαt−1 +Rηt,

and
yt =

[
γ1 γ2 I 0 0

]
αt, (11.2.12)

which in turn is of the form

yt = Zαt + Sξt,

with S = 0. If there is interest in the factor, ft, this can be easily recovered
from

ft =
[
1 0 0 0 1

]
αt.

Additional details on this model can be found, e.g., in Stock and Watson
(1989) who used it to construct a coincident indicator of economic conditions
in the United States.

11.2.5 Unobserved component models

Unobserved Component Models (UCM) decompose a variable into a trend,
cyclical, seasonal, and irregular components, each of which follows a given
model. Therefore, an UCM is directly cast in state space form and can be
analyzed with the Kalman filter, see, e.g., Harvey (1993). As an example,
let us consider the simplest UCM, which is

yt = µt + ξt, (11.2.13)

µt = µt−1 + ηt,

where the errors are zero mean, uncorrelated among themselves and over
time, and jointly normally distributed. In this model, yt is decomposed
into a trend component, which is modeled as a pure random walk, and an
idiosyncratic component. The model is just a special case of the general
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state space specification in (11.2.1)-(11.2.3). If we difference both sides of
(11.2.13) we obtain

∆yt = ηt + ∆ξt. (11.2.14)

It can be easily shown that the autocorrelation function (AC) of ∆yt is

AC(1) = −σ2
ξ/(σ

2
η + 2σ2

ξ ), (11.2.15)

AC(j) = 0, j > 1.

From Chapter 5, we know that this pattern of AC is equal to that of an
MA(1) model. Indeed, we can rewrite the model in (11.2.14) as

∆yt = εt + θεt−1, (11.2.16)

where εt is white noise N(0, σ2
ε). The parameter θ can be determined by

equating the AC(1) of (11.2.16) with (11.2.15). It turns out that

θ =
[
(q2 + 4q)0.5 − 2− q

]
/2,

where q = σ2
η/σ

2
ξ is the signal to noise ratio, while σ2

ε = −σ2
ξ/θ, see Harvey

(1993, Chapter 5) for details. The only invertible root of the above equation
is such that −1 ≤ θ ≤ 0, so that MA parameter is forced to be negative,
with exact value depending on q.

In conclusion, the equations in (11.2.13) are equivalent to a constrained
ARIMA(0, 1, 1) model, which is often known as the reduced form of the
UCM. This is a more general result, in the sense that typically UCMs can
be represented as constrained ARIMA models.

11.3 The Kalman filter

The Kalman filter is a recursive method that permits to derive optimal (lin-
ear) forecasts for the state and observable variables in a state space model,
and the model likelihood itself. In this section we present the filter main
equations, discuss the recursion, and then derive the main formula.
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11.3.1 The key equations of the Kalman filter

Let us rewrite for convenience the general state space representation in
(11.2.1) - (11.2.3) as

αt = Tαt−1 +Rηt,

yt = Zαt + Sξt,[
ηt
ξt

]
iid∼ N

([
0
0

]
,

[
Q 0
0 H

])
.

Due to the normality assumption, we can also represent the state and mea-
surement equations in terms of normal densities as

f(αt|αt−1, Yt−1) = N(Tαt−1, RQR
′),

f(yt|αt, Yt−1) = N(Zαt, SHS
′),

where Yt−1 = (yt−1, yt−2, . . .).

The first object of interest is

f(αt|Yt−1) = N(αt|t−1, Pt|t−1), (11.3.1)

t = 1, . . . , T , namely, the state variable’s density conditional on all the past
observable information. From (11.3.1) we can construct optimal (one-step
ahead point and density) forecasts for αt. Hence, (11.3.1) is known as pre-
diction equations. As we will show later on, it is

αt|t−1 = Tαt−1|t−1, (11.3.2)

Pt|t−1 = TPt−1|t−1T
′ +RQR′.

The second object of interest is

f(αt|Yt) = N(αt|t, Pt|t), (11.3.3)

t = 1, . . . , T , that is, state variable’s density conditional on current and past
observable information. We will show later on that

αt|t = αt|t−1 + Pt|t−1Z
′F−1
t vt, (11.3.4)

Pt|t = Pt|t−1 − Pt|t−1Z
′F−1
t ZPt|t−1,
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where

vt = yt − yt|t−1, (11.3.5)

Ft = E(vtv
′
t).

Equation (11.3.4) indicates how to optimally update our forecasts for αt made
in period t− 1 when new information on yt becomes available. It shows how
to construct a “nowcast” for αt. Therefore, (11.3.3) is known as updating
equation.

Note that the prediction equation depends on the elements of the updat-
ing equations, αt−1|t−1 and Pt−1|t−1. In turn, the updating equations depend
on the updating’s elements of the previous step, αt|t−1 and Pt|t−1, and also
on vt and Ft.

The third object of interest is

f(yt|Yt−1) = N(yt|t−1, Ft), (11.3.6)

t = 1, . . . , T , which is the conditional likelihood of yt given the past. Since
the joint likelihood can be written as:

f(y1, . . . yt) = ΠT
t=1f(yt|Yt−1), (11.3.7)

from (11.3.6), given f(y1), we can obtain the joint likelihood. Hence, (11.3.6)
is known as likelihood equations, or simply likelihood. Note that from
(11.3.6) we can also obtain optimal (one-step ahead point and density) fore-
casts for yt. We will show later on that this is

yt|t−1 = Zαt|t−1, (11.3.8)

Ft = ZPt|t−1Z
′ + SHS ′.

Hence, the likelihood equation depends on αt|t−1 and Pt|t−1.
To conclude, we need to discuss initial conditions for αt. The common

choice is to pick the unconditional mean and variance of αt. From (11.2.1)
we have

αt = (I − TL)−1Rηt.

From this it follows that

α1|0 = E(αt) = 0. (11.3.9)
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Moreover, if we define

P1|0 = E(αtα
′
t),

the law of motion for αt in (11.2.1) implies that

P1|0 = TP1|0T
′ +RQR′.

It can be shown (e.g., Hamilton (1994, p. 265)) that by solving this set of
equations it is possible to obtain:

vec(P1|0) = [I − (T ⊗ T )]−1 vec(RQR′), (11.3.10)

where vec(P1|0) is the column vector coming from vertical stacking obtained
of P1|0 columns and ⊗ indicates the Kronecker product.

Finally, from the initial conditions for α we obtain those for y, using (11.3.8).

11.3.2 The iterative procedure

We have seen that the prediction, updating, and likelihood equations are
closely inter-related. In order to derive all the required forecasts and likeli-
hoods, we can adopt the following iterative procedure:

1. obtain α2|1 and P2|1 from the initial conditions in (11.3.9)-(11.3.10)

2. use α2|1 and P2|1, to obtain y2|1 and F2 by way of the likelihood equa-
tions (11.3.8)

3. use α2|1, P2|1, y2|1 and F2, to obtain α2|2 and P2|2 via the updating
equations (11.3.4),

4. use α2|2 and P2|2, to obtain α3|2 and P3|2 from the prediction equations
(11.3.2),

5. use α3|2 and P3|2, to obtain y3|2 and F3 via the likelihood equations
(11.3.8),

6. use α3|2, P3|2, y3|2 and F3, to obtain α3|3 and P3|3 via the updating
equations (11.3.4),
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7. keep iterating steps 4 - 6 until one reaches the final period, t= T. At this
point, with all the required forecast and likelihoods, we can construct
the full likelihood using either (11.3.7) or directly the expression

logL (θ) = −NT
2

log 2π − 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

v′tFtvt,

where vt are the one-step ahead forecast errors defined in (11.3.5) -
(11.3.8) and Ft is the covariance matrix in (11.3.8).

11.3.3 Some derivations and additional results

We now derive in more detail the conditional means and variances appearing
in the Kalman filter equations. Let us start with (11.3.2), namely:

αt|t−1 = E(αt|Yt−1) = E(Tαt−1 +Rηt|Yt−1) = Tαt−1|t−1.

and
αt − αt|t−1 = T (αt−1 − αt−1|t−1) +Rηt,

so that
Pt|t−1 = Var(αt − αt|t−1) = TPt−1|t−1T

′ +RQR′.

Let us consider next, for convenience, the likelihood equations (11.3.8). For
(11.3.8) we have

yt|t−1 = E(Zαt + Sξt|Yt−1) = Zαt|t−1,

which also implies that

vt = yt − yt|t−1 = Z(αt − αt|t−1) + Sξt.

and
Ft = E(vtv

′
t) = ZPt|t−1Z

′ + SHS ′.

The derivation of the updating equations (11.3.4) is slightly more com-
plex. Let us start with the following decomposition[

vt
αt

]
=

[
0

αt|t−1

]
+

[
Z(αt − αt|t−1) + Sξt

αt − αt|t−1

]
.
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The last term on the right-hand side contains the one-step ahead forecast
errors for, respectively, yt and αt. Hence, both terms are unpredictable using
information up to and including period t− 1. Therefore, it is[

vt
αt

]
|Yt−1 ∼ N

([
0

αt|t−1

]
,

[
Ft Pt|t−1Z

′

ZPt|t−1 Pt|t−1

])
. (11.3.11)

From (11.3.3), we are interested in

f(αt|Yt) = N(αt|t, Pt|t). (11.3.12)

However, it is
f(αt|Yt) = f(αt|vt, Yt−1),

and we can use (11.3.11), together with standard results for conditional nor-
mal densities, to derive f(αt|Yt). Specifically, we have

αt|t = αt|t−1 + Pt|t−1Z
′F−1
t vt,

Pt|t = Pt|t−1 − Pt|t−1Z
′F−1
t ZPt|t−1,

which coincides with (11.3.4). This concludes our derivation of Kalman filter
equations.

We have seen that Kalman filter produces optimal (recursive) one-step
ahead forecasts for α and y. However, we can be interested in h-steps ahead
forecasts. They can be derived as follows. From (11.2.1) we have

αt+h = T hαt +Rηt+h + TRηt+h−1 + . . .+ T h−1Rηt+1.

Therefore, the optimal h-steps ahead forecast for α is

E(αt+h||Yt) = αt+h|t = T hαt|t, (11.3.13)

with associated forecast error

ut+h = αt+h − αt+h|t =

= T h(αt − αt|t) +Rηt+h + TRηt+h−1 + . . .+ T h−1Rηt+1,

whose variance is

Var(ut+h) = T hPt|tT
h′ +RQR′ + . . .+ T h−1RQR′T h−1′. (11.3.14)
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For y, from (11.2.5) it is

yt+h = Zαt+h + Sξt+h,

from which it follows that the optimal h-steps ahead forecast for y is

E(yt+h||Yt) = yt+h|t = Zαt+h|t. (11.3.15)

The forecast error is then

et+h = yt+h − yt+h|t =

= Z(αt+h − αt+h|t) + Sξt+h = Zut+h + Sξt+h,

with

Var(et+h) = ZVar(ut+h)Z
′ + SHS ′. (11.3.16)

To conclude, in all Kalman filter equations we condition on information
up to the previous period. This is particularly convenient in a forecasting
context. However, in a more structural context, we may be interested in
conditioning inference on all the available information, namely, we would like
to condition on YT . For example, if αt is an unobservable economic variable
of interest, such as the output gap or a business cycle indicator, we may
want to assess ex-post, at the end of the sample, what were its most likely
values over the sample. All the equations we have seen can be modified
to condition on the full sample information YT rather than on Yt−1, and
the resulting procedure is known as the Kalman smoother, see, e.g., Harvey
(1993) for details.

11.4 Example with simulated data: The

TVP regression model

We now illustrate the TVP regression model using simulated data. Specif-
ically, we generate simulated observations using an appropriate DGP. We
then specify and estimate an appropriate state space form, and compare this
model with some benchmark models using several diagnostics.
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Simulation

We want to generate data from the following DGP:

yt = Xtβt + εt

βt = βt−1 + ηt[
εt
ηt

]
iid∼ N

([
0
0

]
,

[
σ2
ε 0

0 λQ

])
Since this is a bit different from the DGPs we have seen so far, we start

by explaining how to generate data from this DGP.
The sample size is T = 356, and we assume the data covers the period

1925Q1 to 2013Q4, on a quarterly basis. Data are actually generated for
a larger sample, but the first observations are discarded, in order to avoid
dependence on the starting values. As first, we generate the k regressors of
the vector Xt using a VAR structure

Xt =


a1 0 · · · 0

0 a2
. . .

...
...

. . . . . . 0
0 · · · 0 ak

Xt−1 + et et
iid∼ N (0k×1,Ξ)

where Ξ is a full (non-diagonal) matrix. The produced regressors are reported
in Figure 11.4.1.

Subsequently, we can simulate the time varying coefficients, modeled as
a random walk. The DGP for the β is

βt = βt−1 + ηt ηt
iid∼ N (0, λQ)

where Q is a full non diagonal matrix. Figure 11.4.2 reports the simulated
random walk coefficients.

Finally, we can use the DGP for the dependent variable, which lays upon
the regressors and the time varying coefficients:

yt = Xt︸︷︷︸
1xk

βt︸︷︷︸
kx1

+ εt εt
iid∼ N

(
0, σ2

ε

)
Now, we simulate the dependent variable yt, reported in Figure 11.4.3.
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Figure 11.4.1: Regressors Xt, 1925Q1 to 2013Q4

Specification and estimation

Consider the following state space form:

yt = ct + Ztαt + εt

αt+1 = dt + Ttαt + vt[
εt
vt

]
= N (0,Ωt)

Ωt =

[
Ht Gt

G′t Qt

]
In our example, we have just one signal equation for yt, where we used

the k observable regressors stacked in Zt

Zt = Xt =
[
x1,t x2,t · · · xk,t

]
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Figure 11.4.2: Simulated random walk coefficients βt, 1925Q1 to 2013Q4

The time varying coefficients are estimated as state variables αt

αt = βt =


β1,t

β2,t
...
βk,t


Note that in our case the signal equation has only one random innovation

εt. Since we assume independence between respectively observable process
and state innovations, one can write

∀t, Ht = σ2
ε , Gt = 0

As for the state equation, being βt a vector of random walks with no drift,
we have:

Tt = Ik, dt = 0k×1
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Figure 11.4.3: Simulated dependent variable yt, 1925Q1 to 2013Q4

Finally, our specification assumes time invariant variance matrix for the
coefficients’ innovations, scaled by parameter λ:

Qt = λQ

Note that now we can estimate the model and initialize the states with their
actual values coming from simulation.

Evaluation

After having estimated the model, we can graph the series of smoothed states
and their standard errors, as in Figure 11.4.4. Comparing these results with
Figure 11.4.2, we find good estimates for βt.

We can then compare actual and estimated states using the pairwise
correlation matrix, or regress the actual βt on the estimated counterpart β̂t.
Table 11.4.1 reports results for the first coefficient β̂1,t, while Figure 11.4.5
shows its residuals.

From the test-statistics and residuals plot we observe that our state space
is producing a reliable estimate for the time-varying coefficients. As a further
check, performing some cointegration tests between the actual TV coefficients
and the estimated counterpart, we find that for almost all specifications we
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Figure 11.4.4: Estimated states variables β̂t, 1925Q1 to 2013Q4

do not reject the presence of one cointegrating relation. The tests for β̂1,t are
reported in Table 11.4.2.

Let’s now try to compare the forecasting power of our state space TVP
estimation with a benchmark OLS equation model with fixed coefficients,
whose specification is simply:

yt = Xt︸︷︷︸
1xk

β︸︷︷︸
kx1

+ εt, εt
iid∼ N

(
0, σ2

)
Figure 11.4.6 reports the residuals of this regression, which seem to present
evidence of serial correlation and heteroskedasticity.

Having estimated both models, we perform an out-of-sample one-step
ahead static forecasting exercise, in which for all observations in the fore-
casting period we adapt the estimation period recursively. We construct
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Coefficient Std. Error t-Statistic Prob.

C -0.266 0.089 -2.988 0.003
F SV1 1.048 0.017 63.197 0.000

R-squared 0.919 Mean dep var 4.493
Adjusted R-squared 0.919 S.D. dep var 3.126
S.E. of regression 0.892 Akaike IC 2.615
Sum squared resid 280.935 Schwarz IC 2.637
Log likelihood -462.189 Hannan-Quinn 2.624
F-statistic 3993.852 DW stat 0.209
Prob(F-statistic) 0.000

Table 11.4.1: OLS regression of the actual β1,t over the estimated β̂1,t
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Figure 11.4.5: Residuals from the OLS regression of β1,t over β̂1,t, 1925Q2 to
2013Q4

then out of sample forecasts from 2006Q4 to 2013Q4, using each period the
recursive estimates of both models. Having actual observations, we can com-
pute the RMSFE for both the constant and time varying parameters model.
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Data Trend: None None Linear Linear Quadratic
Test Type No Intercept Intercept Intercept Intercept Intercept

No Trend No Trend No Trend Trend Trend
Trace 1 1 1 1 2
Max-Eig 1 1 1 1 2
*Critical values based on MacKinnon, Haug, and Michelis (1999).

Table 11.4.2: Cointegration tests for actual β1,t and estimated states β̂1,t
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Figure 11.4.6: Residuals from the OLS regression of yt over xt, 1925Q1 to
2013Q4

As we can see from Figure 11.4.7 and from the RMSFE, the TVP model
provides better forecasting performance than its OLS counterpart.

The computed RMSFE of the TVP regression is roughly 7, while the
RMSFE is of about 22 for the fixed-parameter benchmark model. Neverthe-
less, the recursive estimation of OLS coefficients takes somehow into account
structural instability of the parameters, since for each augmented observation
estimates are updated. For this reason, overall it also provides reasonable
forecasts over the period 2006Q4 - 2013Q4.
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Figure 11.4.7: Actual data yT+h and one-step forecast ŷt+h for OLS and
TVP, 2006Q4 to 2013Q4

11.5 Empirical examples

11.5.1 Forecasting US GDP growth with a TVP
model

We now use the TVP regression model on GDP growth rates data, for the
period 1986Q1 - 2012Q4. We will apply an AR(2) estimation with time
varying autoregressive coefficients that follow a random walk

yt = ct + ρ1tyt−1 + ρ2tyt−2 + εt ctρ1t

ρ2t

 =

1 0 0
0 1 0
0 0 1

 ct−1

ρ1t−1

ρ2t−1

+

η1t

η2t

η3t



εt
η1t

η2t

η3t

 iid∼ N




0
0
0
0

 ,

σ2
ε 0 0 0

0 σ2
η1

0 0
0 0 σ2

η2
0

0 0 0 σ2
η3


 .
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As an alternative, we also specify a simpler version of the model when only
the drift is time varying:

yt = ct + ρ1yt−1 + ρ2yt−2 + εt

ct = ct−1 + ηt[
εt
ηt

]
iid∼ N

([
0
0

]
,

[
σ2
ε 0

0 σ2
η1

])
.

Estimation

Consider the following state space form:

yt = ct + Ztαt + εt

αt+1 = dt + Ttαt + vt[
εt
vt

]
= N (0,Ωt)

Ωt =

[
Ht Gt

G′t Qt

]
.

In our example, we have just one signal equation for yt, the US GDP growth
rate. The regressors are just the first two lags of yt:

Zt = Xt =
[
yt−1 yt−2

]
.

The time-varying coefficients are estimated as state variables αt:

αt = %t =

[
ρ1,t

ρ2,t

]
.

Note that in our case the signal equation has only one random innovation εt.
We assume independence between innovations of the coefficients and of the
dependent variable. As in the simulation example, we set

∀t, Ht = σ2
ε , Gt = 0

Tt = I2, dt = 02×1

Finally, our specification assumes time invariant variance matrix for the co-
efficients’ innovations

Qt = Q

where Q is a diagonal matrix.
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Evaluation

After having estimated the TVP regression model, it is possible to compare
the forecasting power of our state space TVP estimation with a benchmark
OLS equation model with fixed coefficients, whose specification is simply

yt = c+ ρ1yt−1 + ρ2yt−2 + εt, εt ∼ N
(
0, σ2

)
.

OLS estimation results are reported in Table 11.5.1. Having these models

Coefficient Std. Error t-Statistic Prob.

C 2.594 0.488 5.316 0.000
AR(1) 1.320 0.089 14.916 0.000
AR(2) -0.464 0.088 -5.265 0.000
SIGMASQ 0.487 0.067 7.309 0.000

R-squared 0.855 Mean dep var 2.591
Adjusted R-squared 0.851 S.D. dep var 1.842
S.E. of regression 0.711 Akaike IC 2.213
Sum squared resid 52.644 Schwarz IC 2.313
Log likelihood -115.525 Hannan-Quinn 2.254
F-statistic 204.285 DW stat 2.139
Prob(F-statistic) 0.000

Table 11.5.1: Output of the OLS estimation with fixed AR coefficient

estimated, we perform two out-of-sample one-step ahead static forecasting
exercises for all the models. In the first exercise the start of the forecast
period is set at 2001Q1, the starting date for estimation sample remains fixed
while the ending date shifts with the forecasting horizon, as in the regression
with simulated data. In the second exercise, we implement a forecasting
procedure using a rolling window of 60 observations. Rolling forecasting is
typically a well-suited approach in order to tackle instability of parameters.
In this case, also the starting date of the estimation sample moves with the
forecasting dates, while the size remains fixed.

Using the actual observations, we can compute the RMSFE for both the
OLS estimation and the TVP in both exercises. Table 11.5.2 shows the
results for the three models under analysis: the OLS, the TVP with all time-
varying coefficients, and the TVP with only time-varying drift. Then for both
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exercises, we can compare the forecasts to the actual data (Figure 11.5.1).
Since the differences are not so dramatic, we better analyze the RMSFE for
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Figure 11.5.1: Out-of-sample forecasts for TVP-all coefficients, OLS AR
specification, and actual data, from 2001Q1 to 2012Q4. Upper panels show
the out-of-sample one-step ahead recursive forecasts, while lower panels report
the out-of-sample one-step ahead rolling window forecasts

the alternative models and forecasting techniques (Table 11.5.2).

RMSFE OLS TVP-all TVP-drift

one-step ahead recursive 0.802 0.886 0.799
one-step ahead rolling window 0.823 0.933 0.814

Table 11.5.2: RMSFE for all models and forecasting techniques, from 2001Q1
to 2012Q4
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Both TVP and OLS forecasts are perform better with the largest sample
possible, and somehow suffer from sample reduction due to the rolling fore-
casting. However, the classical OLS and the TV-only-drift models experience
a much smaller deterioration of the forecasting performance than the TVP-
all analogue, probably because of the relatively higher number of coefficients
to estimate.

In general, in this exercise we find evidence of instability of model coeffi-
cients, and both the non-rolling TVP forecasts and the rolling OLS forecasts
display satisfactory performance. It was noted that rolling or recursive esti-
mation of a constant parameter model takes at least partially into account
possible time variation of the parameters.

11.5.2 Forecasting GDP growth with dynamic factor
models

We now estimate a dynamic factor model using GDP growth. Data consists
of quarterly real GDP growth rates of three EMU countries (Italy, Germany,
and France) and the United States, spanning from 1986Q1 to 2012Q4 (108
observations). We compare two specifications, one having just one common
factor as common component of the four GDP growth rates, and the other
less parsimonious with two factors and a richer autoregressive structure of
the factors.

Estimation

Consider the following state space form:

yt = ct + Ztαt + εt

αt+1 = dt + Ttαt + vt[
εt
vt

]
= N (0,Ωt)

Ωt =

[
Ht Gt

G′t Qt

]
In our example, we have four observables contained in the vector yt, the

growth rates of the United States, Germany, Italy, and France.
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First, we consider a specification having only one factor and four idiosyn-
cratic components. The state variables vector for this specification is

αt =


ft
uUS,t
uFR,t
uGER,t
uIT,t

 .

If we model the factor and the idiosyncratic components as uncorrelated
AR(1) processes, the state equations are

αt =


φ 0 0 0 0
0 tus 0 0 0
0 0 tFR 0 0
0 0 0 tGER 0
0 0 0 0 tIT

αt−1 +


vt
εUS,t
εFR,t
εGER,t
εIT,t


and the state innovations are modeled as

vt
εUS,t
εFR,t
εGER,t
εIT,t

 ∼ N

0,

[
σ2
v 0

0 Σε

]
︸ ︷︷ ︸

5×5

 .

The signal equations are then contained in the following matrix form
yUS,t
yFR,t
yGER,t
yIT,t

 =


γUS 1 0 0 0
γFR 0 1 0 0
γGER 0 0 1 0
γIT 0 0 0 1

αt.
Note that in this case the measurement equation has no random innovations.

The alternative specification to model our GDP data would has two fac-
tors and four idiosyncratic components, for example because we may think
that the United States and Euro area business cycles are driven by different
factors. Moreover, the factors are modeled as orthogonal AR(2) processes,
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while the idiosyncratic components are kept as AR(1) processes. The vector
of state variables in this case is

αt =



f1,t

f1,t−1

f2,t

f2,t−1

uUS,t
uFR,t
uGER,t
uIT,t


.

Given our assumptions on the state variables motion, the state equations
are

αt =



φ1,1 φ1,2 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 φ2,1 φ2,2 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 tus 0 0 0
0 0 0 0 0 tFR 0 0
0 0 0 0 0 0 tGER 0
0 0 0 0 0 0 0 tIT


αt−1 +



v1,t

0
v2,t

0
εUS,t
εFR,t
εGER,t
εIT,t


and the state innovations are modeled as

v1,t

v2,t

εUS,t
εFR,t
εGER,t
εIT,t

 ∼ N

(
0,

[
Σv 0
0 Σε

])
.

The measurement equations are contained in the following matrix form
yUS,t
yFR,t
yGER,t
yIT,t

 =


γ1,US 0 γ2,US 0 1 0 0 0
γ1,FR 0 γ2,FR 0 0 1 0 0
γ1,GER 0 γ2,GER 0 0 0 1 0
γ1,IT 0 γ2,IT 0 0 0 0 1

αt.
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Evaluation

In this section, we compare the state space (Kalman filter) estimation of the
factor model with a benchmark principal component/OLS equation model
in which the common factors are estimated as PC scores of the observables
yt, and each yj,t is then regressed on the scores; see Chapter 13 for additional
details on the use of principal components as estimators for the unobservable
factors.

For the two-factor model, the scores fPC1,t and fPC2,t are estimated and the
following regression is run separately for each country j = US, GER, FR, IT:

yj,t = β1,jf
PC
1,t−1 + β2,jf

PC
2,t−1 + ej,t, ej,t ∼ N

(
0, σ2

j

)
where ej,t represent the idiosyncratic components. Note that we used the
first lag of the PC scores in order to avoid excessive multicollinearity between
dependent variables and factors. We can then plot the PC estimated factors
along with the KF state space estimated factors, as shown in Figure 11.5.2.
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Figure 11.5.2: PC and KF state space estimated factors for the two-factor
model, 1986Q1 - 2012Q4

To further check the closeness between factors estimated via different
techniques, we can run regressions of PC factors projected onto the KF es-
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timated counterparts and see how much variation we are able to explain.
Table 11.5.3 reports such regression for the first factor.
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Figure 11.5.3: Out-of-sample forecasts of both KF and PC/OLS models, and
actual data yUS,T+h for the US, 1986Q1 - 2012Q4

Finally, to compare the two-factor estimation methods, we can perform
an out-of-sample one-step ahead recursive forecasting exercise for both the
KF estimation and the PC/OLS counterpart, setting the start of the forecast
period in the second half of the entire sample available. We then plot forecasts
from the PC/OLS and the KF, with two factors, for the US growth rate
(Figure 11.5.3).

In this case, the RMSFE analysis can be of help to evaluate the forecasts
obtained with the two-factor estimation methods (see Table 11.5.4). Overall,
the KF estimation displays a better performance, except for the French GDP
growth rate.
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Coefficient Std.Error t-Statistic Prob.

C -2.217 0.099 -22.414 0.000
F SV1 TWOF -36.789 1.357 -27.113 0.000
F SV3 TWOF 0.068 0.018 3.767 0.000

R-squared 0.884 Mean dep var 0.000
Adjusted R-squared 0.882 S.D. dep var 1.770
S.E. of regression 0.607 Akaike IC 1.868
Sum squared resid 38.731 Schwarz IC 1.942
Log likelihood -97.869 Hannan-Quinn 1.898
F-statistic 401.649 DW stat 0.211
Prob(F-statistic) 0.000

Table 11.5.3: OLS regression of the first PC score fPC1,t over the KF factors

RMSFE g fr g ger g it g us

KF two factors 0.517 0.846 0.889 0.441
OLS/PC 0.475 1.280 1.569 0.677

Table 11.5.4: RMSFE for the KF state space and the OLS/PC forecasts, from
2010Q1 to 2012Q4.

11.6 Concluding remarks

In this chapter, we first showed how to cast a model in state space form,
using a number of examples, and then we derived the main components of
the Kalman filter. We showed indeed that a large set of econometric models
can be cast into a state space form, where observable variables are related to
a set of unobservables, and the law of motion of the latter is specified. Once a
model is written in state space form, the Kalman filter provides a procedure
to compute both forecasts of the observable and unobservable variables and
the model likelihood, and to derive maximum likelihood estimators of the
model parameters.

We discussed some examples using both simulated and actual data of US
and Euro area GDP growth. The first two examples allowed us to estimate
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TVP models and compare them to standard OLS models with constant pa-
rameters. Finally, in the last example, we also defined a dynamic factor model
to forecast national GDP growth rates and compared a PC/OLS estimation
model to the KF approach.
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Part IV

Mixed Frequency, Large
Datasets, and Volatility
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Chapter 12

Models for Mixed-Frequency
Data

12.1 Introduction

When faced with data sampled at different frequencies, the simplest approach
is to aggregate the high-frequency data to obtain a balanced dataset at the
same low-frequency. For example, if a researcher combines quarterly data on
GDP growth with monthly data on industrial production (IP), and wants to
study their relationship. The researcher might consider aggregating the IP
data to the quarterly frequency – either taking an average of the monthly
data or using the last month of each quarter. While simple, in general, tem-
poral aggregation entails a loss of information. Moreover, it also modifies
the generating mechanism of the data, so that the dynamics of the aggregate
model can be rather different from that in high or mixed frequency. This im-
plies that key econometric features, such as Granger causality or exogeneity,
can be spuriously modified when working with aggregated data.1

In recent times, econometric models that take into account the informa-
tion in unbalanced datasets have attracted substantial attention. Policy-
makers, in particular, need to assess in real-time the current state of the
economy and its expected developments, when only incomplete information
is available. As noted, one of the key indicators of macroeconomic activ-
ity, namely GDP, is released quarterly (and with a substantial temporal

1See, e.g., Granger (1980), Marcellino (1999), Ghysels, Hill, and Motegi (2016), Ghysels,
Hill, and Motegi (2015) for details.
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delay), while a range of leading and coincident indicators is timely available
at a monthly or even higher frequency. Hence, we may want to construct
a forecast of the current quarter GDP growth based on the available higher
frequency information. Mixed-frequency data in a forecasting setting invari-
ably relate to the notion of nowcasting. Let us consider GDP forecasting as
an example. In this context, nowcasting means that in a particular calendar
month, GDP for the current quarter is not observed. It can even be the case
that GDP is only available with considerable publication delay beyond the
end of the quarter. The question then arises whether we can make a predic-
tion about the current quarter GDP using monthly, weekly, daily economic
time series.

In this chapter we review some of the methods proposed so far in the
literature to deal with mixed-frequency data.2

In what follows, we will consider three alternative approaches to directly
model the mixed-frequency data, avoiding the mentioned problems related to
temporal aggregation. First, the bridge models, which linearly relate (bridge)
the low- and high-frequency indicators. This approach is often employed in
central banks and other policy-making institutions, especially for nowcasting
and short-term forecasting, see, e.g., Baffigi, Golinelli, and Parigi (2004),
Diron (2008), Schumacher (2016), among others.

Second, the mixed-data sampling (MIDAS) models, parsimonious speci-
fications based on distributed lag polynomials, which flexibly deal with data
sampled at different frequencies and provide a direct forecast of the low-
frequency variable (see, e.g., Ghysels, Santa-Clara, and Valkanov (2004),
Ghysels, Santa-Clara, and Valkanov (2006) and Clements and Galvão (2009)).

Third, a particular class of mixed-frequency VAR (MF-VAR) models.
While bridge and MIDAS are univariate methods, the MF-VAR is a system
approach that jointly describes the dynamics of the high and low-frequency
variables. Certain MF-VAR models are estimated by means of Kalman filter

2The material presented in this chapter is in part based on recent surveys by Andreou,
Ghysels, and Kourtellos (2011), Foroni, Ghysels, and Marcellino (2013) and Foroni and
Marcellino (2013). See also Bańbura, Giannone, and Reichlin (2011) and Bańbura, Gian-
none, Modugno, and Reichlin (2013) for complementary overviews with a stronger focus
on more complex Kalman filter-based factor modeling techniques. These papers also dis-
cuss how to handle the “ragged edge” of the data (cf. Wallis (1986)), namely, that since
the release date of the indicators is typically different, at any given point in time there is
asynchronous information, i.e., some of the latest observations for some of the indicators
are missing. For simplicity, we will not consider this additional issue and just focus on
modeling using the mixed-frequency data.
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(see Chapter 11), which provides not only predictions of the future observa-
tions but also estimates of the current latent state.

For each of the alternative approaches to mixed-frequency modeling listed
above, we will first describe their key theoretical features and then summarize
empirical applications.

We will focus on the methods but we wish to stress that the choice of the
indicators is particularly relevant in the context of nowcasting. Specifically,
different indicators may have to be used over time, depending on the specific
information set available at the time of nowcasting, on the business cycle
phase, and on the largest shocks hitting the system. Moreover, some indica-
tors can shift the point forecasts, while others can have a stronger effect on
the density forecasts, improving forecast precision. Data revisions and data
pre-treatment, such as seasonal adjustment and outlier removal also play an
important role for the final outcome. Finally, the use of real-time data is
particularly relevant for a proper evaluation of the relative performance and
reliability of a nowcasting model. All these issues have been discussed in
other parts of the book and are considered in more details in the papers
covering the empirical applications surveyed in this chapter.

The chapter is organized as follows. In Section 12.2, we deal with bridge
models, while in Sections 12.3 and 12.4 we consider, respectively, MIDAS,
MF-VAR, and MIDAS-VAR models. In Section 12.5 we assess the relative
performance of the alternative mixed-frequency model using simulated data,
while in Section 12.6 we do that in the context of an empirical application
on nowcasting US GDP growth using a set of timely monthly indicators.
Finally, in Section 12.7 we summarize and conclude.

12.2 Bridge equations

Bridge equations are linear regressions that link (bridge) high-frequency vari-
ables, such as industrial production or retail sales, to low-frequency ones,
e.g., the quarterly real GDP growth, providing some estimates of current
and short-term developments in advance of the release. The bridge model
technique allows computing early estimates of the low-frequency variables by
using high-frequency indicators. They are not standard macroeconometric
models, since the inclusion of specific indicators is not mainly based on causal
relations, but more on the statistical fact that they contain timely updated
information.
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In principle, bridge equation models require that the whole set of re-
gressors should be known over the projection period, but this is rarely the
case. Taking forecasting GDP as an example, since the monthly indicators
are usually only partially available over the projection period, the predic-
tions of quarterly GDP growth are obtained in two steps. First, monthly
indicators are predicted over the remainder of the quarter, usually on the
basis of univariate time series models (in some cases VAR have been imple-
mented in order to obtain better forecasts of the monthly indicators), and
then aggregated to obtain their quarterly correspondent values. Second, the
aggregated values are used as regressors in the bridge equation to obtain
forecasts of GDP growth.

It will be convenient to focus on a mixture of two frequencies, respectively
high and low. In terms of notation, t = 1, . . . , T indices the low-frequency
time unit, and m is the number of times the higher sampling frequency
appears in the same basic time unit (assumed fixed for simplicity). For
example, for quarterly GDP growth and monthly indicators as explanatory
variables, m = 3. The low-frequency variable will be denoted by yLt , whereas
a generic high-frequency series will be denoted by xHt−j/m where t−j/m is the

jth (past) high-frequency period with j = 0, . . . m− 1. For a quarter/month
mixture one has xHt , x

H
t−1/3, x

H
t−2/3 as the last, second to last, and first months

of quarter t. Obviously, through some aggregation scheme, such as flow or
stock sampling, we can always construct a low-frequency series xLt . We will
simply assume that xLt =

∑m−1
i=0 aix

H
t−i/m.

3

Bridge models involving a single regressor typically start with a dis-
tributed lag model (cf. equation 3.2.7). For pedagogical reasons and no-
tational convenience, we will work with a static regression model instead,
namely:

yLt = a+ bxLt + uLt (12.2.1)

where uLt is an error term assumed to be i.i.d. We know from Chapter 1
that the parameters can be estimated via OLS, and let us call the estimated
parameters âT and b̂T . Suppose now we want to predict the first out-of-sample
(low-frequency) observation, namely:

ŷLT+1 = âT + b̂Tx
L
T+1

3For further discussion of aggregation schemes see for example or Lütkepohl (2012) or
Stock and Watson (2002b, Appendix).
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Unfortunately, we do not have xLT+1, but recall that we do have high-frequency
observations xHT+1−i/m available. For example, if we have values for xH for

the first two months of quarter T + 1 (xHT+1−2/m and xHT+1−1/m), then only

xHT+1 is missing to complete the quarterly value xLT+1. Using an empirically
suitable univariate time series model, as we studied in Chapter 5, applied to
the high-frequency observations, we can obtain prediction formulas:

x̂HT+1|T+1−1/m = φ̂(L1/m)xHT+1−1/m

where φ̂(·) is a polynomial lag operator for one high-frequency horizon pre-
diction with parameter estimates obtained over a sample of size TH = T ×
m + 2 (as we also have two months for quarter T + 1) and L1/mxHT+1−i/m =

xHT+1(i+1)/m.

We can index φ̂h(·) with h the forecast horizon in high-frequency, to em-
phasize that it does depend on the forecast horizon (the index was dropped
when h = 1 in the above formula). Then, in general for consecutive high-
frequency observations we can replace the unknown regressor xLT+1 with par-
tial realizations of the high-frequency observations and complemented with
estimates of the missing ones, namely the missing ones with high-frequency-
based predictions, namely:

ŷLT+1|T+1−(m−i)/m = âT + b̂T [
∑i

j=1 am−jx
H
T+1−(m−j)/m]

+b̂T [
∑i−m

h=1 am−(i−h)φ̂h(L
1/m)xHT+1−(m−1)/m]

(12.2.2)

for i = 1, . . . , m − 1. These are a collection of nowcasts (or flash estimates
in statistical terminology), using bridge equations.4

Note that in the above equation we froze the parameter estimates âT
and b̂T while updating the regressors. We used a static regression and a
single regressor for illustrative purposes. In practice, the bridge equations
can involve multiple regressors or (low-frequency) distributed lag type of
models – often also involving lagged dependent variables, i.e. low-frequency
ARDL models are the starting point with regressors that are available at
higher frequencies.

The usual setting is one involving a combination of quarterly and monthly
data series. The selection of the monthly indicators included in the bridge

4A flash estimate or nowcast is defined exactly as a preliminary estimate pro-
duced/published as soon as possible after the end of the reference period, using a more
incomplete set of information than the one used for the final estimates.
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model is typically based on a general-to-specific methodology and relies
on different in-sample or out-of-sample criteria, like information criteria or
RMSFE performance.

Bridge equations have been one of the first methods employed in now-
casting the current state of the economy, making use of the available monthly
information. A common finding is that the exploitation of intra-period in-
formation reduces the forecasting error in the majority of cases. Looking,
for example, at US data, Ingenito and Trehan (1996) constructed a model
that predicts current quarter real GDP using nonfarm payrolls, industrial
production, and real retail sales, which have the advantage of being released
at a monthly frequency by the middle of the subsequent month. In order to
produce a model that predicts real GDP, the authors rely on auxiliary models
that generate forecasts of the indicator variables themselves. Their evidence
shows that consumption data provide key information about current output,
and that retail sales yield a good forecast of contemporaneous consumption.

A study by Barhoumi, Darné, Ferrara, and Pluyaud (2012) presents a
model to predict French GDP quarterly growth rate. The authors employ the
bridge equations to forecast each component of GDP, and select the monthly
explanatory variables among a large set of hard and soft data. They find
that changing the set of equations over the quarter is superior to keeping the
same equations.

Studies involving bridge equations can be found for many other countries.
In particular, bridge models have been used for nowcasting Euro area GDP
growth. As an example, we consider Baffigi, Golinelli, and Parigi (2004). In
their paper, bridge models are estimated for aggregate GDP and its compo-
nents, both area-wide and for the main countries of the Euro area. Their
short-term performance is assessed with respect to benchmark univariate
and multivariate standard models, and a small structural model. The results
shown in the paper are clear-cut: bridge models performance is always better
than benchmark models, provided that at least some indicators are available
over the forecasting horizon. As far as the type of aggregation is concerned,
the supply-side approach (modeling aggregate GDP) performs better than
the demand-side approach (aggregation of forecasts by national account com-
ponents). The supply-side models highlight the role of industrial production
and manufacturing surveys as the best monthly indicators. Looking at the
demand-side models, it appears that private consumption is well tracked by
retail sales, while the consumer confidence index plays a minor role; in the
case of investment a major role seems to be played by survey variables.
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Diron (2008) also makes use of bridge equations with Euro area data
to provide an assessment of forecast errors, which takes into account data-
revisions. Using four years of data vintages, the paper provides estimates of
forecast errors for Euro area real GDP growth in genuine real-time conditions
and assesses the impact of data revisions on short-term forecasts of real GDP
growth. Given the size of revision to indicators of activity, the assessment
of reliability of short-term forecasts based on revised series could potentially
give a misleading picture (see also Ghysels, Horan, and Moench (2017)).
Nevertheless, averaging across all bridge equations, forecasts of individual
quarters tend to be similar whether they are based on preliminary or revised
data. More specifically, the RMSFEs based on real-time and pseudo real-
time exercises are quite similar and both smaller compared with AR forecasts
of GDP, considered the benchmark. The difference in forecast accuracy is
significant according to Diebold and Mariano (1995) tests, highlighting the
that short-term forecasts based on bridge equations are informative.

12.3 MIDAS Regressions

In order to take into account mixed-frequency data, Ghysels, Santa-Clara,
and Valkanov (2004), introduced the MIxed-DAta Sampling (MIDAS) ap-
proach, which is closely related to the distributed lag (DL) model (cf. equa-
tion (3.2.7)), but in this case the dependent variable yLt , sampled at a lower-
frequency, is regressed on a distributed lag of xHt , which is sampled at a
higher-frequency. It is why the simplest specification is called a DL-MIDAS
regression.

One way to think about MIDAS regressions – although that was not
the original motivation – is to note that the bridge equations studied in
the previous subsection have a rather unusual estimation structure, namely
on the one hand we estimate âT and b̂T only with low-frequency data, and
we estimate separately φ̂h(·) only with high-frequency data. In a MIDAS
regression, the estimation involves standard one-step estimators.

In what follows, we first present the basic features of the model as pre-
sented by Ghysels, Santa-Clara, and Valkanov (2004), the corresponding un-
restricted version as in Foroni, Marcellino, and Schumacher (2015), and then
some extensions that have been introduced in the literature.
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12.3.1 The basic MIDAS regression model

MIDAS regressions are essentially tightly parameterized, reduced form re-
gressions that involve processes sampled at different frequencies. The re-
sponse to the higher-frequency explanatory variable is modeled using highly
parsimonious distributed lag polynomials, to prevent the proliferation of pa-
rameters that might otherwise result, as well as the issues related to lag-order
selection.

The basic single high-frequency regressor MIDAS model for h-steps ahead
(low-frequency) forecasting, with high-frequency data available up to xHt is
given by

yLt+h = ah + bhC(L1/m; θh)x
H
t + εLt+h (12.3.1)

where C(L1/m; θ) =
∑jmax−1

j=0 c(j; θ)Lj/m, and C(1; θ) =
∑jmax−1

j=0 c(j; θ) = 1.

The parameterization of the lagged coefficients of c(k; θ) in a parsimonious
way is one of the key MIDAS features. Various other parsimonious polyno-
mial specifications have been considered, including (1) beta polynomial, (2)
Almon lag polynomial specifications, and (3) step functions, among others.
Ghysels, Sinko, and Valkanov (2006) provide a detailed discussion.5 One of
the most used parameterizations is the one known as exponential Almon lag,
since it is closely related to the smooth polynomial Almon lag functions that
are used to reduce multicollinearity in the distributed lag literature. It is
often expressed as

c(k; θ) =
exp(θ1k + . . .+ θQk

Q)∑K
k=0 exp(θ1k + . . .+ θQkQ)

(12.3.2)

This function is known to be quite flexible and can take various shapes with
only a few parameters. These include decreasing, increasing or hump-shaped
patterns. Ghysels, Santa-Clara, and Valkanov (2006) use the functional form
with two parameters, which allows a great flexibility and determines how
many lags are included in the regression.

Another possible parameterization, also with only two parameters, is the

5Various software packages including the MIDAS Matlab Toolbox (Ghysels (2013)),
the R Package midasr (Ghysels, Kvedaras, and Zemlys (2016)), EViews and Gretl cover
a variety of polynomial specifications.
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so-called beta lag, because it is based on the beta function:

c(k; θ1, θ2) =
f( k

K
, θ1; θ2)∑K

k=0 f( k
K
, θ1; θ2)

f(x, a, b) =
xa−1(1− x)b−1Γ(a+ b)

Γ(a)Γ(b)
(12.3.3)

and Γ(a) =
∫∞

0
e−xxa−1dx. One attractive specific case of the MIDAS beta

polynomial involves only one parameter, namely setting θ1 = 1 and estimat-
ing the single parameter θ2 with the restriction that it be larger than one.
Such a specification yields single-parameter downward sloping weights more
flexible than exponential or geometric decay patterns.

Ghysels, Rubia, and Valkanov (2009) propose also three other different
parameterizations of the lag coefficients:

• a linear scheme, with c(k; θ) = 1
K

, where there are no parameters to
estimate in the lagged weight function;

• a hyperbolic scheme, with

c(k; θ) =
g( k

K
, θ)∑K

k=0 g( k
K
, θ)

, g(k, θ) =
Γ(k + θ)

Γ(k + 1)Γ(θ)

where the gamma function has only one parameter to estimate. In
general this specification is not as flexible as the Beta specification;

• a geometric scheme, where |θ| ≤ 1 and

c(k; θ) =
θk∑K
k=0 θ

k
.

These are among the most popular parameterizations besides U-MIDAS and
MIDAS with step functions that will be discussed in a later subsection. The
parameterizations described above are all quite flexible. For different values
of the parameters, they can take various shapes: weights attached to the
different lags can decline slowly or quickly, or even have a hump shape.
Therefore, estimating the parameters from the data automatically determines
the shape of the weights and, accordingly, the number of lags to be included
in the regression.
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A few words about model selection are in order. First, how do we decide
on K, the maximal lag in the MIDAS polynomial? It might be tempting to
use an information criterion as typically is done for ARMA or ARDL models.
However, the number of lags in the high-frequency polynomial is not affecting
the number of parameters. Hence, the usual penalty functions such as those
in the Akaike (AIC), Schwarz (BIC) or Hannan-Quinn (HQ) criteria will not
apply. The only penalty of picking K too large is that we require more (high-
frequency) data at the beginning of the sample as the weights typically vanish
to zero with K too large. Picking K too small is more problematic. This issue
has been discussed extensively in the standard literature on distributed lag
models, see, e.g., Judge, Hill, Griffiths, Lütkepohl, and Lee (1988, Chapters
8 and 9). Nevertheless, using information criteria will be useful once we
introduce lagged dependent variables, see the next subsection, as the selection
of AR augmentations falls within the realm of IC-based model selection. For
this reason Andreou, Ghysels, and Kourtellos (2013) recommend using AIC
or BIC for example. Finally, Kvedaras and Zemlys (2012) present model
specification tests for the polynomial choices in MIDAS regressions.

Suppose now, we want to predict the first out-of-sample (low-frequency)
observation, namely considering equation (12.3.1) with h = 1:

ŷLT+1|T = â1,T + b̂1,TC(L1/m; θ̂1,T )xHT (12.3.4)

where the MIDAS regression model can be estimated using non-linear least
squares (NLS), see Ghysels, Santa-Clara, and Valkanov (2004) and Andreou,
Ghysels, and Kourtellos (2010) for more details. Nowcasting, or MIDAS
with leads as coined by Andreou, Ghysels, and Kourtellos (2013), involving
equation (12.3.4) can also be obtained. For example, with i/m additional
observations the horizon h shrinks to h − i/m, and the above equation be-
comes:

ŷLT+h|T+i/m = âh−i/m,T + bh−i/m,TC(L1/m; θh−i/m,T )xHt+i/m

where we note that all the parameters are horizon specific. Therefore, the
MIDAS regression needs to be re-estimated specifically for each forecast hori-
zon. In other words, for a given choice of h, we will obtain different estimates
of the model parameters, since we are projecting on a different information
set (as usual in direct forecasting). Therefore MIDAS regressions always yield
direct forecasts (cf. section 5.9). This is even more so with lagged dependent
variables – a topic we turn to next.
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12.3.2 The AR-MIDAS and ADL-MIDAS models

Since autoregressive models often provide competitive forecasts compared to
those obtained with static models that include explanatory variables, the
introduction of an autoregressive term in the MIDAS model is a desirable
extension.

Clements and Galvão (2008) suggest the introduction of the AR dynamics
as a common factor, namely letting h = 1 in equation (12.3.1) we have

yLt+1 = a1 + λyLt + b1C(L1/m; θ1)(1− λL)xHt + εLt+1 (12.3.5)

that they call the AR-MIDAS regression model. If we write εLt+1 as (1 −
λL)ε̃Lt+1 then the above equation can be written as a DL-MIDAS in terms of
ỹLt+1 ≡ (1− λL)yLt+1 and x̃Ht ≡ (1− λL)xHt .

6

Note that the right-hand side of the equation contains a product of a poly-
nomial in L1/m and a polynomial in L. This product generates a periodic re-
sponse of yL to xH , irrespective of whether the latter displays a seasonal pat-
tern. To avoid this inconvenience, Andreou, Ghysels, and Kourtellos (2013)
introduce the class of ADL-MIDAS regressions, extending the structure of
ARDL models to a mixed-frequency setting. Assuming an autoregressive
augmentation of order one, the model can be written as

yLt+h = ah + λhy
L
t + bhC(L1/m; θh)x

H
t + εLt+h (12.3.6)

Hence, an ADL-MIDAS regression is a direct forecasting tool projecting a
low-frequency series, at some horizon h, namely yLt+h onto yLt (or more lags
if we consider higher order AR augmentations) and high-frequency data xHt .
Nowcasting, or MIDAS with leads, can again be obtained via shifting forward
the high-frequency data with 1/m increments. The parameters are horizon
specific and the forecast is one that is direct (instead of iterated).7

12.3.3 Slope or no slope?

So far we wrote all the MIDAS regressions with a product of a slope coeffi-
cient, i.e., like bh in equation (12.3.6), and a weighting scheme, i.e., C(L1/m; θh)

6This is also the rationale for the iterative estimation procedure suggested by Cochrane
and Orcutt (1949).

7Bridge equations can also feature autoregressive augmentations. Their relationship
with ADL-MIDAS is studied by Schumacher (2016).
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in the same equation. Identification requires that the sum of the weights adds
up to one, see for example equations (12.3.2) and (12.3.3). Do we need to
estimate the parameters b and θ separately? The answer depends on the
context. If we want to test hypotheses whether the high-frequency series are
significant regressors, e.g., Granger non-causality tests, then we clearly need
to identify the slope parameter and impose the unit sum restriction on the
polynomial weights. Before we discuss the details of such tests, it is worth
noting that in many situations there is no need to separately estimate the
slope and weighting scheme parameters. Indeed, if we only care about a
forecasting equation, then equation (12.3.6) can be rewritten as

yLt+h = ah + λhy
L
t + C(L1/m; θ̃h)x

H
t + εLt+h (12.3.7)

where the MIDAS polynomials are used without normalization. In some cases
this requires some adjustments. Recall that C(L1/m; θ) =

∑K
k=0 c(k; θ)Lk/m

and, C(1; θ) =
∑K

k=0 c(k; θ) = 1. With the exponential Almon, starting from
k = 0, the non-normalized polynomial always yields a weight equal to one
for the zero lag. Therefore, for the exponential Almon it is better to write

C(L1/m; θ̃h) =
K∑
k=1

exp(θ̃h1k + . . .+ θ̃Qk
hQ)L(k−1)/m

such that the zero lag becomes exp(θ̃h1 + . . .+ θ̃hQ).
What if we do want to test say the hypothesis bh = 0 in equation (12.3.6)?

Technically speaking, this is a non-standard test as under the null hypothesis
the parameters θh are unidentified and standard testing procedures, like t-
statistics, do not provide the correct inference. Following Davies (1987), a
t-statistic can still be used to evaluate statistical significance if the impact of
nuisance parameters is properly accounted for. This is done by computing
b̂h over a grid of θih for i = 1, . . . , G (works well with beta-polynomial
MIDAS specification – putting the first parameter equal to one, and looking
at downward sloping weights only). Hence, one has: tbh(θih) for i = 1, . . . ,
G. Davies suggests to compute

tmax ≡ sup
i
tb(θi).

One can compute tmax for the grid and typically simulate its distribution
under the null, see Hansen (1996) for details.
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12.3.4 U-MIDAS and MIDAS with step functions

Foroni, Marcellino, and Schumacher (2015) study the performance of a vari-
ant of MIDAS which does not resort to functional distributed lag polynomi-
als. In the paper, the authors discuss how unrestricted MIDAS (U-MIDAS)
regressions can be derived in a general linear dynamic framework, and under
which conditions the parameters of the underlying high-frequency model can
be identified, see also Koenig, Dolmas, and Piger (2003).

Suppose m is small, like equal to three – as in quarterly/monthly data
mixtures. Instead of estimating bhC(L1/m; θh) in equation (12.3.6) or C(L1/m; θ̃h)
in (12.3.7), let us estimate the individual lags separately – hence the term
unrestricted – yielding the following U-MIDAS regression:

yLt+h = ah + λhy
L
t + c0

hx
H
t + c1

hx
H
t−1/m + c2

hx
H
t−2/m

+ . . .+ cmK̃h xH
t−K̃ + εLt+h, (12.3.8)

which implies that in addition to the parameters ah and λh we estimate 1 +
mK̃ additional parameters. With m = 3 and K̃ small, like say up to four
(annual lags) and large enough to make the error term εLt+h uncorrelated, it
is reasonable to estimate all the U-MIDAS regression parameters via OLS.
From a practical point of view, the lag order could differ across variables,
and selected by an information criterion such as AIC, BIC, or Hannan-Quinn
criteria.

The U-MIDAS regression has all parameters unconstrained and therefore
runs against the idea that high-frequency data parameter proliferation has to
be avoided. That is why U-MIDAS only works for small values of m. Is there
an intermediate solution where we keep the appeal of simple OLS estimation,
avoiding the non-linear estimation setting of typical MIDAS regressions, and
still keep the number of parameters small? The solution to this is called
MIDAS with step functions, as introduced by Ghysels, Sinko, and Valkanov
(2006) and Forsberg and Ghysels (2006). A MIDAS regression with S steps
and K lags can be written as:

yLt+h = ah + λhy
L
t +

K∑
k=0

(
S−1∑
s=0

csIk∈(as−1,as])x
H
t−k/m + εLt+h

Ik∈(as−1,as] =

{
1, as−1 < k ≤ as
0, otherwise

(12.3.9)
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where a0 = 0 < a1 < . . . < aS−1 = K. Hence, we only estimate S parameters
for the high-frequency data projection with S � K. The indicator function
Ik∈(as−1,as] applies parameters cs to segments of high-frequency data lags past
as−1 and prior or equal to as. The appeal is obvious, as we approximate the
smooth polynomial lags via discrete step functions. Model selection amounts
to selecting the appropriate set of steps, which can be again guided via infor-
mation criteria. A popular application of MIDAS with step functions is the
so called HAR model of Corsi (2009) involving daily, weekly, and monthly
realized volatility, see Chapter 14.

12.3.5 Extensions of the MIDAS regression model

Different extensions of the MIDAS models have been analyzed in the litera-
ture, to introduce the use of mixed-frequency data in specific applications or
studies, in which there is a need to capture particular features. For example,
some studies incorporate regime changes in the parameters or asymmetric
reactions to negative or positive values of the explanatory variables. In what
follows, we provide a brief overview of some extensions of the MIDAS regres-
sion models discussed so far.

Multiple explanatory variables To allow for the inclusion of several
additional explanatory variables into the MIDAS framework, it is necessary
to extend the basic model above as follows:

yLt+h = ah + b1
hC(L1/m; θ1

h)x
H
1,t + . . .+ bIhC(L1/m; θIh)x

H
I,t + εLt+h

where I is the number of high-frequency series. Within the more general
framework, it is also possible to include explanatory variables at different
frequencies, since each indicator is modeled with its own polynomial param-
eterization. As an example, quarterly GDP growth can be explained not
only by monthly indicators but also by weekly financial variables, with the
explanatory variables, therefore, sampled at two different frequencies. Gener-
ically, this includes regression models with different high frequencies, say m1,
. . . , mp :

yLt+h = ah + b1
hC(L1/m; θ1

h)x
H
1,t + . . .+ bIhC(L1/m; θIh)x

H
I,t + εLt+h

Obviously, the above specification may be extended to allow for the presence
of an autoregressive structure.
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In practice, adding explanatory variables substantially complicates esti-
mation. An alternative, easier procedure, is to work with single indicator
MIDAS models and then pool the resulting forecasts. This approach works
well, e.g., in an empirical application on nowcasting US GDP growth, see
Kuzin, Marcellino, and Schumacher (2013). Alternatively, Andreou, Ghy-
sels, and Kourtellos (2013) use time-varying forecast combination rules to
handle large data of daily financial market time series.

Nonparametric MIDAS regression models Breitung and Roling (2015)
introduce a nonparametric MIDAS regression, which they use to forecast in-
flation with daily data. The model can be written as:

yLt+h = ah + c0
hx

H
t + c1

hx
H
t−1/m + c2

hx
H
t−2/m + . . .+ cKh x

H
t−K/m + εLt+h

where instead of imposing a polynomial specification, Breitung and Roling
propose an alternative nonparametric approach that does not impose a par-
ticular functional form but merely assumes that the coefficient cjh is a smooth
function of j in the sense that the absolute values of the second differences:

O2cjh = cjh − 2cj−1
h + cj−2

h j = 2, . . . , K

are small. Specifically, the coefficients ch ≡ c0
h, . . . , c

K
h are obtained by

minimizing the penalized least-squares objective function

S(λh, ch) =
T∑
t=1

(yLt+h − ah − c0
hx

H
t − . . .− cKh xHt−K/m)2 + γ

K∑
j=2

O2cjh

where γ is a pre-specified smoothing parameter. This objective function pro-
vides a trade-off between the traditional goodness-of-fit and an additional
term that penalizes large fluctuations of the high-frequency regression param-
eters. To implement the estimator one has to select the smoothing param-
eter γ. Breitung and Roling (2015) suggest using a cross-validation method
or an information criterion. Monte Carlo experiments suggest that the non-
parametric estimator may provide more reliable and flexible approximations
to the actual lag distribution than the conventional parametric MIDAS ap-
proach based on exponential lag polynomials. Parametric and nonparametric
methods are applied to assess the predictive power of various daily indica-
tors for forecasting monthly inflation. Breitung and Roling (2015) find that a
commodity price index is a useful predictor for inflation 20 to 30 days ahead
with a hump-shaped lag structure.
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Asymmetric, non-linear and semi-parametric MIDAS models Var-
ious MIDAS regression models involving asymmetries or other non-linearities
have been proposed in the context of volatility forecasting and will be covered
in Chapter 14. Also originated in the volatility literature, but of general in-
terest, is the semi-parametric MIDAS regression model of Chen and Ghysels
(2011):

yLt+h = ah + bhC(L1/m; θh)g(xHt ) + εLt+h

where g(·) is a function estimated via kernel-based non-parametric methods.
Hence, the time series dependence is a standard MIDAS polynomial and
therefore parametric in combination with the estimation of a generic func-
tion. The asymptotic distribution of the estimation procedure has a para-
metric and nonparametric part. The latter is kernel based, involves solving
a so called inverse problem and is inspired by Linton and Mammen (2005).
The mixed-frequency data sampling scheme in semi-parametric MIDAS re-
gressions adds an extra term to the asymptotic variance compared to the
result obtained by Linton and Mammen.

Smooth Transition MIDAS models Galvão (2013) proposes a new re-
gression model that combines a smooth transition regression with a mixed-
frequency data sampling approach, which she calls STMIDAS. In particular,
let us write equation (12.3.1) as follows:

yLt+h = ah + bhx(θ)Ht + εLt+h

where x(θ)Ht = C(L1/m; θh)x
H
t =

∑K
k=0 c(k; θ)Lk/mxHt . Then the smooth tran-

sition MIDAS regression can be written as:

yLt+h = ah + b1hx(θ)Ht
[
1−G(x(θ)Ht ; γ, c)

]
+ b2hx(θ)Ht G(x(θ)Ht ; γ, c) + εLt+h

where

G(x(θ)Ht ; γ, c) =
1

1 + exp(−γ/σ̂x(x(θ)Ht ; γ, c))

The transition function is a logistic function that depends on the weighted
sum of the explanatory variable in the current quarter. The time-varying
structure allows for changes in the predictive power of the indicators. When
forecasting output growth with financial variables in real time, statistically
significant improvements over a linear regression are more likely to arise from
forecasting with STMIDAS than with MIDAS regressions, since changes in
the predictive power of asset returns on economic activity may be related to
business cycle regimes.
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Markov Switching MIDAS models Guérin and Marcellino (2013) in-
corporate regime changes in the parameters of the MIDAS models. The basic
version of the Markov Switching MIDAS (MS-MIDAS) regression model they
propose is:

yLt+h = ah(St) + bh(St)C(L1/m; θh)x
H
t + εLt+h

where εLt+h|St ∼ N(0, σ2(St)). The regime-generating process is an ergodic
Markov-chain with a finite number of states St. These models allow also
mixed-sample estimation of the probabilities of being in a given regime, which
is relevant, for example, to predict business cycle regimes.

Quantile regressions Ghysels, Plazzi, and Valkanov (2016) propose con-
ditional MIDAS quantile regression models. While such regression models
are of general interest, the specific application involves estimating conditional
skewness of the h-period-horizon returns of interest to portfolio allocation,
say for example monthly/quarterly returns, while using high-frequency (i.e.,
daily) returns as the information set. The mixed-sampling approach allows
one to use all the richness of the high-frequency (daily) data while the objec-
tive remains a longer horizon returns. Ghysels, Plazzi, and Valkanov (2016)
use MIDAS quantile model to measure conditional skewness used in portfolio
allocation rules. There are a several conditional quantile models such as the
CAViaR of Engle and Manganelli (2004). These conditional quantile models
work exclusively with low-frequency data, which means that monthly and
quarterly portfolio allocations would be confined to information sets that
ignore the wealth of daily data.

Let qa,t(rt+h;κa,h) be the ath quantile (with a ∈ (0, 1)) for return over hori-
zon h (say h = 22 days) conditional on information at time t parameterized
by parameter θ depends on the horizon and a.

Ghysels, Plazzi, and Valkanov (2016) model qa,t(rt+h;κa,h) as an affine

function of xdt (θa,h) = C(Ld; θa,h)xt =
∑K

k=0 c(k; θa,h)L
k
dxt where Ld is a daily

(high-frequency) lag operator and xt is a daily (high-frequency) series – typ-
ically absolute or squared daily returns as in Engle and Manganelli (2004).
Hence,

qa,t(rt+h;κa,h) = b0
a,h + b1

a,hx
d
t (θa,h)

where κa,h =
(
b0
a,h, b

1
a,h, θa,h

)
are unknown parameters to estimate. The condi-

tional quantiles are an affine function of linearly filtered xt representing daily
conditioning information with lag of K days. The weights are parameterized
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as a standard MIDAS regression. For example, Ghysels, Plazzi, and Valka-
nov (2016) use a beta polynomial. To estimate the parameters, one uses the
usual “check” function as is common in the quantile regressions literature –
see Koenker and Bassett (1978), Engle and Manganelli (2004), among others.

It was noted that one area of application of MIDAS quantile regressions
is modeling conditional skewness. Sensitivity to outliers is the main reason
why Ghysels, Plazzi, and Valkanov (2016) consider measures of asymmetry
that are not based on sample estimates of the third moment. A conditional
version of the Hinkley (1975) robust coefficient of asymmetry (skewness) is
defined as (where we drop the κa,h argument):

RAa,t (rt+h) =
[qa,t(rt+h)− q.50,t(rt+h)]− [q.50,t(rt+h)− q1−a,t(rt+h)]

qa,t(rt+h)− q1−a,t(rt+h)
,

where a common choice for a = .75 corresponding to using the quartiles of the
conditional return distribution. Substituting the estimated MIDAS quantile
regressions yields an empirical measure of conditional skewness.

12.4 Mixed-frequency VAR

So far, we have seen models that take into account mixed-frequency data in
a univariate approach. Now we focus on multivariate methods and in partic-
ular VAR models. Broadly speaking, there are two approaches dealing with
mixed-frequency data, which can be classified as either parameter-driven or
observation-driven using the terminology of Cox (1981). Parameter-driven
approaches rely on state space model representations involving latent pro-
cesses, treating high-frequency observations of low-frequency series as missing
data and therefore relying on filtering to extract hidden states. Contribu-
tions to this literature include Harvey and Pierse (1984), Bernanke, Gertler,
and Watson (1997), Zadrozny (1990), Mariano and Murasawa (2003), Mit-
tnik and Zadrozny (2004), and more recently Nunes (2005), Giannone, Re-
ichlin, and Small (2008), Aruoba, Diebold, and Scotti (2009), Ghysels and
Wright (2009), Kuzin, Marcellino, and Schumacher (2011), Marcellino and
Schumacher (2010), Foroni and Marcellino (2014), Schorfheide and Song
(2015), Eraker, Chiu, Foerster, Kim, and Seoane (2015), among others. The
observation-driven mixed-frequency VAR models are formulated exclusively
in terms of observable data and therefore closely related to the standard
VAR models discussed in Chapter 6. Contributions to this literature include
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Anderson, Deistler, Felsenstein, Funovits, Koelbl, and Zamani (2015) and
Ghysels (2016). In either case, both classical and Bayesian estimation has
been considered. A subsection is devoted to each approach.

12.4.1 Parameter-driven approach

The approach treats all the series as generated at the highest frequency, but
some of them are unobserved. Those variables that are observed only at
the low-frequency are therefore considered as periodically missing. Slightly
changing the notation of Mariano and Murasawa (2003), we consider the
state space representation of a VAR model in a classical framework, treating
quarterly series as monthly series with missing observations and taking GDP
growth as an example.

The disaggregation of the quarterly GDP growth, yLt , observed every t
= 1, . . . , T, into the month-on-month GDP growth, y∗t , never observed, is
obtained as follows. Let us assume that the quarterly GDP series (in logs),
Y L
t , is the geometric mean of the latent monthly random sequence Y ∗t , Y

∗
t−1/3

and Y ∗t−2/3. Taking the three-period differences and defining yLt = ∆3Y
L
t and

y∗t = ∆Y ∗t , we obtain the following equation:

yLt =
1

3
(y∗t + y∗t−1/3 + y∗t−2/3) +

1

3
(y∗t−1 + y∗t−2/3 + y∗t−1) +

+
1

3
(y∗t−2/3 + y∗t−1 + y∗t−4/3)

=
1

3
y∗t +

2

3
y∗t−1/3 + y∗t−2/3 +

2

3
y∗t−1 +

1

3
y∗t−4/3. (12.4.1)

Let us now also assume we have a high-frequency series xH such that
the combination of the latent month-on-month GDP growth y∗t and the cor-
responding monthly indicator xHt follow a bivariate high-frequency VAR(p)
process

φ(L1/m)

[
y∗t − µ∗y
xHt − µHx

]
= uHt (12.4.2)

where uHt ∼ N(0,Σ). The VAR(p) process in equation (12.4.2) together
with the aggregation equation (12.4.1) are then cast in a state space model
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representation assuming p ≤ 4.8 In particular, let us define

st =

 zt
...

zt−4/3

 , zt =

[
y∗t − µ∗y
xHt − µHx

]
,

yielding a state space model representation of the MF-VAR as

st = Fst−1/3 +Gvt (12.4.3)[
yt − µy
xHt − µHx

]
= H(L1/m)st

with µy = 3µ∗y, and vt ∼ N(0, I2) and where the matrices are defined as

F =

[
F1

F2

]
; F1 =

[
φ1 . . . φp 02×2(5−p)

]
; F2 =

[
I8 08×2

]
,

G =

[
Σ1/2

08×2

]
and:

H(L1/m) =

[
1/3 0
0 1

]
+

[
2/3 0
0 0

]
L1/m +

[
1 0
0 0

]
L2/m

+

[
2/3 0
0 0

]
+

[
1/3 0
0 0

]
L4/3

that also implicitly defines the matrix H = [H0 . . . H4] . Equation (12.4.3) is
observed at t = 1, . . . For any high-frequency intervening observations t +
i/m we treat yt as missing.

The state space model consisting of the equations in (12.4.3) can be es-
timated via maximum-likelihood techniques using the Kalman Filter, where
we have to take into account missing values due to the low-frequency nature
of the GDP.9

8For the sake of conciseness, we do not report the state space model representation for
p > 4. Details for this case can be found in Mariano and Murasawa (2003).

9This setup can also handle missing values due to publication lags. A topic we do
not cover here, see, however, for further details Mariano and Murasawa (2003), Zadrozny
(1990) and Ghysels, Horan, and Moench (2017), among others.
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As Mariano and Murasawa (2003) note in their paper, when the number
of parameters is large, the ML estimation procedure can fail to converge. In
these cases, it is useful to implement the EM algorithm of Dempster, Laird,
and Rubin (1977) modified to allow for missing observations.10 Mariano and
Murasawa (2003) consider the missing values as realizations of some i.i.d.
standard normal random variables, i.e.

y+
t =

{
yLt
ζt

if yt is observable
otherwise

where ζt is a draw from a standard normal distribution independent of the
model parameters.

The measurement equation is modified accordingly in the first two months
of each quarter, where the upper row ofH is set to zero and a standard normal
error term is added, so that the Kalman filter skips the random numbers.
Since the realizations of the random numbers do not matter in practice, the
authors suggest to replace the missing values with zeros. Then, the EM
algorithm is used to obtain estimates of the parameters.

Mittnik and Zadrozny (2004) forecast German real GDP at monthly in-
tervals based on a VAR(2) model of quarterly GDP and up to three monthly
indicator variables (industrial production, current and expected business con-
ditions). They find that in general monthly models produce better short-term
GDP forecasts, while quarterly models produce better long-term GDP fore-
casts.

Kuzin, Marcellino, and Schumacher (2011) compare the MF-VAR and the
MIDAS approaches, in the presence of monthly and quarterly series. MIDAS
leads to parsimonious models, while MF-VAR does not restrict the dynamics
but suffers from the curse of dimensionality. The two approaches tend to be
more complementary than substitutive, since the MF-VAR performs better
for longer horizons, whereas MIDAS for shorter horizons. Looking at the
relative MSFE of the different models with respect to an AR low-frequency
benchmark, the mixed-frequency models perform relatively well, especially
when forecast combinations are adopted. Similar evidence is provided by
Foroni and Marcellino (2012), who also provide results for the Euro area
GDP components and assess the relative performance of a very large set of
monthly indicators.

10Stock and Watson (2002b, Appendix A) propose a modification of the EM algorithm
to estimate high-frequency factors from potentially large unbalanced panels, with mixed-
frequency being a special case. See section 13.4.1 for further discussion.



i
i

i
i

i
i

i
i

474 CHAPTER 12. MODELS FOR MIXED-FREQUENCY DATA

12.4.2 Observation-driven approach

Ghysels (2016) introduces a different mixed-frequency VAR representation,
in which he constructs the mixed-frequency VAR process as stacked skip-
sampled processes. We will call the approach MIDAS-VAR to distinguish it
from the parameter-driven approach. An example of an order one stacked
VAR involving two series xHt and yLt with m = 3 would be as follows (ignoring
intercept terms):


xHt+1−2/3

xHt+1−1/3

xHt+1

yLt+1

 =


φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44



xHt−2/3

xHt−1/3

xHt
yLt

+ εt+1 (12.4.4)

Note that a bivariate system turns into a four-dimensional VAR due to the
stacking. Moreover, the approach does not involve latent shocks/states or la-
tent factors. This means there is no need for (Kalman) filtering. Technically
speaking the approach adapts techniques typically used to study seasonal
time series with periodic structures (see, e.g., Gladyshev (1961)). The in-
novation vector is obviously also of dimension 4 × 1. This means that each
entry to the VAR has its own shock. Note that there are no latent high-
frequency shocks to the low-frequency series. One implication is that we can
apply standard VAR model techniques such as impulse response functions
and variance decompositions (see sections 6.6 and 6.7).

When we examine the last equation in the system (12.4.4) we recognize
a U-MIDAS regression model:

yLt+1 = φ41x
H
t−2/3 + φ42x

H
t−1/3 + φ43x

H
t + φ44y

L
t + ε4,t+1

In contrast, the first equation (as well as the second and third) measures the
impact of low-frequency on series, namely:

xHt+1−2/3 = φ11x
H
t−2/3 + φ12x

H
t−1/3 + φ13x

H
t + φ14y

L
t + ε1,t+1

What about nowcasting? For this we need a structural VAR extension.
Building on the analysis in Section 6.8 we can pre-multiply equation (12.4.4)
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with a lower triangular matrix and obtain the following system:
1 0 0 0
a21 1 0 0
a31 a32 1 0
a41 a42 a43 1



xHt+1−2/3

xHt+1−1/3

xHt+1

yLt+1

 =


1 0 0 0
a21 1 0 0
a31 a32 1 0
a41 a42 a43 1

×

φ11 φ12 φ13 φ14

φ21 φ22 φ23 φ24

φ31 φ32 φ33 φ34

φ41 φ42 φ43 φ44



xHt−2/3

xHt−1/3

xHt
yLt

+ ε̃t+1

Reading from the above system for the second equation, we have:

xHt+1−1/3 = −a21x
H
t+1−2/3 + φ̃21x

H
t−2/3 + φ̃12x

H
t−1/3 + φ̃13x

H
t + φ̃14y

L
t + ε̃2,t+1

and for the last equation:

yLt+1 = −
3∑
j=1

a4jx
H
t+1−(3−j)/3 + φ̃41x

H
t−2/3 + φ̃42x

H
t−1/3 + φ̃43x

H
t + φ̃44y

L
t + ε̃4,t+1

The latter is a MIDAS with leads equation we encountered in the discussions
on nowcasting, whereas the former is a regression predicting high-frequency
data in real time.

It should be clear by now that the MIDAS-VAR approach discussed in
this subsection only relies on standard VAR techniques. Note that this also
applies to estimation, which can be either classical or Bayesian, where the
latter is appealing when the dimension of the VAR is large, which is easily the
case with MIDAS-VAR systems due to the stacking of low and high-frequency
series.

McCracken, Owyang, and Sekhposyan (2015) assess point and density
forecasts from an observation-driven MIDAS-VAR to obtain intra-quarter
forecasts of output growth as new information becomes available, imposing
restrictions on the MIDAS-VAR to account explicitly for the temporal or-
dering of the data releases. They show that the MIDAS-VAR, estimated via
Bayesian shrinkage, performs well for GDP nowcasting: it outperforms the
considered time series models and does comparably well relative to the Sur-
vey of Professional Forecasters. Bacchiocchi, Bastianin, Missale, and Rossi
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(2016) study how monetary policy, economic uncertainty and economic pol-
icy uncertainty impact on the dynamics of gross capital inflows in the United
States using a MIDAS-VAR. While no relation is found when using stan-
dard quarterly data, exploiting the variability present in the series within
the quarter shows that the effect of a monetary policy shock is greater the
longer the time lag between the month of the shock and the end of the quar-
ter. In general, the effect of economic and policy uncertainty on US capital
inflows are negative and significant. Finally, the effect of the three shocks
is different when distinguishing between financial and bank capital inflows
from one side, and FDI from the other.

12.5 Example: Nowcasting with simulated

data

This empirical application shows how to produce nowcasts with bridge and
MIDAS models, using simulated data for clarity of exposition. The DGP is
a simple bivariate model at high-frequency with the following specification:

yHt = 1 + 0.25(xHt + xHt−1/4 + xHt−1/2 + xHt−3/4) + εHyt (12.5.1)

xHt = 1 + 0.4xHt−1/4 + 0.4xHt−1/2 + εHxt

We generate data on a quarterly variable xHt+k/4, spanning from 1949Q1 to
2012Q4, and observations for the same time period but at an annual fre-
quency on the variables xLt and yLt . The data for xLt and yLt are obtained as
the sum of the quarterly high-frequency variables (other aggregation schemes
would work as well). Hence, xLt ≡

∑3
k=0 x

H
t−k/4. We will use the observations

for 1949 as starting values and focus our analysis on the period 1950-2012.

Our goal is to construct a model for yLt and xHt+k/4 that can be used to

produce nowcasts of the yearly value of yL based on the quarterly observa-
tions of xH . For example, if we are in the first quarter of 2012, we observe
xH up to 2012Q1, yL up to 2011, and we want to obtain an estimate of the
value for yL in 2012.

In economic terms, yL could represent for example a fiscal variable, which
is typically only released on an annual basis, and xH GDP. In some countries
GDP is only released at an annual basis. In these cases, yL could be GDP
and xH industrial production, or an interest rate spread or a survey indicator.
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x̂Hk|2012Q1 x̂Hk|2012Q2 x̂Hk|2012Q3 x̂Hk|2012Q4

k = 2012Q1 3.192 3.192 3.192 3.192
k = 2012Q2 4.635 3.496 3.496 3.496
k = 2012Q3 3.975 3.570 2.297 2.297
k = 2012Q4 4.444 3.742 3.265 3.005

Table 12.5.1: Forecasts from the AR(2) model for xH

12.5.1 The bridge equation approach

To facilitate the presentation we will use two types of notation for high and
low-frequency data that differ from the notation used so far. Namely yLt for
the year 2011 will also be denoted yL2011 and xHt+1/4 for t corresponding to

2011 will be denoted xH2012Q1, since it is the first quarterly observation after
the end of 2011. Our starting point is the high-frequency data. Clearly, the
information we have on xH depends on the quarter of 2012 we are in. More
specifically, we look at four scenarios:

• In 2012Q1 we only have information up to the first quarter of the year,
so that values for 2012Q2 (k = 2), Q3 and Q4 are obtained as the best
forecasts from a model for xH , estimated over the 1950Q1-2012Q1 sam-
ple. As a consequence, we will create forecasts x̂H2012Q2|2012Q1, x̂

H
2012Q3|2012Q1

and x̂H2012Q4|2012Q1

• In 2012Q2 only the first two quarters of 2012 are available, so Q3
and Q4 are replaced by the best forecasts from a model for xH , esti-
mated over the 1950Q1-2012Q2 time span, resulting in x̂H2012Q3|2012Q2

and x̂H2012Q4|2012Q2

• In 2012Q3 the first three quarters of 2012 are available, so the infor-
mation for Q4 must be replaced by the best forecast x̂H2012Q4|2012Q3

• In 2012Q4 all the four quarters of 2012 are available and we can exploit
a complete information set of within-year data.

We need first to find a good quarterly ARMA specification to represent
xH and to produce reliable forecasts. In a second step, we will need a yearly
model that links yL to xH . We will call the different flash estimates for yL as
ŷL2012|2012k, k = ′Q1′, . . . , ′Q4′ depending on which quarter of 2012 we are in.
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Coefficient Std.Error t-Statistic Prob.

BETA(1) 1.010 0.063 16.008 0.000
BETA(2) 0.249 0.003 81.241 0.000

R-squared 0.991 Mean dep var 6.000
Adjusted R-squared 0.991 S.D. dep var 1.184
S.E. of regression 0.113 Akaike IC -1.485
Sum squared resid 0.771 Schwarz IC -1.416
Log likelihood 48.032 Hannan-Quinn -1.458
F-statistic 6600.148 DW stat 2.284
Prob(F-statistic) 0.000

Table 12.5.2: Bridge equation (12.5.2) estimates 1950 - 2011

Not surprisingly given the DGP, an AR(2) model provides a good rep-
resentation for xH . Having estimated the AR(2) model up to 2012Q1, we
can now use it to produce forecasts for xH in 2012Q2, Q3 and Q4. In Table
12.5.1, we compare x̂Hk|2012j for k ′2012Q1′ through ′2012Q4′ and j = ′Q1′

through ′Q4′.

The yearly database now contains 63 observations (1949 - 2012) on yL and
xL. We will focus on the sample 1950 - 2011, assuming that the value for yL2012

is not available and needs to be estimated based on within-year information
on xH . More precisely, we will produce flash estimates ŷL2012|2012k, k = ′Q1′

through ′Q4.′

We model the relationship between yL and the quarterly (aggregated to
yearly) variables xL estimated over the sample 1950-2011 as a simple linear
model:

yLt = b1 + b2x
L
t + εLt t = 1950, . . . , 2011. (12.5.2)

works well, not surprisingly given the DGP. We call this a bridge equation
and the results of its estimation are displayed in Table 12.5.2. We will call
these estimated parameters b̂2011

1 and b̂2011
2 as they use data up to 2011.

As a final step, the estimated coefficients in Table 12.5.2 can be combined
with information we have in each quarter of 2012 to obtain a flash estimate
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for yL in 2012. More formally, we construct the flash estimates as:

ŷL2012|2012Q1 = b̂2011
1 + b̂2011

2 (xH2012Q1 +

2012Q4∑
k=2012Q2

x̂Hk|2012Q1)

ŷL2012|2012Q2 = b̂2011
1 + b̂2011

2 (

2012Q2∑
k=2012Q1

xHk +

2012Q4∑
k=2012Q3

x̂Hk|2012Q2)

ŷL2012|2012Q3 = b̂2011
1 + b̂2011

2 (

2012Q3∑
k=2012Q1

xHk + x̂H2012Q4|2012Q3)

ŷL2012|2012Q4 = b̂2011
1 + b̂2011

2 xL2012

although for the latter we could possibly update the parameter estimates as
well. Table 12.5.3 compares the actual value for yL in 2012 and the four
flash estimates of yL, each of them employing an increasingly more complete
information set. Clearly, the more information we use, the closer the estimate
gets to the actual value.

Nevertheless, the estimation error can still be sizable, and it is related to
six main sources of uncertainty:

1. Mis-specification errors in the model selected for the high-frequency
series.

2. Bias in the estimation of the model parameters for xH .

3. Uncertainty on future values for xH implied by its possibly substantial
forecast error component.

4. Mis-specification errors in the model for the low-frequency variable, yL.

5. Bias in the estimation of the model parameters for yL.

6. Uncertainty about future values for yL implied by its model residual
component.

While the researcher has is general no power to reduce the noise com-
ponents of the actual time-series (points 3 and 6), she should, of course, do
her best when dealing with model specification, estimation, and forecasting
issues.
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12.5.2 The MIDAS regression approach

In the bridge equation approach we used as explanatory variable for yL an
average of the quarterly xH variables, and used univariate model forecasts for
the missing observations to produce flash estimates. In this section instead
we will employ an alternative approach based on MIDAS regression models.
We will work with both restricted and unrestricted MIDAS models.

Suppose again we are in the first quarter of 2012 and we want to pro-
duce a flash estimate for yL exploiting all the available information. The
estimation sample is again 1950 - 2011 as in equation (12.5.2), since we as-
sume that yL is not available in 2012, and the information set is I2012Q1 =
[xH2012Q1, (x

H
t−k/4, y

L
t ), k = 0, . . . , 3; t = 1950, . . . , 2011]. We can estimate re-

spectively equations (12.3.6) and (12.3.8). For the latter – i.e., the U-MIDAS
specification – we will use up to one lag of the variables, for the sake of sim-
plicity.

At this point we can regress yL on the xH variables, using the U-MIDAS
specifications, and provide flash estimates/nowcasts with the estimated re-
gressions for the value of yL2012|k for k = 2012Q1, . . . , 2012Q4. Similarly, we

will estimate the MIDAS specifications and provide flash estimates/nowcasts
for the value of yL2012|k using the estimated parameters.

A U-MIDAS model for yL2012|2012Q1 is simply given by an OLS regression

of yL on a constant and all the variables in the information set I2012Q1 as in
equation (12.3.8). Additionally, a restricted MIDAS model for yL in the same
quarter requires to use an Almon lag polynomial (or any other polynomial
specification) instead of a linear structure on the same set of regressors in
equation (12.3.6). The estimate for yL2012|2012Q1 according to these two models
can now be easily computed by simply producing the static forecasts of these
two equations through the whole sample.

The last observations of the series yL are our nowcasts for yL2012|2012Q1

according to the two models and are obtained using only the information
available until the first quarter of 2012.

The same procedure can be carried on also in the other quarters of 2012,
only keeping in mind that the information sets have to be modified in the
following way:

• In 2012Q2 the information set is I2012Q2 = [xH2012Q1, x
H
2012Q2] ∪ I2011Q4

• In 2012Q3 the information set is I2012Q3 = [xH2012Q1, x
H
2012Q2, x

H
2012Q3] ∪

I2011Q4
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yL ŷL2012|2012Q1 ŷL2012|2012Q2 ŷL2012|2012Q3 ŷL2012|2012Q4

BRIDGE 4.016 5.056 4.497 4.061 3.996

MIDAS 4.016 6.347 5.157 4.509 4.017

U −MIDAS 4.016 5.122 4.514 4.127 3.989

Table 12.5.3: Comparison of the actual value for yL in 2012 and its flash
estimates using subsequent quarters for the bridge, U-MIDAS and MIDAS
models in subsequent quarters of 2012

• In 2012Q4 we have the richest information set, I2012Q4.

where I20xxQ4 = [(xHt−k/4, y
L
t ), k = 0, . . . , 3; t = 1950, . . . , 20xx].

As a final step, we can compare the actual value of yL2012 with its nowcasts
produced by the U-MIDAS and MIDAS models in each quarter, as shown in
Table 12.5.3. Also in this case we observe that the more information we use,
the closer the flash estimates are to the actual value of yL in 2012. In this
specific example, U-MIDAS performs better than MIDAS at each horizon,
except for the last quarter.

A comparison of the flash estimates across the three methods indicates
that the bridge models perform slightly better than U-MIDAS and MIDAS,
except for the last quarter when MIDAS performs better than both bridge
equations and U-MIDAS. This is again an application-specific result since
in this example the data were generated with a bridge model, so that the
finding is not surprising. Perhaps the more important lesson to learn is that
despite the DGP being generated by a bridge equation, it is worth noting
that MIDAS specifications yield comparable nowcasts.

In conclusion, this simple example allowed us to underline the main dif-
ferences between the bridge equation approach and the mixed-data sampling
regression approach, and to illustrate their practical implementation. Here,
we focused on producing flash estimates for a low-frequency variable yL by
means of a high-frequency explanatory variable xH . In the bridge approach
equation we used as explanatory variable for yL a sum of the quarterly xH

variables, after completing the missing observations at the end of xH with
their best forecasts. The U-MIDAS approach instead is more general. It still
uses the different quarters of xH , but it does not impose a fixed weight on
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each quarter. This has the advantage of being able to capture a more general
dynamic relationship between yL and xH but, on the other hand, it requires
to estimate more parameters, resulting in a loss of precision. The MIDAS
approach can be a convenient compromise, since it substantially restricts the
number of parameters to be estimated but still allows for sufficient flexibility
in the parameterization.

12.6 Example: Nowcasting US GDP growth

This example complements the previous one based on simulated data. We
now propose an application of the nowcasting procedures to a dataset con-
taining indicators of real economic activity for the United States.

The database contains the monthly series, for the period 1985 - 2012, of
the Index of Coincident Indicators and its four main components, namely
non-farm payroll employees, personal income less transfer payments, the in-
dex of industrial production, and manufacturing and trade sales.11 In addi-
tion, it also contains the series of the US real GDP at a quarterly frequency,
again from 1985 to 2012. All the variables are transformed into growth rates
through the log-difference operator. As a consequence of this transformation,
we have also the new five growth rates variables called ci (for the Index of
Coincident Indicators), e (for employees on non-farm payrolls), ip (for the
index of industrial production), inc (for personal income), and sa (for man-
ufacturing and trade sales); plus the quarterly growth rate of GDP indicated
as yL. It is important to note that all the monthly variables are released with
a one-month publication delay, except sa which has a two-month publication
delay, while yL has a three-month publication delay.

Our aim is to build a separate model for yL as a function of each of the
possible explanatory variables in xH = (ci, e, ip, inc, sa) so that these can be
used to produce nowcasts of the quarterly value of yL based on the monthly
observations in xH . We consider three separate cases. In the first one, we
do as if we were in 2008M10 and tried to forecast the deepest trough that
US GDP growth has experienced during the global financial crisis, namely
2008Q4 with yL = −2.237. In the second example, we try to assess more
generally the ability of our models to predict yL in expansionary and re-

11The Index of Coincident Indicators is published monthly by the Conference Board
along with the Index of Leading Indicators and the Index of Lagging Indicators to give the
public a reading on whether the economy is expanding or contracting and at what pace.



i
i

i
i

i
i

i
i

12.6. EXAMPLE: NOWCASTING US GDP GROWTH 483

cessionary periods, by nowcasting first 2011Q4 (yL = 1.0029%) and then
2012Q4 (yL = −0.0362%). Then, in the last section, we forecast the US
GDP growth rate over a longer period 2007Q1 - 2012Q2.

As before, the complexity of producing these nowcasts lies in the fact that
we want to update our information sets as the different sources of monthly
information become available in each month of the quarter we are in. To
clarify, suppose we are in October of year 20xx, we observe ci, e, ip, inc up to
20xxM9 and sa up to 20xxM8, plus we only have a final estimate for yL for
20xxq2.12 Our aim is to produce an estimate of the 20xxQ4 value for yL. In
this application, we will use both the bridge and the other mixed-frequency
approaches, as in the simulated data example. Let us first have a look at
how our real-time models forecast the worst trough of the crisis.

12.6.1 Predicting the worst trough of the crisis

Modeling the monthly variables

In this first scenario we get rid of the information we do not use by resizing
the sample to end in 2008Q4. We use the notation yL for, say quarter i in
2008 as yL2008Qi, i = 1, 2, 3, 4 and monthly data xH2008Mj, j = 1, . . . , 12.

The bridge approach requires us to find the appropriate ARMA specifi-
cations for each of the xH variables, so that we can use these selected models
to produce the forecasts we are interested in. To do so, let us first have a
look at how the variables behave in the estimation sample we have chosen,
which is from January 1985 to September 2008. As we can see from Figure
12.6.1, they do not show any trend and look quite stationary around their
means.

ADF tests performed on these variables confirm their stationarity. A
closer look at their correlograms can be useful to detect a possible ARMA
structure. The analysis of the correlograms suggests an ARMA structure
for each of the high-frequency variables, but the proper orders are unclear.
Using an information criteria-based selection procedure provides additional
information. The ARIMA selection procedure used in this example allows

12More specifically, the release schedule for yL is the following: “Advance” estimates
are released near the end of the first month after the end of the quarter; as more detailed
and more comprehensive data become available, “preliminary,” and “final” estimates are
released near the end of the second and third months, respectively – see, A Guide to the
National Income and Product Accounts of the United States, p. 21.
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Figure 12.6.1: Monthly variables in the estimation sample 1985 - 2008

us to choose either the AIC or BIC criterion. The reader can check that
the most parsimonious specifications according to the BIC criterion are:
ci - ARMA(1,2), e - ARMA(1,1), inc ARMA(0,1), ip - ARMA(1,2), sa
ARMA(3,0).

Diagnostic tests confirm that we can rely on these specifications to model
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the five high-frequency variables within the bridge approach, although there
are some signs of neglected heteroskedasticity probably due to some outliers.

Clearly, the information the forecaster has on the variables in xH depends
on the month she is in, as publication delays render different information
available in different points in time.

To be more precise, let us illustrate how the procedure works in this
example. Starting from 2008M10 the forecaster has to prepare the nowcast
of quarterly GDP growth for 2008Q4:

• In 2008M10 she only has information up to 2008M9, at best, so that
values for xH from 2008M10 onwards will be obtained as the best fore-
casts from an appropriate model for the various xH = (ci, e, ip, inc),
estimated over the 1985 - 2008M9 sample. Similarly, for xH = sa she
has information up to 2008M8, so that values for sa from 2008M9
onwards will be forecast according to the appropriate model. As a con-
sequence, we will create five variables x1 that are exactly equal to x for
the period 1985 - 2008, but the observations from 2008M10 (2008M9
for x = sa) to 2008M12 are replaced by the forecasts produced by the
above selected ARMA models.

• In 2008M11 only info up to 2008M10 is available, so the remaining
observations of the quarter are replaced by the best forecasts from the
selected ARMA models for x, estimated over the 1985 - 2008M10 time
span, resulting in the variables x2 with x = (ci, e, ip, inc). Once again
for x = sa only info up to 2008M9 is available and the remaining
observations will be replaced by the forecasts.

• In 2008M12 information up to 2008M11 is available and so we proceed
in a similar manner as in the previous points, generating suitable x3
variables with x = (ci, e, ip, inc). Similarly, for x = sa information up
to 2008M10 is available and the remaining observations are replaced
by the forecasts.

If we want a flash estimate of y for 2008Q4, in 2008M10 we can rely on the
information in x1 = (ci1, e1, ip1, inc1, sa1), in 2008M11 we can do the same
with x2 = (ci2, e2, ip2, inc2, sa2), and similarly for 2008M12. A comparison
of the various x1, x2, and x3 with the actual data can give us a first intuition
on how good the forecasts are as a replacement of the missing observations.



i
i

i
i

i
i

i
i

486 CHAPTER 12. MODELS FOR MIXED-FREQUENCY DATA

Coefficient Std. Error t-Statistic Prob.

Independent Variable: ci

C 0.004 0.001 7.533 0.000
BETA 0.604 0.072 8.389 0.000

Independent Variable: e

C 0.004 0.001 6.494 0.000
BETA 0.848 0.120 7.079 0.000

Independent Variable: ip

C 0.006 0.000 11.998 0.000
BETA 0.259 0.034 7.619 0.000

Independent Variable: inc

C 0.006 0.001 9.474 0.000
BETA 0.161 0.049 3.302 0.001

Independent Variable: sa

C 0.006 0.000 11.527 0.000
BETA 0.239 0.034 6.968 0.000

Table 12.6.4: Estimated bridge equations for each of the explanatory variables
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For the bridge approach, the final step only consists in aggregating these
variables for all the months in one quarter.

The database now contains our quarterly GDP growth rate variable yL

and a set of quarterly variables imported from the monthly series, each of
them indicating which information is available when we are respectively in
month 1, 2, or 3 of the fourth quarter of 2008, the period we are interested in
forecasting. These information sets can be denoted by I2008M10, I2008M11 and
I2008M12, respectively. Therefore, as in equation (12.2.2), we can construct
xL2008Q4|2008M10, x

L
2008Q4|2008M11 and xL2008Q4|2008M12.

Nowcasting through bridge equations

As we previously saw, using the bridge approach entails first estimating five
quarterly bridge equations of the type

yLt = b1 + b2x
L
t + εLt , t = 1985, . . . , 2008Q3.

one for each of the explanatory variables, and then using the estimated co-
efficients to produce flash estimates for yL in each month of 2008Q4, using
xL2008Q4|2008M10, x

L
2008Q4|2008M11 and xL2008Q4|2008M12. Table 12.6.4 shows the es-

timated coefficients for the five models based on the largest information set
available, each of which passes common diagnostic tests.

To obtain the nowcasts of yL in 2008Q4 according to the bridge approach,
the coefficients in Table 12.6.4 are used to construct the flash estimates as:

yL2008Q4|2008Mj = b̂1 + b̂i2x
L
2008Q4|2008Mj

for j = 10, 11, 12 and x = (ci, e, ip, inc, sa)

After obtaining five bridge nowcasts of yL with each of the xL variables,
with the information available in October, November and December of 2008,
we can also pool them to obtain a combined forecast of yL exploiting all the
available information.

Table 12.6.5 reports the results of the pooled forecasts and those based
on each single indicator. For the pooled forecasts we can say that, although
they are not precise, the more monthly information we include the closer
they get to the actual value of yL2008Q4. The single best predictors are ci and
e, and their usefulness increases with the arrival of additional intra quarter
information.
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Pooled forecasts

BRIDGE yL ŷL2008Q4|2008M10 ŷL2008Q4|2008M11 ŷL2008Q4|2008M12

2008Q4 -0.0233 0.0015 0.0007 0.0004

Forecasts based on each single indicator

2008Q4 yL ŷL2008Q4|2008M10 ŷL2008Q4|2008M11 ŷL2008Q4|2008M12

ci -0.0233 -0.0028 -0.0034 -0.0037

e -0.0233 0.0003 -0.0059 -0.0071

inc -0.0233 0.0075 0.0072 0.0070

ip -0.0233 -0.0037 0.0025 0.0027

sa -0.0233 0.0064 0.0033 0.0031

Table 12.6.5: Forecasts for yL in 2008Q4 obtained by means of the bridge
approach: in the first row pooled results are presented, while in the other
rows the results are based on each single indicator in xH
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Pooled forecasts

MIDAS yL ŷL2008Q4|2008M10 ŷL2008Q4|2008M11 ŷL2008Q4|2008M12

2008Q4 -0.0233 -0.0041 -0.0032 -0.0075

Forecasts based on each single indicator

2008Q4 yL ŷL2008Q4|2008M10 ŷL2008Q4|2008M11 ŷL2008Q4|2008M12

ci -0.0233 -0.0072 -0.0087 -0.0119

e -0.0233 -0.0046 -0.0064 -0.0114

inc -0.0233 0.0029 0.0008 0.0006

ip -0.0233 -0.0089 0.0043 -0.0046

sa -0.0233 -0.0026 -0.0061 -0.0100

Table 12.6.6: Nowcasts for yL in 2008Q4 obtained through the MIDAS ap-
proach: in the first row pooled results are presented, while in the other rows
the results are based on each single indicator in xH
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Nowcasting by MIDAS and U-MIDAS models

Let us start by assuming that we are in the first month of 2008Q4, i.e., in
October, and we want to produce a flash estimate for y in 2008Q4 exploiting
all the available information. The associated estimation sample is 1985 -
2008M9. Note also that in October 2008 we only have a final estimate for yL

in 2008Q2, hence the need to adjust the estimation sample accordingly.

We can estimate a U-MIDAS model and a MIDAS model for yL for each
of the five explanatory variables, taking into account the relevant information
sets. We can also pool the forecasts obtained from all explanatory variables
to obtain a sort of average forecast for y in each of the three months of
2008Q4.

As previously, pooling is simply executed by grouping the nowcast series
and then computing their average. Note that indeed more sophisticated
methods of aggregation would be available but here we consider mean-pooling
for sake of simplicity.13

The results we obtain in terms of forecasts, both pooled and based on the
single indicators, are reported in Tables 12.6.6 and 12.6.7.

From a first look at the tables, we note that the forecasts produced with
the MIDAS approach track the actual values of yL2008Q4 more closely than
their comparable estimates obtained through the bridge equation approach.
In particular, in this case the MIDAS model performs better than both the
U-MIDAS and the BRIDGE approaches in each quarter. Once again, the
single best predictors are ci and e, and their usefulness increases with addi-
tional intra-quarter information. On the other hand, inc seems to be unable
to predict the recession as it predicts positive GDP growth in each quar-
ter. Further, it seems that none of these models was able to capture the
depth of the financial crisis in 2008, as both of them predict a much milder
recession than the one that actually occurred. Note that this is in general
true for a large class of econometric models; for a discussion about central
bank forecasts during the crisis, see Alessi, Ghysels, Onorante, Peach, and
Potter (2014). They show that MIDAS regression models should incorporate
financial market signals typically not taken into account in more traditional
macro forecasting models.

13Andreou, Ghysels, and Kourtellos (2013) consider time-varying forecast combinations
using various weighting schemes. Focusing of forecasting and nowcasting US GDP growth,
they find that the discounted mean squared forecasting error yields the best results in an
exercise involving a large cross-section of daily financial time series.
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Pooled forecasts

U −MIDAS yL ŷL2008Q4|2008M10 ŷL2008Q4|2008M11 ŷL2008Q4|2008M12

2008Q4 -0.0233 0.0017 0.0001 -0.0039

Forecasts based on each single indicator

2008Q4 yL ŷL2008Q4|2008M10 ŷL2008Q4|2008M11 ŷL2008Q4|2008M12

ci -0.0233 -0.0025 -0.0045 -0.0082

e -0.0233 0.0005 -0.0016 -0.0071

inc -0.0233 0.0098 0.0068 0.0053

ip -0.0233 0.0005 0.0025 0.0008

sa -0.0233 0.0002 -0.0030 -0.0105

Table 12.6.7: Nowcasts for yL in 2008Q4 obtained through the U-MIDAS
approach: in the first row pooled results are presented, while in the other
rows the results are based on each single indicator in xH
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Pooled forecasts

BRIDGE yL ŷL2011Q4|2011M10 ŷL2011Q4|2011M11 ŷL2011Q4|2011M12

2011Q4 0.0100 0.0065 0.0066 0.0065

Forecasts based on each single indicator

2011Q4 yL ŷL2011Q4|2011M10 ŷL2011Q4|2011M11 ŷL2011Q4|2011M12

ci 0.0100 0.0059 0.0063 0.0062

e 0.0100 0.0071 0.0070 0.0070

inc 0.0100 0.0044 0.0043 0.0043

ip 0.0100 0.0078 0.0080 0.0080

sa 0.0100 0.0073 0.0073 0.0072

Table 12.6.8: Forecasts for yL in 2011Q4 according to the bridge: in the first
row pooled results are presented, while in the other rows the results are based
on each single indicator in xH
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12.6.2 Predicting mild positive and negative growth
rates

One could argue that the worst trough of the 2008 financial crisis is too
hard of an example to asses the predictive capabilities of our models. In
the second part of our empirical application we will test our models first in
a period of mild expansion, 2011Q4, and then in a period of mild negative
growth, 2012Q4, see Figure 12.6.2.
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Figure 12.6.2: US GDP growth from 2008 to 2012: the graph highlights the
three different quarters we produce nowcasts for

We can use the same approach as we did in the previous example for
predicting 2011Q4 and 2012Q4: by simply changing the end of the sample
to respectively 2011M9 and 2012M9 we will be able to automatically update
the estimation sample to the one we need. Also, the bridge equation can be
entirely reused here by simply changing the sample to respectively 2011M9
or 2012M9.

We are now able to produce nowcasts for the low-frequency variable y by
means of both the bridge and the mixed data sampling approach.

Tables 12.6.8 - 12.6.10 report the nowcasts for the 2011Q4 obtained both
when all the indicators are pooled together, and when we consider each of
them separately.

For the mildly expansionary period of 2011Q4, the pooled forecasts from
the bridge and the MIDAS approaches show the desired temporal pattern:
the more monthly information becomes available, the closer the nowcasts get
to the true value of y. In particular, this time the U-MIDAS forecasts do
not improve in the last month of the quarter, but overall these achieve much
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Pooled forecasts

MIDAS yL ŷL2011Q4|2011M10 ŷL2011Q4|2011M11 ŷL2011Q4|2011M12

2011Q4 0.0100 0.0016 0.0018 0.0022

Forecasts based on each single indicator

yL ŷL2011Q4|2011M10 ŷL2011Q4|2011M11 ŷL2011Q4|2011M12

ci 0.0100 0.0007 0.0026 0.0025

e 0.0100 0.0025 0.0022 0.0027

inc 0.0100 -0.0013 -0.0004 -0.0003

ip 0.0100 0.0020 0.0034 0.0034

sa 0.0100 0.0042 0.0013 0.0025

Table 12.6.9: Forecasts for yL in 2011Q4 according to both the MIDAS: in
the first row pooled results are presented, while in the other rows the results
are based on each single indicator in xH
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Pooled forecasts

U −MIDAS yL ŷL2011Q4|2011M10 ŷL2011Q4|2011M11 ŷL2011Q4|2011M12

20011Q4 0.0100 0.0057 0.0065 0.0064

Forecasts based on each single indicator

2011Q4 yL ŷL2011Q4|2011M10 ŷL2011Q4|2011M11 ŷL2011Q4|2011M12

ci 0.0100 0.0048 0.0066 0.0062

e 0.0100 0.0071 0.0064 0.0065

inc 0.0100 0.0035 0.0035 0.0040

ip 0.0100 0.0070 0.0083 0.0082

sa 0.0100 0.0062 0.0075 0.0072

Table 12.6.10: Forecasts for yL in 2011Q4 according to both the U-MIDAS
approach: in the first row pooled results are presented, while in the other rows
the results are based on each single indicator in xH
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better results than the MIDAS approach in terms of accuracy, predicting
roughly 0.64% instead of 1%. This has probably to do with the fact that
the single indicator-based nowcasts are much more precise. In particular,
the U-MIDAS nowcasts based on industrial production ip (or manufacturing
and trade sales sa) and on the information available in M3 go close to the
target value of y, and this reflects into the overall performance of the pooled
nowcasts, although the latter also combines the other less precise nowcasts.

Unfortunately, the same does not hold for the nowcasts for 2012Q4, which
is again a period of negative growth, though much less dramatic than 2008Q4.

Tables 12.6.11 - 12.6.13 report the nowcasts for the 2012Q4 under exam-
ination obtained both when all the indicators are pooled together and when
we consider each of them separately.

Our overall conclusion for this specific empirical application is that the
MIDAS model might be slightly better in predicting recessionary periods
and the U-MIDAS model performs slightly better in predicting expansions.
Further, pooling (averaging) single indicators’ nowcasts is not the most effi-
cient aggregation method, as “good” nowcasts get mixed up with “bad” ones.
More refined aggregation methods would probably improve our results. On
the other hand, these results are based on specific quarters (which is often of
interest for policy-making), and so they could be not generally valid. For this
reason we now repeat the evaluation exercise for a longer evaluation period.

12.6.3 Predicting GDP growth rates, 2007-2012

As a final application of the nowcasting procedure, we forecast the quarterly
growth rate of GDP over the period 2007Q1 and 2012Q4. Once again, we
can use the same approach as we did in the previous examples.

To be more precise, let us illustrate how the procedure works in this
example.

1. Let us assume that we want to forecast quarterly GDP growth in
the first month of each quarter. Hence, starting from 2007M1 the forecaster
has to prepare the nowcast of quarterly GDP growth for 2007Q1, then in
2007M4, she prepares the nowcast of y for 2007Q2 and so on. In 2007M1,
she only has information up to 2006M12, at best, so that values for xH from
2007M1 to 2007M3 will be obtained as the best forecasts from an appropriate
ARMA model for the various xH = (ci, e, ip, inc, sa), estimated over the 1985
- 2006M12 sample. Then in 2007M4, she only has information up to 2007M3;
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Pooled forecasts

BRIDGE yL ŷL2012Q4|2012M10 ŷL2012Q4|2012M11 ŷL2012Q4|2012M12

2012Q4 -0.0004 0.0057 0.0065 0.0065

Forecasts based on each single indicator

2012Q4 yL ŷL2012Q4|2012M10 ŷL2012Q4|2012M11 ŷL2012Q4|2012M12

ci -0.0004 0.0048 0.0073 0.0073

e -0.0004 0.0068 0.0068 0.0068

inc -0.0004 0.0058 0.0066 0.0067

ip -0.0004 0.0049 0.0068 0.0068

sa -0.0004 0.0064 0.0048 0.0048

Table 12.6.11: Forecasts for yL in 2012Q4 according to both the Bridge: in
the first row pooled results are presented, while in the other rows the results
are based on each single indicator in xH
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Pooled forecasts

MIDAS yL ŷL2012Q4|2012M10 ŷL2012Q4|2012M11 ŷL2012Q4|2012M12

2012Q4 -0.0004 -0.0006 -0.0004 0.0021

Forecasts based on each single indicator

2012Q4 yL ŷL2012Q4|2012M10 ŷL2012Q4|2012M11 ŷL2012Q4|2012M12

ci -0.0004 -0.0009 -0.0003 0.0040

e -0.0004 0.0024 0.0024 0.0029

inc -0.0004 -0.0009 -0.0011 0.0024

ip -0.0004 -0.0031 -0.0034 0.0025

sa -0.0004 -0.0004 0.0002 -0.0014

Table 12.6.12: Forecasts for yL in 2012Q4 according to both the MIDAS: in
the first row pooled results are presented, while in the other rows the results
are based on each single indicator in xH
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Pooled forecasts

U −MIDAS yL ŷL2012Q4|2012M10 ŷL2012Q4|2012M11 ŷL2012Q4|2012M12

2012Q4 -0.0004 0.0042 0.0036 0.0063

Forecasts based on each single indicator

2012Q4 yL ŷL2012Q4|2012M10 ŷL2012Q4|2012M11 ŷL2012Q4|2012M12

ci -0.0004 0.0032 0.0036 0.0077

e -0.0004 0.0068 0.0065 0.0069

inc -0.0004 0.0041 0.0029 0.0069

ip -0.0004 0.0019 0.0015 0.0072

sa -0.0004 0.0051 0.0035 0.0028

Table 12.6.13: Forecasts for yL in 2012Q4 according to both the U-MIDAS
approach: in the first row pooled results are presented, while in the other rows
the results are based on each single indicator in xH
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thus values for x from 2007M4 to 2007M7 will be replaced with the forecasts
estimated over the 1985 - 2007M3 sample. This process is repeated for each
quarter always assuming that we are in the first month of the quarter.

2. Now let’s assume that we want to forecast quarterly GDP growth every
second month of the quarter. Starting from 2007M2, the forecaster has to
prepare the nowcast of quarterly GDP growth for 2007Q1. In 2007M2, she
only has information up to 2007M1, at best, so that values for x from 2007M2
to 2007M3 will be obtained as the best forecasts from the ARMA model for
each variable in xH , estimated over the 1985 - 2007M1 sample.

3. Finally, let’s assume we want to forecast quarterly GDP growth in
each last month of the quarter. Starting from 2007M3, the forecaster only
has information up to 2007M2, so that values for xH from 2007M3 will be
replaced by the best forecasts for each variable in xH , estimated over the
1985 - 2007M2 sample.

ŷL20xxQk|20xxM10 ŷL20xxQk|20xxM11 ŷL20xxQk|20xxM12

BRIDGE

RMSFE 0.0079 0.0069 0.0069
MAFE 0.0051 0.0046 0.0046

MIDAS

RMSFE 0.0068 0.0064 0.0058
MAFE 0.0055 0.0048 0.0046

U-MIDAS

RMFSE 0.0075 0.0067 0.0060
MAFE 0.0048 0.0045 0.0042

Table 12.6.14: Forecast evaluation criteria for bridge, MIDAS, and U-MIDAS
and each month of the quarter, evaluation period 2007Q1 - 2012Q4

Table 12.6.14 provides the detailed forecast evaluation statistics for the
pooled series. For all models, both the RMSFE and the MAFE decline
when we increase the information available at each quarter. Therefore, as
expected, in the last month of the quarter we get better forecasts compared
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to those obtained in the first month of the quarter (i.e., M1). Overall, it
seems that the MIDAS model produces the best nowcasts over the 2007M1
- 2012M12 period, although the ranking can change depending on the year
and the monthly variable considered. Once again, pooling the forecasts by
averaging the individual series might not be the best approach; indeed, we
observe that some monthly variables, such as ci, individually perform much
better than others.

12.7 Concluding remarks

In this chapter we have seen that several methods have been proposed in the
literature to deal with mixed-frequency data. In general, there is agreement
that exploiting data at different frequencies matters for nowcasting and short-
term forecasting, but there is disagreement on what is the preferred approach
for modeling using mixed-frequency data. Hence, we now try to summarize
the advantages and disadvantages of the different methods, comparing their
most important features.

Bridge equations are still one of the most used techniques, especially in
short-run forecasting, because they are pretty easy to estimate and interpret,
and allow computing early estimates of the low-frequency variable. The
drawback is that they are purely statistical models, where the regressors are
included only because they contain timely updated information. Therefore,
if the model that exploits the high-frequency information is mis-specified, the
error transmits to the bridge equation and to the forecasts that are obtained
recursively.

An alternative way to deal with mixed-frequency data is the MIDAS
approach. With respect to the bridge model, the use of lag polynomials
based on a very small number of parameters, allows the MIDAS models to
be parsimonious and permits the use of very high-frequency information.
However, it is not clear which is the best polynomial specification, and if
the imposed constraints on the parameters are invalid the resulting model is
also suboptimal. An unrestricted MIDAS (U-MIDAS) specification alleviates
both problems, but can be only used when the frequency mismatch is limited,
e.g., quarterly and monthly. MIDAS models can be easily estimated by NLS,
U-MIDAS models even by OLS.

Both bridge and MIDAS are univariate models, relying on a direct ap-
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proach in the case of multi-steps ahead forecasting. With them it is only
possible to obtain a high-frequency update of the expected low-frequency re-
alization (e.g., an intra-quarter forecast of GDP growth based on timely infor-
mation), not an estimate of the missing values in the low-frequency variable
(e.g., not an estimate of unobservable monthly GDP growth). A MF-VAR
has the advantage of jointly specifying the dynamics of the indicators and
of the variable to be explained, without imposing any a priori restriction.
Moreover, since the low-frequency series is seen as a high-frequency series
with missing values, the use of the Kalman filter permits the estimation of
these missing data and forecasting can be based on an iterative procedure,
which is more efficient that the direct method in the case of correct model
specification. On the other side, estimation of the MF-VAR is computa-
tionally complex, and the complexity increases with the number of variables
involved, so that most of the time only small-scale models can be estimated.
Moreover, the state space approach requires the correct specification of the
model in high frequency, which is even more complex than usual given the
missing observations in the dependent variable.

In conclusion, it is difficult to provide a unique ranking of the alternative
mixed-frequency models, the choice should be based on the specific empirical
application. However, any of the three methods we have considered is in
general better than the use of temporally aggregated data, since it permits
to exploit all the available information in a timely way.
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Chapter 13

Models for Large Datasets

13.1 Introduction

The use of large sets of economic variables for the purpose of forecasting has
received increased attention in the recent literature. Various econometric
methods have been suggested, based on variable selection, or on variable
combination, or on shrinkage.

Variable selection methods are similar to those discussed in Chapter 1,
though proper modifications are required to handle the large number of pos-
sible subsets of regressors to be compared when their number is large, see,
e.g., Kapetanios, Marcellino, and Papailias (2016) for a review and forecast-
ing applications.

Variable combination is mainly implemented via factor models, starting
with the seminal papers of Stock and Watson (2002a), Stock and Watson
(2002b) and Forni, Hallin, Lippi, and Reichlin (2000). As we have seen in
Chapter 10, the idea of factor models is that many economic variables are
driven by few unobservable forces, the factors, plus idiosyncratic components.
Hence, we can summarize the information contained in the many variables
using estimated factors, and use them for forecasting the specific variable(s)
of interest. Different types of large factor models have been developed, see
for example the comparisons and surveys by Boivin and Ng (2005), Stock
and Watson (2006), Eickmeier and Ziegler (2008) and Schumacher (2007).

Shrinkage is the third approach to handle models with a large number of
regressors, possibly larger than the number of temporal observations. This
approach has been mainly implemented in the context of large BVARs, and it
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basically requires the use of priors that introduce a large amount of shrink-
age, increasing with the number of variables under analysis, see De Mol,
Giannone, and Reichlin (2008), Carriero, Clark, and Marcellino (2016), and
Carriero, Clark, and Marcellino (2017).

As selection methods for large sets of regressors can be rather complex,
while the treatment of large BVARs is theoretically and empirically similar
to that of smaller models (considered in Chapter 8), in this chapter we focus
on large factor models and related techniques.

In Section 13.2 we introduce large factor models and discuss estimation
and forecasting. In Section 13.3 we consider the three pass regression filter,
which extends the method of partial least squares that can be considered as
a way of targeting the factors to the specific variables of interest. In section
13.4 we extend the analysis to handle large unbalanced datasets. In section
13.5 we present an empirical example using simulated data. In Section 13.6
we discuss forecasting US and Euro area GDP growth using large information
sets. Finally, in Section 13.7 we summarize and conclude.

13.2 Factor models

Let us consider the following model:

yt+1 = β0 + β′Ft + ηt+1, (13.2.1)

xt = ΦFt + εt, (13.2.2)

where y is the target variable of interest, for example GDP growth or infla-
tion; Ft are r common driving forces of all variables under analysis, and β′

is the vector of loadings, measuring the effects of the factors on the target
variable y; xt is a set of N weakly stationary variables, standardized for con-
venience, also driven by Ft via the loading matrix Φ; and t = 1, . . . , T. We
refer to Stock and Watson (2002a), Stock and Watson (2002b) (henceforth
SW) for precise conditions on the factors, loadings, residuals, allowed tem-
poral and cross-sectional dependence, and existence of proper central limit
theorems.

If we augment the observation equations (13.2.1)-(13.2.2) with a set of
transition equations for the factors Ft, we obtain a state space form whose
parameters and unobservable state variables (the factors) can be estimated
by the Kalman filter, as we saw in Chapter 10. However, when the number
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of variables N is large, the computational complexity and required time in-
crease substantially. Hence, SW suggested an alternative (non-parametric)
estimation method for the unobservable factors, which has the additional
benefit of not requiring a specific model for the factor structure.

To get an intuition of how the SW estimation method works, and under
which conditions, let us suppose at first that the N × r matrix Φ in (13.2.2)
is known. Then, for each t, we could estimate the r × 1 factors Ft using

F̂t = (Φ′Φ)−1Φ′xt. (13.2.3)

If we now replace xt by its expression in (13.2.2), and after a few simple
computations, we obtain:

F̂t = Ft +

(
Φ′Φ

N

)−1(
Φ′εt
N

)
.

If (a) the minimum eigenvalue of Φ′Φ/N is bounded away from zero (so
that the matrix is invertible) and (b) Φ′εt/N converges in probability to

zero, then when N diverges and for each t, the estimator F̂t converges in
probability to Ft. Condition (a) basically requires the factors Ft to have
non-zero loadings for all the variables in xt, and hence to really be their
common drivers. Condition (b) limits the extent of correlation among the
idiosyncratic components εt, and it is clearly satisfied if each element of εt is
uncorrelated with the others, as in the case of the strict factor models. Note
that if N is finite, as in the case of Chapter 10, we can never get a consistent
estimator for Ft, as Ft is random. What gives consistency in this case is the
fact that N goes to infinity.

Let us now consider what happens when Φ is also unknown. The model
in (13.2.2) becomes non-linear, as the product ΦFt appears on the right-hand
side, so that we need to use a form of non-linear least squares estimation for
Φ and Ft. Specifically, writing the model in the more compact notation

x = ΦF + ε, (13.2.4)

where x, F, and ε are of dimensions N × T , r × T and N × T , respectively,
we want:

min
Φ,F

(x− ΦF )′ (x− ΦF ). (13.2.5)

We also need to impose an identification condition, as ΦF = ΦPP−1F for
an invertible r × r matrix P. Hence, we require Φ′Φ = Ir.
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In order to solve (13.2.5), we use the envelope theorem. Hence, first we
derive the loss function with respect to F and equate the first order conditions
to zero, obtaining

Φ′x = (Φ′Φ)−1F̂ ,

or
F̂ = (Φ′Φ)−1Φ′x,

as in (13.2.3). The loss function therefore becomes(
x− Φ(Φ′Φ)−1Φ′x

)′
(x− Φ(Φ′Φ)−1Φ′x)

or
x′x− x′Φ(Φ′Φ)−1Φ′x.

Minimization of this quantity with respect to Φ is then equivalent to

max
Φ

tr
(
x′Φ(Φ′Φ)−1Φ′x

)
.

Because of the properties of the trace, we can also write the problem as

max
Φ

tr
(
(Φ′Φ)−1/2Φ′(xx′)Φ(Φ′Φ)−1/2

)
,

or, as for identification we have imposed Φ′Φ = Ir,

max
Φ
tr (Φ′(xx′)Φ) .

Therefore, the optimal solution Φ̃ is given by the r eigenvectors associated
with the r largest eigenvalues of the N × N matrix xx′. Substituting Φ̃ in
(13.2.3), we obtain the estimator for the factors

F̃ = (Φ̃′Φ̃)−1Φ̃′x. (13.2.6)

As an alternative, we could write the model as

x = FΦ + ε, (13.2.7)

where now x, F and ε are of dimensions T×N , T×r and T×N , respectively,
and we do not change the notation for simplicity. The optimization problem
becomes

min
Φ,F

(xFΦ)′ (xFΦ), (13.2.8)
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with the identification condition F ′F = Ir. Proceeding as above, but now
solving first for Φ as a function of F (which yields, Φ̂ = (F ′F )−1F ′x), and
then for F , yields the alternative factor estimator F̂ given by the r eigenvec-
tors associated with the r largest eigenvalues of the T ×T matrix xx′. These
eigenvectors are also known as the principal components of x, and hence F̂
is known as the principal components based factor estimator, or estimator
based on principal component analysis (PCA).

The estimators F̃ and F̂ are equivalent, in the sense that they span
the same space. Using one or the other is just a matter of computational
convenience, generally we want to take eigenvectors of smaller matrices and
therefore the choice depends on whether empirically N or T is larger.

SW show that, under proper conditions, F̃ and F̂ are consistent for the
space spanned by the true factors F , though not necessarily for the true
factors F themselves, due to the mentioned identification problem. Space
consistency is however sufficient to use the estimated factors for forecasting
purposes.

An additional issue is whether we can use F̂ instead of F in the forecasting
equation (13.2.1). Normally, we would have generated regressor problems.
However, SW also show that in general this is not the case, and we indeed
just replace F with F̂ , see Bai and Ng (2006) for more details and formal
proofs. Therefore, using (13.2.1) and estimating β0 and β′ by OLS, the
optimal one-step ahead forecast for y is

ŷt+1 = β̂0 + β̂′F̂t. (13.2.9)

Let us consider now the case where

xt = Φ1Ft + Φ2Ft−1 + . . .+ ΦgFt−g+1 + εt, (13.2.10)

so that the variables are driven by the factors and their lags. We can rewrite
(13.2.10) as

xt = ΨGt + εt, (13.2.11)

where Ψ = (Φ1, . . . ,Φg) is N × rg and Gt = (F ′t , F
′
t−1, . . . , F

′
t−g+1)′ is rg× 1.

As (13.2.11) is of the same form as (13.2.2), with just rg instead of r factors,
we can still use the first rg eigenvectors of xx′ as factor estimators (Ĝ).

More efficient factor estimators exist, which can take explicitly into ac-
count the dynamic characteristics of (13.2.10). Among them, we mention, the
factor estimator by Altissimo, Cristadoro, Forni, Lippi, and Veronese (2010),
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which builds upon the one-sided non-parametric dynamic principal compo-
nent analysis (DPCA) factor estimator of Forni, Hallin, Lippi, and Reichlin
(2005), and the two-steps parametric state-space factor estimator based on
the Kalman smoother of Doz, Giannone, and Reichlin (2011).1 Which esti-
mator performs best empirically is a priori unclear. There is a large literature
on comparing factor estimation methods based on large datasets , see, e.g.,
Boivin and Ng (2005), Stock and Watson (2006), Schumacher (2007). We
will focus on PCA based factor estimators, mostly for their computational
simplicity combined with good empirical performance, and ease of implemen-
tation.

We can also extend the forecasting equation (13.2.1), e.g., to allow for AR
terms, lags of the factors, or dummy variables. The resulting more general
dynamic model can be treated in the same way as we have seen in the previous
chapters.

So far we have considered the number of factors as known, r or rg. In
practice, it is instead unknown and either economic considerations or proper
information criteria can be used to determine it. In particular, Bai and Ng
(2002) suggest the following three criteria:

ICp1(k) = ln(V (k, F̂k) + k

(
N + T

NT

)
ln

(
NT

N + T

)
,

ICp2(k) = ln(V (k, F̂k) + k

(
N + T

NT

)
lnC2

NT ,

ICp3(k) = ln(V (k, F̂k) + k

(
lnC2

NT

C2
NT

)
,

where CNT = min(
√
N,
√
T ) and V (k, F̂k) is the average residual variance

when k factors are assumed, namely:

V (k, F̂k) =
1

N

N∑
i=1

σ̂2
i , σ̂2

i =
ε̂′iε̂i
T
.

These criteria are similar to the AIC and BIC, but they also take the cross-
sectional dimension N into account. Under proper assumptions, Bai and
Ng (2002) show that they are consistent, i.e., they select the true number

1Using the Kalman filter it is also possible to allow for parameter time-variation, see
Eickmeier, Lemke, and Marcellino (2015).
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of factors with probability approaching one when both N and T diverge.
Empirically, the performance of the criteria will depend on various char-
acteristics, mainly the amount of cross-correlation among the idiosyncratic
components and the relative size of the loadings (the signal-to-noise ratio),
with substantial cross-correlation and small loadings making it difficult to
disentangle what is common from what is not.

A more heuristic approach to the determination of the number of factors is
based on the fraction of variance of x explained by the principal components
(estimated factors). Under the assumption of r factors, the first r principal
components should explain a large fraction of the variance of x (though each
of them a progressively smaller fraction), while the components from r + 1
onwards should give a negligible contribution.

Factor models can also be used for structural analysis. Specifically, VARs
for selected variables can be augmented with factors, which in turn evolve
according to a VAR. The resulting model, known as factor augmented VAR
(FAVAR), can be used to compute the responses of the variables of interest to
specific structural shocks, identified in the VAR for the factors and therefore
based on a large information set. This generally helps identification and
reduces omitted variable problems. See Bernanke, Boivin, and Eliasz (2005)
and Stock and Watson (2005) for interesting applications.

Finally, so far we have assumed that the variables under analysis are
weakly stationary. However, factor models for I(1) variables can also be de-
veloped, and possible cointegration taken into account, see, e.g., Bai (2004),
Bai and Ng (2004), Banerjee and Marcellino (2009), Banerjee, Marcellino,
and Masten (2014) and Banerjee, Marcellino, and Masten (2017).

13.3 The three pass regression filter

A drawback of principal component analysis is that the target variable is not
taken into consideration when summarizing the information in the large set
of explanatory variables. The three pass regression filter (3PRF), developed
by Kelly and Pruitt (2013) and Kelly and Pruitt (2015) (henceforth KP),
addresses this issue. In particular, the 3PRF, which is an extension of Par-
tial Least Squares (PLS), permits to obtain targeted factors for forecasting
a specific variable of interest in a simple and intuitive manner. Moreover, it
has a number of (asymptotic) optimality properties, performs well in finite
samples compared to more complex alternatives, and produces good now-
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casts and short-term forecasts for a variety of macroeconomic and financial
variables; see KP for further details.

In this section, we provide an overview of the 3PRF, closely following
the notation of KP, to whom we refer for additional details. In the next
section, we will extend the 3PRF to handle mixed-frequency data, possibly
with ragged edges, and discuss a number of possible extensions of the basic
set-up.

Let us consider the following model:

yt+1 = β0 + β′Ft + ηt+1, (13.3.1)

zt = λ0 + ΛFt + ωt,

xt = Φ0 + ΦFt + εt,

where y is again the target variable of interest; Ft = (f ′t , g
′
t)
′ are the K =

Kf + Kg common unobservable factors driving all variables; β = (β′f , 0
′)′, so

that y only depends on F ; z is a small set of L proxies that are driven by the
same underlying forces as y, so that Λ = (Λf , 0) and Λf is nonsingular; xt is a
large set of N variables, driven by both f and g; and t = 1, . . . , T. To achieve
identification, the covariance of the loadings is assumed to be the identity
matrix, and the factors are orthogonal to one another. We refer to KP for
precise conditions on the factors, loadings, residuals, allowed temporal and
cross-sectional dependence, and existence of proper central limit theorems.

With respect to the factor model analyzed in the previous section, here
the large dataset xt is possibly driven by more factors than the target variable
y. Asymptotically and with a strong factor structure, this should not matter
for forecasting, as if we include more factors than those strictly needed in
(13.3.1), then their estimated coefficients will converge to zero. However, in
finite samples, or if the ft are weak while gt are strong factors, estimating
and using only the required factors ft in (13.3.1) would be very convenient.
This is a well-known problem, see, e.g., Boivin and Ng (2006) who suggested
some form of variable pre-selection prior to factor extraction.

KP provide a general, elegant, and simple solution to the problem of
estimating in the model (13.3.1) Ft only, which can be represented by the
three following steps (that give the name to the procedure):

• Pass 1: run a (time series) regression of each element of x, xi, on z:

xi,t = φ0,i + z′tφi + εi,t,

where i = 1, . . . , N , and keep the OLS estimates φ̂i.
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• Pass 2: run a (cross section) regression of xt on φ̂i :

xi,t = φ0,t + φ̂
′

iFt + εi,t,

where t = 1, . . . , T , and keep the OLS estimates F̂t.

• Pass 3: run a (time series) regression of yt+1 on F̂t :

yt+1 = β0 + β′F̂t + ηt+1,

keep the OLS estimators β̂0 and β̂′, and use them in combination with
F̂t to construct the forecast ŷt+1 = β̂0 + β̂′F̂t.

KP show that the 3PRF factor estimator, F̂t, is consistent for the space
spanned by the true factors. Moreover, they demonstrate that the 3PRF
based forecast, ŷt+1 = β̂0 + β̂′F̂t, converges to the unfeasible forecast β0 +
β′Ft when N and T diverge. In addition,

√
T (ŷt+1 − β0 + β′Ft)

Qt

d→ N(0, 1),

where Qt is defined in KP.
For the case with just one ft factor, KP suggest to use directly the target

variable y as proxy z. They refer to this case as target-proxy 3PRF. In the
case of more factors, they propose to either use theory suggested proxies, or
a simple automated procedure, which can be implemented with the following
steps, indicating a proxy by rj and assuming that j = 1, . . . , L.

• Pass 1: set r1 = y, get the 3PRF forecast ŷ1
t , and the associated resid-

uals e1
t = yt − ŷ1

t .

• Pass 2: set r2 = e1, get the 3PRF forecast ŷ2
t using r1 and r2 as proxies,

and the associated residuals e2
t = yt − ŷ2

t .

• Pass 2 <j < L: set rj = ej−1, get the 3PRF forecast ŷjt using r1 through
rj as proxies, and the associated residuals ejt = yt − ŷjt .

• Pass L: set rL = eL−1, get the 3PRF forecast ŷLt using r1, r2, . . . , rL as
proxies.
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Finally, KP study the relationship between 3PRF and PLS, see Wold
(1966) and Helland (1990) for theoretical results on PLS and, e.g., Kapetan-
ios, Marcellino, and Papailias (2016) for an application to GDP forecasting.
Specifically, KP show that PLS is a special case of 3PRF obtained when the
predictors are standardized, the first two regression passes of 3PRF are run
without intercept, and the proxies are automatically selected.

13.4 Large unbalanced datasets

As we saw in the previous chapter, mixed-frequency information can be quite
useful for modeling and predicting economic and financial variables. In order
to handle large unbalanced dataset, we need to combine the MIDAS, UMI-
DAS, or Kalman filter-based techniques for mixed-frequency data analyzed
in the previous chapter with the methods for large datasets considered in
this chapter.

13.4.1 Mixed-frequency factor models

Relevant papers dealing with large mixed-frequency factor models with small
N (cross-sections) are, e.g., Bańbura and Rünstler (2011), who further ex-
tend the model of Giannone, Reichlin, and Small (2008) and Bańbura and
Modugno (2014), who discuss maximum likelihood estimation of factor mod-
els on datasets with arbitrary patterns of missing data. These papers use the
Kalman filter, which is more efficient but requires the specification of a para-
metric model in high-frequency and can be computationally very demanding
for large datasets and high/low-frequency mismatch. For large cross-sections,
there are a number of alternatives. For example, Marcellino and Schumacher
(2010) propose a simpler alternative, which combines the Stock and Watson
(2002b) EM algorithm for factor estimation from irregular datasets with the
MIDAS regression technique or its unrestricted counterpart (U-MIDAS) (cf.
Chapter 12). Let us first summarize the Stock and Watson (2002b) EM al-
gorithm for factor estimation from irregular datasets, and then present the
main proposals in Marcellino and Schumacher (2010) (henceforth MS).

Let us assume for simplicity that the x variables are standardized. Fo-
cusing on a variable i, let the vector xobs

i contain the available observations
and formulate the relationship between observed and not fully observed data
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by
xobs
i = Aixi, (13.4.1)

where Ai is a Tk×Tk matrix that tackles the mixed frequencies (or missing
values). In case no observations are missing, Ai is the identity matrix. In case
of an observable value every k (point in time or stock sampling), Ai is the
identity matrix where the ones in the diagonal corresponding to the missing
observations are replaced by zeros. In case of average or flow sampling, again
with frequency k and assuming for example that k = 3, the Ai matrix takes
the form

Ai =



0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
1 1 1 . . . 0 0 0
...

...
... . . .

...
...

...
0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
0 0 0 . . . 1 1 1


.

The EM algorithm proceeds as follows:

1. Provide an initial (naive) guess of observations x̂
(0)
i ∀i. These guesses,

together with the fully observable monthly time series, yield a balanced
dataset x̂(0). Standard principal component analysis (PCA) provides
initial monthly factor estimates F̂ (0) and loadings Φ̂(0).

2. E-step: an update estimate of the missing observations for variable i
is provided by the expectation of xi conditional on observations xobs

i ,

factors F̂ (j−1) and loadings Φ̂
(j−1)
i from the previous iteration

x̂
(j)
i = F̂ (j−1)Φ̂

(j−1)
i + A′i(A

′
iAi)

−1
(
xobs
i − AiF̂ (j−1)Φ̂

(j−1)
i

)
. (13.4.2)

The update consists of two components: the common component from
the previous iteration F̂ (j−1)Φ̂

(j−1)
i , plus the low-frequency idiosyncratic

component xobs
i − AiF̂ (j−1)Φ̂

(j−1)
i , distributed by the projection coeffi-

cient A′i(A
′
iAi)

−1 on the high-frequency periods.

3. M-step: repeat the E-step for all i yielding again a balanced dataset.
Re-estimate the factors and loadings, F̂ (j) and Φ̂(j) by PCA, and go to
step 2 until convergence.
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After convergence, the EM algorithm provides high-frequency factor esti-
mates and estimates of the missing values of the time series, x̂i for each
i.2

Andreou, Gagliardini, Ghysels, and Rubin (2016) consider mixed-frequency
factor models of a different nature and that involve PCA applicable to mixed-
frequency data. Using the terminology of the approximate factor model
literature, they consider a panel consisting of NH series sampled across MT
time periods, where M = 4 for quarterly data and M = 12 for monthly
data, with T the number of years. Moreover, they assume one also has a
panel of NL series that is only observed over T periods. Hence, generically
speaking we have a high-frequency panel data set of size NH × MT and a
corresponding low-frequency panel data set of size NL × T.

To be more specific, we have a latent factor structure in mind to explain
the panel data variation for both the low and high-frequency observations. To
that end, we assume that there are three types of factors, which we denote
respectively gCm,t, g

H
m,t and gLm,t for m = 1, . . . , M. The former represents

factors that affect both high- and low-frequency data (throughout we use
superscript C for common), whereas the other two types of factors affect
exclusively high- (superscript H) and low- (marked by L) frequency data.
We denote by kC , kH , and kL, the dimensions of these factors. The latent
factor model with high-frequency data sampling is

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

xL∗m,t = ΛLCg
C
m,t + ΛLg

L
m,t + eLm,t,

(13.4.3)

where m = 1, . . . , M and t = 1, . . . , T , and ΛHC , ΛH , ΛLC and ΛL are
matrices of factor loadings. The vector xL∗m,t is unobserved for each high-
frequency subperiod and the measurements, denoted by xLt , depend on the
observation scheme, which can be either flow sampling or stock sampling (or
some general linear scheme).

In the case of flow sampling, the low-frequency observations are the sum
(or average) of all xL∗m,t across all m, that is: xLt =

∑M
m=1 x

L∗
m,t. Then, model

(13.4.3) implies

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, . . . ,M,

xLt = ΛLC

∑M
m=1 g

C
m,t + ΛL

∑M
m=1 g

L
m,t +

∑M
m=1 e

L
m,t.

(13.4.4)

2For recent further extensions see also Jungbacker, Koopman, and Van der Wel (2011)
and Gagliardini, Ghysels, and Rubin (2016).
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Let us first assume that kC , kH , kL, i.e., the number of respectively
common, high- and low-frequency factors in equation (13.4.3), are known
and are all strictly larger than zero. A simple estimation procedure for the
factor values and the factor loadings, consists of the following three steps:

1. PCA performed on the HF and LF panels separately
Define the (T,NH) matrix of temporally aggregated (in our application
flow-sampled) HF observables as XH = [xH1 , . . . , x

H
T ]′, and the (T,NL)

matrix of LF observables as XL = [xL1 , . . . , x
L
T ]′. The estimated perva-

sive factors of the HF data, which are collected in (T, kC + kH) matrix
ĥH = [ĥH,1, . . . , ĥH,T ]′, are obtained performing PCA on the HF data:(

1

TNH

XHXH′
)
ĥH = ĥH V̂H ,

where V̂H is the diagonal matrix of the eigenvalues of (TNH)−1XHXH′.
Analogously, the estimated pervasive factors of the LF data, which are
collected in the (T, kC + kL) matrix ĥL = [ĥL,1, . . . , ĥL,T ]′, are obtained
performing PCA on the LF data:(

1

TNL

XLXL′
)
ĥL = ĥLV̂L,

where V̂L is the diagonal matrix of the eigenvalues of (TNL)−1XLXL′.

2. Canonical correlation analysis performed on estimated principal com-
ponents
Let ŴC

H be the (kC + kH , kC) matrix whose columns are the canonical

directions for ĥH,t associated with the kC largest canonical correlations

between ĥH and ĥL. Then, the estimator of the (in our application flow
sampled) common factor is ˆ̄gCt = ŴC ′

H ĥH,t, for t = 1, . . . , T, and the

estimated loadings matrices Λ̂HC and Λ̂LC are obtained from the least
squares regressions of xHt and xLt on estimated factor ˆ̄gCt . Collect the
residuals of these regressions:

ˆ̄ξHt = xHt − Λ̂HC ˆ̄gCt ,

ˆ̄ξLt = xLt − Λ̂LC ˆ̄gCt ,
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in the following (T,NU), with U = H,L, matrices:

Ξ̂U =
[

ˆ̄ξU1 , . . . ,
ˆ̄ξUT

]′
, U = H,L.

Then, the estimators of the HF and LF factors, collected in the (T, kU),
U = H,L, matrices:

ĜU =
[
ˆ̄gU1 , . . . , ˆ̄g

U
T

]′
, U = H,L,

are obtained extracting the first kH and kL PCs from the matrices of
residuals: (

1

TNU

Ξ̂U Ξ̂U ′
)
ĜU = ĜU V̂ U

S , U = H,L,

where V̂ U
S , with U = H,L, are the diagonal matrices of the associated

eigenvalues. Next, the estimated loadings matrices Λ̂H and Λ̂C are
obtained from the least squares regression of ξ̂Ht and ξ̂Lt on, respectively,
the estimated factors ˆ̄gHt and ˆ̄gLt .

3. Reconstruction of the common and high-frequency specific factors
The estimates of the common and HF factors for each HF subperiod,
denoted by ĝCm,t and ĝHm,t, for any m = 1, . . . , M and t = 1, . . . , T, are
obtained by cross-sectional regression of xm,t on the estimated loadings

[Λ̂HC
... Λ̂H ] obtained from the second step.

Since the factors dimensions are unknown, the aforementioned procedure is
implemented with estimated factors dimensions k̂C , k̂H , and k̂L. Inference on
the number of common, low and high-frequency specific factors is described
in detail in Andreou, Gagliardini, Ghysels, and Rubin (2016).

13.4.2 Mixed-frequency three pass regression filter

As discussed in the previous section, principal component based factor es-
timators are not targeted to the variable of interest, while 3PRF tilts the
summary information in the right direction. We now consider the extension
of the 3PRF to the case where the target variable y (or the proxies z) are
sampled at lower frequency than the indicators x. Next, we allow for some of
the components of x to be also only available in low-frequency. Both cases
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are considered in details in Hepenstrick and Marcellino (2016) (henceforth
HM), to whom we refer for further details and examples.

Low-frequency target or proxy variables and high-frequency
indicators

This is an empirically frequent situation. It happens, for example, when the
target variable is GDP growth or GDP deflator inflation, which are avail-
able on a quarterly basis, while the indicators are available on a monthly
basis, e.g., industrial production and its components, labor market variables,
financial indicators, and survey variables.

To handle the frequency mismatch, HM propose to modify the steps in
3PRF as follows.

• Pass 1: as in 3PRF and run at quarterly frequency.

• Pass 2: as in 3PRF and run at monthly frequency to get monthly
predictive factor(s).

• Pass 3: use the U-MIDAS approach to construct a nowcasting or fore-
casting model that links the quarterly target variable to the monthly
factors.

HM label the resulting procedure the mixed-frequency three pass regres-
sion filter, MF-3PRF. A few comments on each step are in order. First,
as the regression in Pass 1 of 3PRF is static, running it in MF-3PRF with
quarterly rather than monthly indicators leads to consistent parameter esti-
mators, which have the same properties as in 3PRF.

Second, step 2 of MF-3PRF uses monthly rather than quarterly indica-
tors, but the properties of the resulting factor estimators are the same as in
3PRF, as the cross-sectional dimension is only exploited in this step.

Third, in step 3 HM suggest the use of the U-MIDAS method, as the
frequency mismatch (monthly/quarterly) is small. As we have seen, this
requires to split the estimated monthly factors F̂t into J quarterly factors
(F̂ 1

t , F̂ 2
t , . . . , F̂ J

t ). The first (second/third) new quarterly series contains the
values of F̂t in, respectively, the first (second/third) month of each quarter.
The fourth (fifth/sixth) series are first lags of F̂ 1

t (F̂ 2
t /F̂ 3

t ) etc. Next, F̂ 1
t ,

F̂ 2
t , . . . , F̂ J

t are used as explanatory variables for yt in the third step of
3PRF, thus balancing the frequency of the left- and right-hand side variables
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while maintaining linearity of the equation and still using all the available
information.3 The number of new variables J can be estimated using various
information criteria or simply be fixed.

The third step of MF-3PRF, the forecasting step, can be implemented
based on the direct method, as in KP. As an alternative, a VAR model for
Ft can be added to the system in (13.3.1):

Ft =
K∑
k=1

ΘkFt−k + vt, (13.4.5)

and used, in combination with the estimated factors F̂ , to generate forecasts
for F̂t+h, to be inserted in an iterated procedure to predict yt+h. See, e.g.,
Marcellino, Stock, and Watson (2006) for a comparison of the properties of
direct and iterated forecasts.

Note that the MF-3PRF inherits all the theoretical properties of 3PRF,
under the same assumptions, as it is based on the same three steps and an
efficient use of all the available information. Its finite sample properties are
evaluated by HM by means of Monte Carlo experiments and found to be
satisfactory, clearly better than 3PRF run on aggregated quarterly data.

Finally, Kapetanios, Marcellino, and Papailias (2016) apply U-MIDAS to
obtain a mixed-frequency version of PLS (MF-PLS). Since we noted in the
previous section that PLS is a special case of 3PRF, also MF-PLS can be
considered as a special case of MF-3PRF.

Low-frequency indicators

Not only the target or proxy variables in (13.3.1) but also some of the in-
dicators in xt can be only available in low-frequency. This situation can be
handled either by using the Kalman filter, as in the case of ragged edges de-
scribed in the next subsection, which requires the specification of a model for
the unobservable factors (e.g., as in (13.4.5)), or by applying the EM algo-
rithm of Stock and Watson (2002b), described above, and without specifying
a model for the factors. In both cases, the systematically missing observa-
tions in the low-frequency variables are replaced by their best estimates, and
then the analysis proceeds as in the previous subsection.

3In case of larger frequency mismatch, e.g., for quarterly and daily data, U-MIDAS can
be replaced by MIDAS, which, however, requires the use of non-linear least squares for
parameter estimation.
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13.4.3 Missing observations and ragged edges

Mixed-frequency sampling generates systematic patterns of missing obser-
vations in x, but other types of missing observations are also frequent in
empirical analysis, due to the different start and/or end dates of some in-
dicators. The case of missing observations at the end of the sample, due
to different release timing, was labeled “ragged edge” by Wallis (1986). We
focus on this situation, as it is more relevant for forecasting, but missing
observations at the start of the sample can be handled in a similar manner
(as well as scattered missing observations).

In addition to the EM algorithm that can also be applied in this con-
text with a proper choice of the Ai matrix, we propose to apply two ap-
proaches that can also be used in the factor MIDAS case, as suggested by
MS. Marcellino and Schumacher (2010) consider various ways of combin-
ing factor methods to handle large datasets with approaches to allow for
mixed-frequency data, finding that in general they outperform single (low)
frequency methods.

First, they use the Kalman filter, where the VAR for the factors in (13.4.5)
contains the state equations to be used in combination with the observa-
tion equations. Note that this approach can also be used to handle mixed-
frequencies in x, see, e.g., Mariano and Murasawa (2003) and Mariano and
Murasawa (2010).

The second method simply requires to fit time series models to the vari-
ables with ragged edge (AR(2), for example), and then replace the missing
observations at the end of each time series with their forecast values using
the same approach as in bridge equations (see Chapter 12).

The use of the Kalman filter to handle ragged edges is optimal, in the sense
of producing the best linear estimates of the missing observations conditional
on the correct specification of the state space form. However, it can be
computationally demanding in the presence of several series with ragged
edge, and requires to specify a model for the unobservable factors. The
second method is much faster, but can be suboptimal.

MS also consider a third method, based on a simple vertical re-alignment
of the data, as suggested by Altissimo, Cristadoro, Forni, Lippi, and Veronese
(2010) for estimating the New Eurocoin indicator. The problem of this pro-
cedure is that it changes the correlation structure of the data. Hence, fac-
tors should be estimated by dynamic principal components, see, e.g., Forni,
Hallin, Lippi, and Reichlin (2005).
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MS and HM experiment empirically with the various procedures, finding
no clear-cut rankings in terms of forecasting performance.

13.5 Example with simulated data

We now illustrate the use of the mixed-frequency three pass regression fil-
ter and other econometric methods for large datasets using simulated data.
Specifically, we generate 480 monthly observations for 70 variables that are
going to be the large dataset and 160 quarterly observation for one variable.
We assume to be in a situation where we are interested in nowcasting, i.e., we
observe some variables at high frequency, but not the low-frequency variable
we want indeed to nowcast. The DGP has the following specification:

yt+1 = β0 + β1Ft + ηt+1 (13.5.1)

xt = ΦFt + εt

Ft = ρFt−1 + υt,

where υ and η are i.i.d. normal variables and εt
iid∼ N(0, I70), with I70 being

the 70× 70 identity matrix.
We will use the mixed-frequency three pass regression filter described in

this chapter to extract the factors driving xt for providing forecasts for the
target variable yt and compare the forecasts to two benchmarks. As a first
benchmark we use principal component analysis (PCA) to extract the fac-
tor(s) and use them for predicting yt (SW approach). As a second benchmark
we just estimate an AR(1) to forecast yt. To simplify the interpretation of
the results, let us assume that the 480 monthly observations span the time
range Jan. 1975 - Dec. 2014. The pattern of the variable we want to nowcast
is shown in Figure 13.5.1.

Let’s first compare the in-sample fit of the three different models. Tables
13.5.1, 13.5.2, and 13.5.3 refer to the 3PRF, the SW approach, and the AR
respectively. We note that the 3PRF has the best fit, and all the three
quarterly factors we extracted through the algorithm are significant, while
for the SW approach only the first principal component turns out to be
significant.

The out-of-sample analysis is performed starting from Dec. 1999 so that
the first estimation sample has 100 (quarterly) observations. We assume that
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Figure 13.5.1: Series for the simulated data

in Dec. 1999 we observe all the monthly variables until that date, but not the
target variable at 1999Q4. In every iteration of the out-of-sample exercise
we add one new quarterly observation, we run the 3PRF with the three new
monthly observations for xt, we estimate the new PCs for the SW approach
and we estimate an AR(1). For each of the three models we compute the
nowcasts.

Figure 13.5.2 compares the forecasts from the different models. Already
from this visual inspection we can see that the 3PRF is outperforming with
respect to the other models. We can run a forecast comparison test to as-
sess whether the RMSFEs are statistically different. Table 13.5.4 shows the
RMSFE of the three models and the p-values of a Diebold-Mariano test on
each pair: the 3PRF has the lowest RMSFE and we reject the null hypothesis
of same forecasting accuracy with respect to the other two models at 1%.

13.6 Empirical example: Forecasting GDP

growth

In this section we apply factor model techniques to three large datasets for
US, Euro area, and Poland and we compare in-sample estimation and out-
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Variable Coefficient Std. Error t-Statistic Prob.

C 2.980 0.081 36.684 0.000
FS1 -0.301 0.056 -5.407 0.000
FS2 0.177 0.053 3.369 0.001
FS3 0.549 0.048 11.398 0.000

R-squared 0.569 Mean dep var 2.715
Adjusted R-squared 0.561 S.D. dep var 1.502
S.E. of regression 0.995 Akaike IC 2.853
Sum squared resid 154.530 Schwarz IC 2.930
Log likelihood -224.247 Hannan-Quinn 2.884
F-statistic 68.689 DW stat 2.135
Prob(F-statistic) 0.000

Table 13.5.1: Results from the 3PRF
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Figure 13.5.2: Comparison of the forecasts from the different models

of-sample forecasting GDP growth for different modeling techniques. In par-
ticular, we compare the Stock and Watson (SW) and its targeted factor
(SWTF) version, described below, with the 3PRF, a small scale VAR and
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Variable Coefficient Std. Error t-Statistic Prob.

C 2.715 0.099 27.335 0.000
PC1 0.200 0.024 8.171 0.000
PC2 -0.053 0.068 -0.782 0.435
PC3 0.137 0.070 1.964 0.051

R-squared 0.313 Mean dep var 2.715
Adjusted R-squared 0.300 S.D. dep var 1.502
S.E. of regression 1.256 Akaike IC 3.319
Sum squared resid 246.228 Schwarz IC 3.396
Log likelihood -261.517 Hannan-Quinn 3.350
F-statistic 23.743 DW stat 2.135
Prob(F-statistic) 0.000

Table 13.5.2: Results from the SW approach

a Factor Augmented VAR (FAVAR). The large datasets are composed of
monthly variables (70 for the US, 34 for the EA and 32 for Poland) of several
kinds: hard indicators (e.g., industrial production), survey data (e.g., sen-
timent index), financial indicators (e.g., financial condition index), interest
rates and price indicators.

Data are from 1985 to 2013 for the United States and from 1995 to 2013
for Euro area and Poland. All the variables are aggregated to quarterly
frequency, standardized and transformed in growth rate if non-stationary.

For what concerns the SW approach the first thing we need to decide is the
number r of principal components. The most common criterion for choosing
the number of principal components (PCs) is based on the fraction of the
variance of data explained: if we order the PCs from the one explaining most
of the variance to the one explaining the least, we set r so that the additional
fraction of explained variance by the last included PC is large enough with
respect to that of the first excluded one.

A good choice for r based on the criterion described above is 4, as we can
see in Figure 13.6.1; with r = 4 we explain 52% of the total variance. For
comparability with United States we set r = 4 also for Euro area (67% of
explained variance) and Poland (63% of explained variance).

Once having estimated the PCs we can regress GDP growth at time
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Variable Coefficient Std. Error t-Statistic Prob.

C 2.125 0.244 8.708 0.000
YT(-1) 0.216 0.078 2.758 0.006

R-squared 0.046 Mean dep var 2.715
Adjusted R-squared 0.040 S.D. dep var 1.507
S.E. of regression 1.476 Akaike IC 3.629
Sum squared resid 342.085 Schwarz IC 3.668
Log likelihood -286.521 Hannan-Quinn 3.645
F-statistic 7.604 DW stat 2.046
Prob(F-statistic) 0.007

Table 13.5.3: Results from the AR(1)

RMSFE DM pval vs 3PRF DM pval vs SW

3PRF 0.984 - -
SW 1.302 0.006 -
AR 1.461 0.001 0.017

Table 13.5.4: RMSFE and p-values for Diebold-Mariano test

t + h on the PCs, where in this example h = 1. Tables 13.6.1 and 13.6.2
compare the fit of such estimated model with a small-scale VAR including
GDP growth, inflation and central bank policy rate where the number of lags
is selected according to the Schwarz criterion. The tables refer to US data.

From comparing the two tables we see that the two models have a similar
fit, with the SW having a lower SC being less parameterized. Also, note that
only two of the four PCs turn out to be significant in explaining GDP growth
for the United States.

The second method we perform and evaluate is the SW approach using
targeted factors (SWTF) (cf. Boivin and Ng (2006)). This method consists
in removing all the variables whose correlation with the target variable is
less than a generic threshold value which we set in this example equal to
0.4. Hence, we compute PCs on a smaller dataset than the original one;
the smaller dataset is obtained by removing from the original dataset all the
variables featuring a correlation with GDP growth less than 0.4 in absolute
value. Figure 13.6.2 plots GDP growth with the first principal component
and the first targeted principal component, with the two being sometimes
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GDP US INFL US IRATE US

GDP US(-1) 0.262 0.029 0.048
(0.097) (0.030) (0.015)
[2.696] [0.954] [3.163]

GDP US(-2) 0.264 0.007 -0.010
(0.09)8 (0.030) (0.015)
[2.700] [0.228] [-0.632]

INFL US(-1) -0.611 0.971 -0.111
(0.309) (0.096) (0.048)
[-1.976] [10.146] [-2.294]

INFL US(-2) 0.049 -0.278 0.093
(0.320) (0.099) (0.050)
[0.152] [-2.807] [1.865]

IRATE US(-1) 0.267 0.123 1.607
(0.521) (0.161) (0.081)
[0.512] [0.760] [19.747]

IRATE US(-2) -0.136 -0.051 -0.632
(0.512) (0.159) (0.080)
[-0.266] [-0.322] [-7.901]

C 2.318 0.471 0.023
(0.615) (0.190) (0.096)
[3.770] [2.476] [0.243]

R-squared 0.282 0.738 0.985
Adj. R-squared 0.241 0.723 0.984
Sum sq. resids 479.882 45.978 11.702
S.E. equation 2.138 0.662 0.334
F-statistic 6.887 49.378 1172.741
Log likelihood -240.403 -109.063 -32.431
Akaike AIC 4.418 2.073 0.704
Schwarz BIC 4.588 2.242 0.874
Mean dep 2.664 2.825 4.063
S.D. dep 2.455 1.258 2.678

Determinant resid covariance (dof adj.) 0.189
Determinant resid covariance 0.156
Log likelihood -372.749
Akaike information criterion 7.031
Schwarz IC 7.541

Table 13.6.1: Results from small-scale VAR
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Figure 13.6.1: Cumulative proportion of explained variances by each principal
component, from the one explaining the most to the one explaining the least

different, in particular during the crisis.
From Table 13.6.3 we see that using targeted principal components we

actually slightly worsen the fit. This probably means that discarding data
based only on bivariate correlations with GDP growth is not ideal, as it leads
to discarding useful information.

The third method we compare is the 3PRF with 4 factors. We use the
automated procedure described previously in this chapter to generate proxies
for the factors. Table 13.6.4 shows the fit of the 3PRF for US data and we
note that the adjusted R2 of the 3PRF is much higher than the one of the
SWTF and of the SW approach (compare with Tables 13.6.2 and 13.6.3).

We now evaluate and compare the out-of-sample performance of all these
models for the three different datasets. In addition to the models described
before we also estimate and compute forecasts from a small scale VAR
augmented with the first three principal components (FAVAR). The out-
of-sample exercise is performed starting from 2001 for the United States and
from 2005 for the Euro area and Poland: at each iteration we add one obser-
vation to the dataset, estimate all the models, and save the one-step-ahead
forecast for each model. Once the out-of-sample iteration is concluded we
compute the RMSFE for each model and perform Diebold-Mariano tests for
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Variable Coefficient Std. Error t-Statistic Prob.

C 2.701 0.203 13.308 0.000
PC1 0.272 0.050 5.407 0.000
PC2 0.049 0.065 0.751 0.454
PC3 0.233 0.079 2.950 0.004
PC4 -0.033 0.100 -0.335 0.739

R-squared 0.263 Mean dep var 2.697
Adjusted R-squared 0.236 S.D. dep var 2.468
S.E. of regression 2.157 Akaike IC 4.419
Sum squared resid 502.594 Schwarz IC 4.539
Log likelihood -244.660 Hannan-Quinn 4.468
F-statistic 9.655 DW stat 2.019
Prob(F-statistic) 0.000

Table 13.6.2: Results from SW approach

each pair of models.

Table 13.6.5 summarizes the results for each country. The 3PRF has
always the lowest RMSFE, with p-values that indicate almost always a re-
jection of the null hypothesis of similar forecasting accuracy compared with
any other model. The only model that seems to have a similar forecasting
performance is SW (both plain and targeted), but only when we use Euro
area data.

13.7 Concluding remarks

In this chapter we have focused on factor models and related methods for
modeling and forecasting in the presence of a large, possibly unbalanced,
dataset.

The derivation of the theoretical properties of the econometric methods
is rather complex, but their empirical implementation is instead relatively
easy and, as we have seen, the gains from the use of a large information set
can be substantial.
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Figure 13.6.2: Comparison of the first principal component against the first
targeted principal component computed on US data

Variable Coefficient Std. Error t-Statistic Prob.

C 2.702 0.204 13.224 0.000
TPC1 0.443 0.075 5.939 0.000
TPC2 0.147 0.167 0.881 0.381
TPC3 -0.174 0.237 -0.736 0.463
TPC4 -0.090 0.266 -0.338 0.736

R-squared 0.254 Mean dep var 2.697
Adjusted R-squared 0.226 S.D. dep var 2.468
S.E. of regression 2.172 Akaike IC 4.432
Sum squared resid 509.318 Schwarz IC 4.553
Log likelihood -245.411 Hannan-Quinn 4.481
F-statistic 9.171 DW stat 2.035
Prob(F-statistic) 0.000

Table 13.6.3: Results from targeted PCs
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Variable Coefficient Std. Error t-Statistic Prob.

C 1.658 0.295 5.620 0.000
F1 0.401 0.053 7.559 0.000
F2 0.764 0.190 4.017 0.000
F3 0.135 0.280 0.481 0.631
F4 -0.738 0.210 -3.519 0.001

R-squared 0.530 Mean dep var 2.697
Adjusted R-squared 0.513 S.D. dep var 2.468
S.E. of regression 1.723 Akaike IC 3.969
Sum squared resid 320.474 Schwarz IC 4.089
Log likelihood -219.236 Hannan-Quinn 4.018
F-statistic 30.486 DW stat 2.395
Prob(F-statistic) 0.000

Table 13.6.4: Results from three pass regression filter

RMSFE pval. vs

VAR SW SWTF FAVAR
U.S.

VAR 2.62 - - - -
SW 2.69 0.35 - - -
SWTF 2.58 0.43 0.30 - -
FAVAR 2.58 0.11 0.09 0.27 -
3PRF 2.08 0.03 0.01 0.02 0.02

Euro Area

VAR 2.47 - - - -
SW 2.00 0.08 - - -
SWTF 2.04 0.11 0.43 - -
FAVAR 2.27 0.16 0.15 0.11 -
3PRF 1.93 0.06 0.19 0.21 0.09

POL

VAR 5.03 - - - -
SW 4.56 0.29 - - -
SWTF 5.32 0.28 0.06 - -
FAVAR 5.42 0.30 0.02 0.34 -
3PRF 3.20 0.05 0.03 0.02 0.02

Table 13.6.5: RMSFE and p-values for Diebold-Mariano test
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Chapter 14

Forecasting Volatility

14.1 Introduction

The models considered so far focused on conditional mean forecasts. In this
chapter we consider conditional variance. Time-variation in the conditional
variance of financial time-series is important when pricing derivatives, cal-
culating measures of risk, portfolio risk management, and dynamic hedging.
Not surprisingly, there has been an enormous interest amongst researchers
and practitioners to forecast conditional variances. As a result, a large num-
ber of volatility forecasting models have been developed, starting with the
ARCH model of Engle (1982).1

Another major source of interest in volatility stems from modern option
pricing theory, beginning with Black and Scholes (1973). Their famous model
accords volatility a central role in determining the fair value for an option,
or any derivative instrument with option features. The basic Black-Scholes
(BS) option pricing formula involves a number of inputs – and the most
prominent is volatility as it happens also to be the only one that is not directly
observable.2 Option pricing theory is typically rooted in a continuous time
stochastic setting – either diffusion or jump-diffusion in nature. Thinking
about volatility in such a context is a bit more challenging, both from an
asset pricing theory and econometric analysis perspective (see, e.g., Garcia,
Ghysels, and Renault (2010)). Continuous time diffusions with stochastic

1We will use the terms conditional variance and volatility interchangeably – although
the latter is sometimes associated with conditional standard deviations.

2The other determinants, stock price, strike price, time to option expiration, and the
interest rate are all known or can be easily obtained.
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volatility are not that easy to handle and beyond the scope of this book.
However, the framework has over the last two decades resulted in models
of volatility forecasting based on the notion of realized volatility – typically
measured as the sum of intra-daily squared returns to obtain a daily realized
measure. The availability of high-frequency data has made realized volatility
easy to compute and the models using such measures have been shown to
feature appealing forecasting performance.

This chapter will therefore focus on two types of volatility forecasting
models: (1) ARCH-type models and (2) models based on realized volatility.
Excellent surveys of the ARCH literature appear in Bollerslev, Engle, and
Nelson (1994) (univariate models) and Bauwens, Laurent, and Rombouts
(2006) (multivariate models). Surveys of stochastic volatility models ap-
pear in Ghysels, Harvey, and Renault (1996) and Shephard (2005). Realized
volatility and its use for the purpose of forecasting is reviewed by Andersen,
Bollerslev, Christoffersen, and Diebold (2006). Some excellent textbooks re-
lated to the topics covered in this chapter include Brooks (2014), Gouriéroux
and Jasiak (2001), Taylor (2007), Tsay (2005), among others.

Section 14.2 covers ARCH-type models, followed by Section 14.3 deal-
ing with MIDAS regressions for volatility forecasting. Section 14.4 revisits
GARCH models, in light of the MIDAS regression results. Volatility fore-
casting evaluation is discussed in Section 14.5. Empirical examples appear
in Section 14.6 and concluding remarks in Section 14.7.

14.2 ARCH-type models

We will illustrate the use of ARCH-type models in the context of forecasting
conditional variances (viewed as a measure of risk) – not conditional returns
– which has attracted a lot of interest in the academic literature and among
practitioners. We start, however, with the return process. A time series of
continuously compounded returns (including dividends) is denoted by {rt}Tt=1

and It−1 denotes the information set available at t− 1. The unobserved vari-
ance of returns over some horizon t − 1 + h conditional on It−1 is Vt+h|t−1

= V ar(rt+h|It−1). Typical applications of ARCH-type models involve daily
returns. It will therefore be convenient to think of t as a daily time index. If
we focus on one-day horizon for the moment (h = 1), and simplify notation
to σ2

t = V ar(rt|It−1), then the class of ARCH-type models can be written as
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rt =
√
σ2
t ut (14.2.1)

where σ2
t is a measurable function of It−1 and ut is an i.i.d. zero mean/unit

variance innovation, denoted by ut ∼ D(0, 1), which is not necessarily Gaus-
sian.3 This definition basically implies that the conditional distribution of
tomorrow’s return rt+1 has conditional mean zero and conditional variance
equal to σ2

t+1. Note that the returns process is uncorrelated. The dependence
appears in the conditional variance, not the conditional mean. In the re-
mainder of this section we will review some of the most popular models for
the latter.

14.2.1 Model specifications

Engle’s original ARCH(q) model assumes that:

σ2
t = ω +

q∑
i=1

αir
2
t−i, (14.2.2)

where αi ≥ 0, ω > 0 are imposed to ensure that the conditional variance is
strictly positive. The conditional variance can be expressed as

σ2
t = ω + α(L)r2

t (14.2.3)

where α(L) = α1L + . . . + αqL
q. Let us consider conditional variance inno-

vations: υt = u2
t - σ2

t , with E[υt|It−1] = 0. Replacing σ2
t by r2

t - υt in the
ARCH representation yields

r2
t = ω +

q∑
i=1

αir
2
t−i + υt, (14.2.4)

which corresponds to an AR(q) model for squared returns. The process is
covariance stationary if and only if the sum of the positive autoregressive
parameters is less than one, in which case the unconditional variance of

3A conditional mean is sometimes added to equation (14.2.1), such that the equation

becomes: rt = µt +
√
σ2
t ut. This yields a regression model with ARCH-type errors. To

simplify the analysis we do not include conditional means, particularly since we focus on
daily financial returns where the conditional mean is typically negligible – especially for
daily return series.
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returns equals V ar(rt) = σ2 = ω/(1 − α1 − . . . − αqL
q). Hence, while the

returns rt are serially uncorrelated, they feature serial dependence via the
conditional variance dynamics parameterized via the ARCH model. To put
it differently, returns are not predictable, but their volatility risk is. Given
the autoregressive nature, we capture the phenomenon known as volatility
clustering – large (small) asset price changes tend to be followed by large
(small) ones. This volatility clustering phenomenon is immediately apparent
when asset returns are plotted through time.4

The ARCH model also captures the fact that returns tend to have fat-
tailed distributions. In order to clarify this, let us assume that ut defined
in equation (14.2.1) is Gaussian. For instance, if q = 1, i.e., we have an
ARCH(l) then E[r4

t ]/(E[r2
t ])

2 = 3(1−α2
1)/(1−3α2

1) is larger than the normal
value of three and finite if 3α2 < 1 and infinite otherwise: both implying
excess kurtosis or fat tails.

We introduced ARMA models in Chapter 5 which had the appealing prop-
erty to capture temporal dependence via a parsimonious scheme involving a
ratio of two finite lag polynomials. The same idea is used for ARCH-type
models. In particular, the GARCH(p,q) model, due to Bollerslev (1986)
assumes the following form of variance

σ2
t = ω +

q∑
i=1

αiu
2
t−i +

p∑
j=1

βjσ
2
t−j, (14.2.5)

where αi ≥ 0, βi ≥ 0, ω > 0 are imposed to ensure that the conditional
variance is strictly positive. The conditional variance can be expressed as

σ2
t = ω + α(L)u2

t + β(L)σ2
t (14.2.6)

where α(L) = α1L+ . . .+αqL
q and β(L) = β1L+ . . .+ βpL

p. If the roots of
1 − β(Z) lie outside the unit circle, we can rewrite the conditional variance
as

σ2
t =

ω

1− β(1)
+

α(L)

1− β(L)
u2
t .

Hence, this expression reveals that a GARCH(p,q) process can be viewed as
an ARCH(∞) with a rational lag structure imposed on the coefficients, which
may be rewritten in an alternative form, as an ARMA model on squared

4This is notably displayed in Figure 14.6.1, discussed later, where we plot the time
series of daily returns on the S&P 500 index.
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perturbations. Indeed, let us consider conditional variance innovations: υt =
u2
t - σ2

t . Replacing σ2
t by u2

t - υt in the GARCH representation yields

u2
t − υt = ω +

q∑
i=1

αiu
2
t−i +

p∑
j=1

βj(u
2
t−j − υt−j) (14.2.7)

and therefore

u2
t = ω +

max(p,q)∑
i=1

(αi + βi)u
2
t−i + υt −

p∑
j=1

βjυt−j (14.2.8)

with αi= 0 for i > q and βi = 0 for i > p. It is therefore an ARMA(max(p, q),p)
representation for the process u2

t but with an error term, which is a white
noise process that does not necessarily have a constant variance.

The most used heteroscedastic model is the GARCH(1,1):

σ2
t = ω + α1u

2
t−1 + β1σ

2
t−1 (14.2.9)

Using the law of iterated expectations

E(u2
t ) = E(E(u2

t |It−1)) = E(σ2
t ) = ω + α1E(u2

t−1) + β1E(σ2
t−1)

= ω + (α1 + β1)E(u2
t−1) (14.2.10)

Assuming the process began infinitely far in the past with a finite initial
variance, the sequence of the variances converge to a constant

σ2 =
ω

1− α1 − β1

, if α1 + β1 < 1 (14.2.11)

therefore, the GARCH process is unconditionally homoscedastic. The α1

parameter indicates the contributions to conditional variance of the most
recent news, and the β1 parameter corresponds to the moving average part
in the conditional variance, that is to say, the recent level of volatility. In
this model, it could be convenient to define a measure, in the forecasting
context, about the impact of present news on future volatility. To carry out
a study of this impact, we calculate the expected volatility k-steps ahead can
be characterized recursively as

E(σ2
t+k|σ2

t+k−1) = ω + (α1 + β1)σ2
t+k−1. (14.2.12)
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Therefore, the persistence depends on the α1 + β1 sum. By implication, if
α1+ β1 < 1, the shocks ut have a decaying impact on future volatility.

The Integrated GARCH, or IGARCH, is a restricted version of the GARCH
model, where the persistent parameters sum up to one, or

∑p
i=1 βi +

∑q
i=1 αi

= 1, which amounts to a unit root in the GARCH process. The presence of
unit roots in ARCH-type models is neither as razor edge nor as consequential
as in ARIMA models discussed in Section 5.5, including the fact that we can
continue to use standard ML estimation and inference methods.5

Note that in a GARCH model the impact of “news” ut is symmetric, pos-
itive and negative have the same impact as u2

t only matters. Many empirical
studies have found evidence that bad news (negative returns) and good news
(positive ones) have different impacts on volatility. For this reason Nelson
(1991) proposes a new model, called EGARCH as it requires an exponential
transformation. For the commonly used EGARCH(1,1) the natural log of
the conditional variance is specified as

lnσ2
t = ω + α(|ut−1| − E|ut−1|) + γut−1 + β lnσ2

t−1

where the formulation allows the sign and the magnitude of ut to have sep-
arate effects on the volatility. The expression α(|ut−1| − E|ut−1|) + γut−1 is
sometimes called the News Impact Curve (NIC), which relates the impact of
innovations u on future volatility. Finally, since ln σ2

t may be negative there
are no positivity restrictions on the parameters. The expected volatility k-
steps ahead for the EGARCH(1,1) is:

σ2
t+k = σ2β

t+k−1 exp

[
ω +

√
2

π

]
× (14.2.13)(

exp

[
(γ + α)2

2

]
Φ(γ + α) + exp

[
(γ − α)2

2

]
Φ(γ − α)

)
where Φ(·) is the cumulative density of the standard normal. It is important
to note, however, that the above formula assumes that ut is Gaussian (see
Tsay (2005, pp. 128–129))

Two other popular models which feature asymmetry are the Quadratic
GARCH (QGARCH) model of Sentana (1995) and the so-called GJR-GARCH

5See Francq and Zakoian (2011) for an excellent textbook treatment of the asymptotic
estimation theory of GARCH for further details.
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proposed by Glosten, Jagannathan, and Runkle (1993). Regarding the for-
mer, a QGARCH(1,1) model is characterized as

σ2
t = ω + α u2

t−1 + β σ2
t−1 + φ ut−1

while the GJR-GARCH(1,1) model is written as

σ2
t = ω + βσ2

t−1 + αu2
t−1 + φu2

t−1It−1

where It−1 = 0 if ut−1 ≥ µ, and It−1 = 1 if ut−1 < µ (with µ often set
to zero). The expected volatility k-steps ahead for the GJR-GARCH(1,1)
closely resembles that of the GARCH(1,1), although we need to make a
specific distributional assumption about ut to achieve that. When the latter
is standard normal, we can characterize recursively the conditional volatility
as

E(σ2
t+k|σ2

t+k−1) = ω + (α + β +
γ

2
)σ2

t+k−1.

where the multiplication of γ by 1/2 comes from the normality assumption.

There are many other ARCH-type model specifications, capturing various
stylized facts of financial return series, such as non-trading day effects, non-
synchronous trading, announcement effects, etc. The references mentioned
in the introductory section provide further elaborations on the rich class of
ARCH-type models with various specifications designed to match empirical
stylized facts of asset returns data. Of course, how the various models fair
in terms of out-of-sample forecasting is a topic we will discuss later.

14.2.2 Estimation

We cover the ARCH(1) case explicitly, as it is the simplest to discuss and
provides the essential insights for all other ARCH-type models that are both
computationally and notational more involved. Recall from equation (14.2.1)
that

rt =
√
σ2
t ut

where ut ∼ N(0, 1), i.e., we assume that the innovations are standard normal
to proceed with estimation. We use the Gaussian distribution for convenience
– other mean zero and unit variance distributions are suitable too, but they
complicate the derivation of the likelihood. For that reason, one usually uses
the normal density although it may not be the “correct” distribution. In such
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circumstances, we deal with a Quasi-Maximum Likelihood estimator instead
of MLE. Let the process {ut}Tt=1 be generated by an ARCH(1) process and
T is the sample size. Conditioned on an initial observation, the joint density
function can be written as

f(u) =
T∏
t=1

f(ut|It−1). (14.2.14)

Using this result, and ignoring a constant factor, the log-likelihood function
L(ω, α1) for a sample of size T sample is

L(ω, α1) =
T∑
t=1

lt

where the conditional log-likelihood of the tth observation for (ω, α1) is,

lt = −1

2
log(σ2

t )−
1

2

u2
t

σ2
t

(14.2.15)

= −1

2
log(ω + α1u

2
t−1)− 1

2

u2
t

ω + α1u2
t−1

(14.2.16)

The first order conditions to obtain the maximum likelihood estimator
are:

∂lt
∂ω

=
1

2(ω + α1u2
t−1)

(
u2
t

ω + α1u2
t−1

− 1

)
∂lt
∂α1

=
1

2(ω + α1u2
t−1)

u2
t−1

(
u2
t

ω + α1u2
t−1

− 1

)
(14.2.17)

More generally, the partial derivation of L is:

∂L

∂α
=
∑
t

1

2σ2
t

∂σ2
t

∂α

(
u2
t

σ2
t

− 1

)
=
∑
t

1

2σ2
t

zt

(
u2
t

σ2
t

− 1

)
(14.2.18)

where z′t = (1, u2
t−1). Note that the log-likelihood function depends on α

= (ω, α1). However, we have simplified it by imposing the restriction ω̂ =
σ̂2(1− α̂1) where σ̂2 is an unconditional variance estimate.

The ML estimator, α̂ = (ω̂, α̂1)′, is asymptotically normal under assump-
tions discussed notably by Francq and Zakoian (2011),

√
T (α̂− α)→ N(0, I−1

αα )
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where

Iαα = −E
[
∂2lt
∂α∂α′

]
=

(
Iωω Iωα1

Iα1ω Iα1α1

)
where Iαα must be approximated. The information matrix is simply the
negative expectation of the Hessian averaged across all observations

Iαα = − 1

T

T∑
t=1

E

[
∂2lt
∂α∂α′

|It−1

]
. (14.2.19)

and Iαα is consistently estimated by

Îαα =
1

2T

T∑
t=1

ztz
′
t

σ̂4
t

. (14.2.20)

In practice, the maximum likelihood estimator is computed via numerical
methods, typically iterative in nature, computing the k + 1 step α(k+1) by

α(k+1) = α(k) + λ(k)
(
Î(k)
αα

)−1
(
∂L

∂α

)(k)

(14.2.21)

where the step length λ(k) is usually obtained by a one-dimensional search.
For further details, see for instance Berndt, Hall, Hall, and Hausman (1974).

14.3 MIDAS regressions and volatility

forecasting

The wide availability of intra-daily – even transaction-based tick-by-tick data
– has generated interest in a different class of volatility forecasting models.
In this section we discuss the high-frequency data measures emerged from the
recent surge in the technology of financial markets data recording. This led to
a new class of volatility models. As we typically are interested in forecasting
volatility at longer horizons, while maintaining high-frequency data as inputs,
we are faced with a mixed-frequency data setting. Not surprisingly we will
find that MIDAS regressions are a useful tool for the purpose of volatility
forecasting.

In the first subsection we cover the high-frequency data-driven volatil-
ity measures, followed by a subsection elaborating on direct versus iterated
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volatility forecasting. The next subsection discusses variations on the theme
of MIDAS regressions, and a final subsection deals with microstructure noise
and MIDAS regressions.

14.3.1 Realized volatility

The foundations of the new measures are rooted in continuous time finance
models. For simplicity, assume that the logarithmic price of an asset evolves
according to the continuous time random walk process,

d logPt = µtdt+ σtdWt (14.3.1)

where µt and σt denote respectively the drift and instantaneous volatility
and Wt is a standard Brownian motion.6

We are interested in a daily measure of volatility. It follows from standard
arguments (see, e.g., Jacod and Shiryaev (2013)) that conditional on the
sample path realization of the instantaneous volatilities σt from time t− 1 to
t, the variance of rt ≡ log (Pt/Pt−1) equals the so-called Integrated Variation,
which we shall denote by IVt ≡

∫ t
t−1

σ2
sds. Unfortunately, neither σ2

s nor the
its integral IVt are observable and have to be “estimated.” The estimate
is so-called Realized Variation, or RV, defined by the summation of high-
frequency intraday squared returns,

RVt =

1/∆∑
i=1

[
log (Pt−1+i∆)− log (Pt−1+(i−1)∆)

]2
. (14.3.2)

It can be shown that RVt consistently estimates IVt as the number of intra-
daily observations increases, i.e., ∆ → 0 where ∆ is the (equal) spacing
between the recorded high-frequency asset prices. It is common in the litera-
ture to use two terms for RVt interchangeably, namely daily realized variation
or daily realized volatility.7

Finally, we are often interested in multi-horizon volatility forecasts, i.e.,
IVt+h,t ≡

∫ t+h
t

σ2
sds, which is measured via the discretely sampled estimate

RVt+h,t, defined similarly to the above single-day realized variation. When
a single index is used, we refer to a single-day measure, with the subscript
(t+ h, t) we refer to a multi-day horizon measure.

6Brownian motions are defined in footnote 3 in Chapter 5 – although with a slightly
different notation, W (τ) instead of Wt used here for convenience.

7Sometimes realized volatility refers to
√
RVt. It will be straightforward from the con-

text, which one is used.



i
i

i
i

i
i

i
i

14.3. MIDAS REGRESSIONS AND VOLATILITY FORECASTING 541

14.3.2 Realized volatility and MIDAS regressions

Ghysels, Santa-Clara, and Valkanov (2006) consider MIDAS type regressions
to predict realized volatility over some future horizon h. In particular, con-
sidering the DL-MIDAS specification (recall Section 12.3.1) we have

RVt+h,t = ah + bhC(L1/m; θh)x
H
t + εLt+h (14.3.3)

where the polynomial choices are those discussed in Chapter 12. While the
object of interest is RVt+h,t, we can think of many possible high-frequency
predictors xH . For example, we could think of functions of intra-daily high-
frequency returns (log (Pt−1+i∆) − log (Pt−1+(i−1)∆)), such as squared or ab-
solute returns (see in particular Forsberg and Ghysels (2006) for the latter).
In this case m = 78 (typical 5-min equity market trading) or m = 288 in
a 24-hour trading setting. Alternatively, we could formulate the prediction
model in terms of daily realized measures, such as daily RV, i.e.,

RVt+h,t = ah + bhC(L1/m; θh)RVt + εLt+h (14.3.4)

and set m = 1 to obtain daily lags of past realized volatilities. Using S&P 500
data, Ghysels, Santa-Clara, and Valkanov (2006) find that models involving
daily measures, as in equation (14.3.4), appear to be as successful if not
better at prediction as models involving directly intra-daily returns, as in
equation (14.3.3). This is convenient, as we are not required to handle the
intra-daily high-frequency data directly, but rather compute daily summary
statistics, i.e., RVt. For future reference, we will refer to equations of the type
appearing in (14.3.4) as MIDAS-RV regressions.

14.3.3 HAR models

The discussion at the end of the previous subsection highlights an interesting
feature about MIDAS regressions alluded to before, namely that the sampling
frequency of the regressors is part of the model specification. Choosing be-
tween using directly intra-daily high-frequency returns is at one end of the
spectrum of possible choices. Picking daily RV’s is one of many other possi-
ble aggregation schemes. This brings us to the Heterogeneous Autoregressive
Realized Volatility (HAR-RV) regressions proposed by Corsi (2009) that are
specified as

RV t+1,t = µ+ βDRV D
t + βWRV W

t + βMRV M
t + εt+1, (14.3.5)
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which has a simple linear prediction regression using RV over heterogeneous
interval sizes, daily (D), weekly (W) and monthly (M). In other words, RV D

t

= RVt,t−1, RV
W
t = RVt,t−5 and RV M

t = RVt,t−22, assuming t is a daily timer
and there are 22 trading days in a month. The above equation is a MIDAS
regression with step functions (see Section 12.3.4) of Ghysels, Sinko, and
Valkanov (2006) and Forsberg and Ghysels (2006). Indeed, the weight for
RVt,t−1 equals βD + βW + βM , that of RVt−1,t−2 equals βW + βM , etc. In
this regard the HAR-RV can be related to the MIDAS-RV in (14.3.4), using
different weight functions, namely step functions versus beta, exponential
Almon, etc. The HAR models have been proven useful in forecasting future
volatility, see for instance Andersen, Bollerslev, and Diebold (2007).

14.3.4 Direct versus iterated volatility forecasting

For ARCH-type models we typically think of daily data, so that σ2
t+1 amounts

to predicting tomorrow’s volatility with daily information available on day
t. The equivalent with the regression models, is running regressions with
RV t+1,t like in the HAR model. The existent literature, particularly of
ARCH-type models, has placed most of the emphasis on the accuracy of
one-period-ahead forecasts (see Engle (1982), Bollerslev (1986), Hansen and
Lunde (2005), among many others). Long-horizon volatility forecasts have
received significantly less attention. Yet, financial decisions related to risk
management, portfolio choice, and regulatory supervision, are often based
on multi-period-ahead volatility forecasts.

The preeminent long-horizon volatility forecasting approach is to scale
the one-period-ahead forecasts by

√
h so that the h-period conditional stan-

dard deviation equals
√
hσt+1. Christoffersen and Diebold (2000), and others

have shown that this “scaling” approach leads to poor volatility forecasts at
horizons as short as ten days.

The volatility measure appearing on the left-hand side of equation (14.3.3)
and the predictors on the right-hand side are sampled at different frequencies.
As a result MIDAS-type volatility predictions can be formulated at different
horizons (e.g., daily, weekly, and monthly frequencies), whereas the forecast-
ing variables xHt are available at daily or higher frequencies. Therefore, the
specification allows us not only to forecast volatility with data sampled at
different frequencies, but also forecast at various horizons h.

In Section 5.9 we discussed the topic of direct versus iterated forecast-
ing. This issue is obviously also relevant for volatility forecasting. When
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considering ARCH-type models, then formulas (14.2.12) and (14.2.13) are
examples of iterated forecasts commonly used in the literature. What about
direct forecasting? The regression-based volatility models discussed in this
section are better suited to address the differences between direct, iterated,
and mixed-frequency settings.

Ghysels, Rubia, and Valkanov (2009) undertake a comprehensive empiri-
cal examination of multi-period volatility forecasting approaches, beyond the
simple

√
h-scaling rule. They consider three alternative approaches – direct

and iterative – of forming long-horizon forecasts and a MIDAS regression
approach. The direct forecasting method consists of estimating a horizon-
specific model of the volatility at, say, monthly or quarterly frequency, which
can then be used to form direct predictions of volatility over the next month
or quarter. Note that this is a same-frequency model specification. Hence,
say monthly horizon forecasts involve past monthly data. An iterative fore-
cast obtains by estimating a daily autoregressive volatility forecasting model
and then iterate over the daily forecasts for the necessary number of peri-
ods to obtain monthly, or quarterly predictions of the volatility. A MIDAS
method uses daily data to produce directly multi-period volatility forecasts
and can thus be viewed as a middle ground between the direct and the iter-
ated approaches. The results of their study suggest that long-horizon volatil-
ity is much more predictable than previously suggested at horizons as long
as 60 trading days (about three months). The direct and iterated methods
Ghysels, Rubia, and Valkanov (2009) use are based on two volatility models:
GARCH and autoregressive models of realized volatility, see, e.g., Andersen,
Bollerslev, Diebold, and Labys (2003).

To establish the accuracy of the long-term forecasts, Ghysels, Rubia, and
Valkanov (2009) use a loss function that penalizes deviations of predictions
from the ex-post realizations of the volatility and a test for predictive accu-
racy that allows them to compare the statistical significance of competing
forecasts. They use (1) the mean square forecasting error (MSFE) as one
loss function, because of its consistency property, i.e., it delivers the same
forecast ranking with the proxy as it would with the true volatility (see sub-
section 14.5 and Hansen and Lunde (2006) and Patton and Timmermann
(2007)) and (2) a Value-at-Risk as an alternative metric of forecast accuracy.

Ghysels, Rubia, and Valkanov (2009) find that for the volatility of the
market portfolio, iterated and MIDAS forecasts perform significantly better
than the scaling and the direct approaches. At relatively short horizons of 5-
to 10-days ahead, the iterated forecasts are quite accurate. However, at hori-
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zons of 10-days ahead and higher, MIDAS forecasts have a significantly lower
MSFE relative to the other forecasts. At horizons of 30- and 60-days ahead,
the MSFE of MIDAS is more than 20% lower than that of the next best fore-
cast. These differences are statistically significant at the 1% level according
to the West (1996) and Giacomini and White (2006) tests. Hence, they find
that suitable MIDAS models produce multi-period volatility forecasts that
are significantly better than other widely used methods.

14.3.5 Variations on the theme of MIDAS regressions

The MIDAS approach can also be used to study various other interesting
aspects of forecasting volatility. In Chapter 12 we noted that semi-parametric
MIDAS regression models were introduced by Chen and Ghysels (2011) in
the context of volatility models. In particular, they provide a novel method
to analyze the impact of news on forecasting volatility. The following semi-
parametric regression model is proposed to predict future realized volatility
(RV) with past high-frequency returns

RVt+h,t = ah + bhC(L1/m; θh)NIC(rt) + εt+1, (14.3.6)

where NIC(.) is the news impact curve and rt is the intra-daily log asset price
difference (return) series. Hence, the regression model in (14.3.6) shows that
each intra-daily return has an impact on future volatility measured by NIC
and fading away through time with weights characterized by C(L1/m; θh).
One can consider (14.3.6) as the semi-parametric (SP) model that nests a
number of volatility forecasting models withNIC(r)≡ r2 and the polynomial
weights are such that equal weights apply intra-daily (this is achieved via a
product polynomial specification – sometimes called a multiplicative MIDAS
– see Chen and Ghysels (2011) and Bai, Ghysels, and Wright (2013)). This
nesting emphasizes the role played by both the news impact curve NIC
and the lag polynomial structure. Finally, the MIDAS-NIC model can also
nest existing parametric specifications of news impact curves adopted in the
ARCH literature, namely, the daily symmetric one when NIC(r) = br2,
the asymmetric GJR model when NIC(r) = br2 + (cr2)1r<0 (see Glosten,
Jagannathan, and Runkle (1993)) and the asymmetric GARCH model when
NIC(r) = (b(r − c)2) (see Engle and Ng (1993)).
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14.4 GARCH models again

The approach in the previous is regression-based, whereas ARCH-type mod-
els appearing in Section 14.2 were likelihood-based. Is there a way to combine
the insights from both approaches?

We start with a version of the Realized GARCH model proposed by
Hansen, Huang, and Shek (2012), namely in the GARCH(1,1) we have:

σ2
t = ω + α1RVt−1 + β1σ

2
t−1 (14.4.1)

so that daily squared returns are replaced by realized volatilities. If volatility
is a persistent process, it would be natural to weight intra-daily data differ-
ently, as pointed out recently by Malliavin and Mancino (2005). This is one
example of the class of models Chen, Ghysels, and Wang (2011) and Chen,
Ghysels, and Wang (2015) called HYBRID GARCH models. They are a
unifying framework, based on a generic GARCH-type model, that addresses
the issue of volatility forecasting involving forecast horizons of a different
frequency than the information set. Hence, Chen, Ghysels, and Wang (2015)
propose a class of GARCH models that can handle volatility forecasts over
the next five business days and use past daily data, or tomorrow’s expected
volatility while using intra-daily returns.8

A generic HYBRID GARCH model has the following dynamics for volatil-
ity:

σ2
t = ω + α1Ht−1 + β1σ

2
t−1 (14.4.2)

where Ht ≡ C(L1/m; θ)r2
t =

∑m−1
j=0 c(j; θ)Lj/mr2

t , is called a HYBRID process,
wit C(1; θ) = 1. When Ht is simply a daily squared return we have the
volatility dynamics of a standard daily GARCH(1,1). However, what would
happen if we want to attribute an individual weight to each of the intra-
period returns? This is an example of a parameter-driven HYBRID process
where we estimate an additional MIDAS-type weighting scheme. Is it worth
estimating these extra parameters θ, compared to the Realized GARCH for
example? Chen, Ghysels, and Wang (2011) show that is indeed the case,
when judged in terms of out-of-sample forecast performance.

So far we did not cover component models of volatility. Empirical ev-
idence suggests that volatility dynamics is better described by component

8The models are called HYBRID GARCH, which stands for High FrequencY Data-
Based PRojectIon-Driven GARCH models as the GARCH dynamics are driven by what
Chen, Ghysels, and Wang (2015) call HYBRID processes.
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models. Engle and Lee (1999) introduced a GARCH model with a long-
and short-run component. The volatility component model of Engle and Lee
decomposes the equity conditional variance as the sum of the short-run (tran-
sitory) and long-run (trend) components. So far we considered MIDAS filters
that applied to high-frequency data. Here we use the same type of filters to
extract low-frequency components. Hence, it is again a MIDAS setting, using
different frequencies, but this time we use the polynomial specifications to
extract low-frequency movements in volatility.

Engle, Ghysels, and Sohn (2013) propose a class of models called GARCH-
MIDAS, since it uses a mean reverting unit daily GARCH process, similar to
Engle and Rangel (2008), and a MIDAS polynomial that applies to monthly,
quarterly, or bi-annual macroeconomic or financial variables. They study
long historical data series of aggregate stock market volatility, starting in the
19th century, as in Schwert (1989). Their empirical findings show that for the
full sample the long-run component accounts for roughly 50% of predicted
volatility. During the Great Depression era even 60% of expected volatility
is due to the long-run component. For the most recent period the results
show roughly a 40% contribution. Finally, they also introduce refinements
of the GARCH-MIDAS model where the long-run component is driven by
macroeconomic series.

14.5 Volatility forecasting evaluation

Suppose we want to appraise forecasts for the HAR model of Corsi (2009).
Having a sample of size T, which yields parameter estimates µ̂T , β̂

D
T , β̂

W
T and

β̂MT and forecast:

R̂V T+1,T = µ̂T + β̂DT RV
D
T + β̂WT RV

W
T + βMRV M

T (14.5.1)

How good is this forecast? It would be natural to measure the performance by
comparing R̂V T+1,T with

∫ T+1

T
σ2
sds. Unfortunately, we only have RVT+1,T ,

which is a noisy proxy for integrated volatility, i.e., the integral IV is ap-
proximated by a discrete sum which is RV.

How do we evaluate volatility forecasts when we recognize the fact that
the “true” volatility process is never observed and only proxies are available?
Hansen and Lunde (2006) studied the problems introduced by the presence
of noise in the volatility proxy. They provide a sufficient condition on the
loss function to ensure that the ranking of various forecasts is preserved
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when a noisy but conditionally unbiased proxy for the conditional variance
is employed rather than the conditional variance itself. Patton (2011) builds
further on the original work of Hansen and Lunde and derive explicitly the
undesirable outcomes that may arise when some common loss functions are
employed, considering the most commonly used volatility proxies, such as the
daily squared return (in the case of ARCH-type models) and realized variance
estimator. Moreover, he provides necessary and sufficient conditions on the
loss function to ensure that the ranking of various forecasts is preserved
when using a noisy volatility proxy. These conditions are related to those
of Gouriéroux, Monfort, and Trognon (1984) for quasi-maximum likelihood
estimation.

Patton (2011) considers the following loss functions L(R̂V T+1,T , RVT+1,T ) :

MSE : (R̂V T+1,T −RVT+1,T )2

QLIKE : log R̂V T+1,T +RVT+1,T/R̂V T+1,T

MSE − LOG : (log R̂V T+1,T − logRVT+1,T )2

MSE − SD : ((R̂V T+1,T )1/2 − (RVT+1,T )1/2)2

MSE − prop : (RVT+1,T/R̂V T+1,T − 1)2

MAE : |RVT+1,T − R̂V T+1,T |
MAE − SD : |(R̂V T+1,T )1/2 − (RVT+1,T )1/2|
MAE − prop : |RVT+1,T/R̂V T+1,T − 1|

(14.5.2)

and provides both sufficient and necessary conditions on loss functions for the
consistent ranking of volatility forecasts. It turns out that the loss functions
MSE and QLIKE are shown to be appropriate loss functions when using a
conditionally unbiased volatility proxy.

Note that the same analysis applies to ARCH-type model predictions.
Take a GARCH(1,1) as example. With a sample of size T returns and pa-
rameter estimates ω̂T , α̂T and β̂T , we can produce the forecast:

σ̂2
T+1 = ω̂T + α̂Tu

2
T + β̂Tσ

2
T (14.5.3)

where, by analogy, we can for example consider the loss functions L(σ̂2
T+1, r

2
T+1) :

MSE : (σ̂2
T+1 − r2

T+1)2, and QLIKE : log σ̂2
T+1 + r2

T+1/σ̂
2
T+1.
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14.6 Forecasting S&P 500 index volatility

In this example we apply the volatility forecasting techniques we saw in
the theoretical sections of the chapter to study the time-variation in the
conditional variance of a financial time series, namely, the S&P 500 index.
We have a daily dataset spanning from January 2000 until the end of August
2016. The data have been imported from the website Oxford-Man Institute’s
realized library.9 We will first analyze the time frame going from 2000 to
2006, using the period from 2006 to 2016 for an out-of-sample forecasting
exercise. Then, we will enlarge the estimation sample until the onset of the
financial crisis, i.e., in August 2008, and we will see whether our model is
able to forecast the steep peak that the S&P 500 volatility displayed in late
2008, see Figures 14.6.1 and 14.6.2.

For this exercise the rolling estimation windows approach, which is more
robust than recursive estimation in the presence of breaks, is utilized by
rolling each estimation window by one-week and re-estimating each model
and in turn producing h-steps ahead forecasts. The procedure is repeated
until the end of the forecast sample 2006-2016.
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Figure 14.6.1: Time series of daily returns on the S&P 500 index

9See http://realized.oxford-man.ox.ac.uk/.

http://realized.oxford-man.ox.ac.uk
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Figure 14.6.2: S&P 500 Index 5-minute realized volatility

14.6.1 ARCH-type models

Table 14.6.1 reports the estimation output of the most used heteroscedastic
model in financial time series, GARCH(1,1), model 14.2.9 for the S&P 500
index. As the persistence depends on the condition that α1 + β1 = 0.955 <
1, the shocks ut have a decaying impact on future volatility of S&P 500.

To account for the evidence that negative returns and positive ones have
different impacts on volatility, the commonly used EGARCH(1,1) the natural
log of the conditional variance is estimated. The estimation results for the
pre-crisis period are presented in Table 14.6.2.

Another popular model featuring asymmetry, GJR-GARCH(1,1), is also
estimated and the results for the pre-crisis period are presented in Table
14.6.3.

To compare forecast performance of GARCH, EGARCH, and GJR-GARCH
models, Diebold-Mariano test statistics are calculated with the loss functions
MSE and QLIKE. Tables 14.6.4, 14.6.5, and 14.6.6 present DM test statistics
and corresponding p-values for the pre-crisis, crisis and, post-crisis samples,
respectively.

For the pre-crisis models, looking at the DM test statistics with MSE,
the null hypothesis of same forecasting performance at different horizons for
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Variable Coefficient Std.Error z-Statistic Prob.

Variance Equation

C 0.000 0.000 2.491 0.013
RESID(-1)2 0.063 0.009 7.368 0.000
GARCH(-1) 0.932 0.008 110.352 0.000

R-squared -0.000 Mean dep var -0.000
Adjusted R-squared 0.001 S.D. dep var 0.011
S.E. of regression 0.011 Akaike IC -6.454
Sum squared resid 0.217 Schwarz IC -6.445
Log likelihood 5608.576 Hannan-Quinn -6.451
DW stat 2.065

Table 14.6.1: GARCH(1,1) estimation output, Jan. 2000 - Dec. 2006

Variable Coefficient Std.Error z-Statistic Prob.

Variance Equation

C(1)(ω) -0.128 0.019 -6.800 0.000
C(2)(α) 0.044 0.012 3.599 0.000
C(3)(γ) -0.100 0.009 -11.115 0.000
C(4)(β) 0.990 0.001 693.075 0.000

R-squared -0.000 Mean dep var -0.000
Adjusted R-squared 0.001 S.D. dep var 0.011
S.E. of regression 0.011 Akaike IC -6.508
Sum squared resid 0.217 Schwarz IC -6.495
Log likelihood 5656.202 Hannan-Quinn -6.503
DW stat 2.065

Table 14.6.2: EGARCH(1,1) estimation output, Jan. 2000 - Dec. 2006

GARCH and EGARCH cannot be rejected at 5% significance level. Whereas
with QLIKE, they are rejected in favor of the GARCH model. Except six-
month forecasts, GJR-GARCH performs as good as GARCH for both MLE
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Variable Coefficient Std.Error z-Statistic Prob.

Variance Equation

C(ω) 0.000 0.000 5.186 0.000
RESID(-1)2(α) -0.022 0.008 -2.972 0.003
RESID(-1)2*(RESID(-1)¡0)(φ) 0.134 0.015 8.867 0.000
GARCH(-1)(β) 0.946 0.009 106.776 0.000

R-squared 0.001 Mean dep var -0.000
Adjusted R-squared 0.001 S.D. dep var 0.011
S.E. of regression 0.011 Akaike IC -6.500
Sum squared resid 0.217 Schwarz IC -6.488
Log likelihood 5649.427 Hannan-Quinn -6.496
DW stat 2.065

Table 14.6.3: GJR-GARCH(1,1) estimation output, Jan. 2000 - Dec. 2006

and QLIKE loss functions, while it performs better than the EGARCH model
at all horizons. DM tests with QLIKE tend to be rejected at lower significance
levels. On the other hand, during crisis, almost all DM tests are strongly
rejected favoring GARCH over both EGARCH and GJR-GARCH, while DM
tests with QLIKE favors EGARCH over GARCH and GJR-GARCH at all
horizons. For the post-crisis forecast performance comparison, DM tests
with MSE indicate that GARCH outperforms both EGARCH and GJR-
GARCH, whereas QLIKE version chooses EGARCH over GJR-GARCH, and
GJR-GARCH over GARCH, and these results are more significant at longer
horizons.

14.6.2 Realized volatility

Compared to the models in the previous subsection, there are two main
differences with what we are about to discuss next. First, we formulate the
prediction models in terms of daily realized measures, daily RV of S&P 500,
not daily squared returns as was the case with ARCH-type models. Second,
we consider direct forecasting as opposed to the iterated forecasting used in
ARCH-type models. We consider again one-day, one-week, one-month and
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GARCH GARCH EGARCH
vs EGARCH vs GJR-GARCH vs GJR-GARCH

One-day ahead
MSE
DM test stat -1.097 -0.718 1.304
p-value 0.136 0.236 0.096
QLIKE
DM test stat -1.624 -1.322 1.666
p-value 0.052 0.093 0.048
One-week ahead
MSE
DM test stat -1.658 -0.717 1.506
p-value 0.049 0.237 0.066
QLIKE
DM test stat -1.918 -0.582 2.081
p-value 0.028 0.280 0.019
One-month ahead
MSE
DM test stat -1.172 -0.541 1.109
p-value 0.121 0.294 0.134
QLIKE
DM test stat -2.197 1.454 2.286
p-value 0.014 0.073 0.011
Six-months ahead
MSE
DM test stat 0.527 1.267 0.914
p-value 0.299 0.103 0.180
QLIKE
DM test stat -1.537 1.828 1.582
p-value 0.062 0.034 0.057

Table 14.6.4: Pre-crisis, forecast comparison, forecast sample Jan. 2007 -
Aug. 2016

six-months forecast horizons, which means that for each horizon we formulate
a different regression prediction model.

Two types of regression models are considered: (1) MIDAS-RV as in
equation 14.3.4, setting m = 1 to obtain daily lags of past realized volatilities
and (2) HAR models as in equation (14.3.5). We estimate the MIDAS-
RV regression with a quadratic Almon polynomial and do not separately
identify a slope parameter. As a consequence, both HAR and MIDAS-RV
have three parameters and are therefore at par in terms of the dimension
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GARCH GARCH EGARCH
vs EGARCH vs GJR-GARCH vs GJR-GARCH

One-day ahead
MSE
DM test stat -2.081 -1.535 1.797
p-value 0.019 0.062 0.036
QLIKE
DM test stat 2.357 2.000 -2.080
p-value 0.009 0.023 0.019
One-week ahead
MSE
DM test stat -2.522 -1.761 2.643
p-value 0.006 0.039 0.004
QLIKE
DM test stat 2.389 2.241 -1.775
p-value 0.008 0.013 0.038
One-month ahead
MSE
DM test stat -2.804 -1.294 3.240
p-value 0.003 0.098 0.001
QLIKE
DM test stat 3.701 3.385 -2.683
p-value 0.000 0.000 0.004
Six-months ahead
MSE
DM test stat -1.674 -1.852 -0.927
p-value 0.047 0.032 0.177
QLIKE
DM test stat 2.074 0.987 -2.315
p-value 0.019 0.162 0.010

Table 14.6.5: During crisis, forecast comparison, forecast sampleNov. 2008 -
Aug. 2016

of the parameter space. For the pre-crisis sample, the estimation output for
the HAR in Table 14.6.7 and for the MIDAS-RV model in Table 14.6.8. It is
useful perhaps to compute the implied lags of the MIDAS-RV and compare
them to the HAR model estimates. Namely the MIDAS-RV implies a lag
one RV parameter equal to 0.466314, whereas for the HAR model we have
an estimate of 0.525832. for the next lag in the MIDAS-RV we have an
estimate of 0.157171, and the next one equal to 0.161642, whereas both have
weight equal to 0.204848 in the HAR model. Hence, the weighting schemes
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GARCH GARCH EGARCH
vs EGARCH vs GJR-GARCH vs GJR-GARCH

One-day ahead
MSE
DM test stat -1.689 -2.158 -1.884
p-value 0.046 0.015 0.030
QLIKE
DM test stat 1.782 0.218 -3.062
p-value 0.037 0.414 0.001
One-week ahead
MSE
DM test stat -0.231 -1.544 -1.677
p-value 0.409 0.061 0.047
QLIKE
DM test stat 2.473 0.949 -2.740
p-value 0.007 0.171 0.003
One-month ahead
MSE
DM test stat -2.646 -1.367 2.324
p-value 0.004 0.086 0.010
QLIKE
DM test stat 1.768 0.665 -2.113
p-value 0.039 0.253 0.017
Six-months ahead
MSE
DM test stat -0.810 -1.084 -0.937
p-value 0.209 0.139 0.174
QLIKE
DM test stat 3.467 3.179 -2.725
p-value 0.000 0.001 0.003

Table 14.6.6: Post-crisis, forecast comparison, forecast sample Jan. 2010 -
Aug. 2016

differ quite a bit. Does it matter in terms of forecast performance?

Table 14.6.9 compares forecasts performances of the RV-MIDAS model
versus the HAR model, presenting DM test statistics and corresponding p-
values for the pre-crisis, crisis and, post-crisis samples. It contains not only
the one-day ahead forecast, but also the other horizons. We do not report all
the HAR and MIDAS-RV regression output for the sake of brevity. That also
applies to the estimates during and post-crisis. Some interesting conclusions
emerge from Table 14.6.9. During the crisis we see that the MIDAS-RV
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Variable Coefficient Std.Error t-Statistic Prob.
C 0.000 0.000 4.961 0.000
REV OLD 0.526 0.045 11.743 0.000
REV OLW 0.205 0.041 4.962 0.000
REV OLM 0.089 0.031 2.882 0.004

R-squared 0.486 Mean dep var 0.000
Adjusted R-squared 0.485 S.D. dep var 0.000
S.E. of regression 0.000 Akaike IC -15.671
Sum squared resid 0.000 Schwarz IC -15.658
Log likelihood 13441.680 Hannan-Quinn -15.666
F-statistic 539.272 DW 2.209
Prob(F-statistic) 0.000 Wald F-stat 118.543
Prob(Wald F-statistic) 0.000

Table 14.6.7: HAR one-day ahead estimation results for the pre-crisis esti-
mation period

is superior at all horizons, both in terms of MSE and QLIKE (only one
insignificant – the one-week MSE case). The pre-crisis results are not so clear
cut at least at the 5% level. For the one-day horizon we see that MIDAS-RV
is better, but not so at the one-week horizon. At longer horizons, MIDAS-
RV does again better, in terms of both forecast evaluation criteria. Finally,
post-crisis the results are similar to those during the crisis, although without
the same overwhelming statistical significance.

14.7 Concluding remarks

We did not cover multivariate models of volatility and therefore refer to
Bauwens, Laurent, and Rombouts (2006) for an excellent survey. It is worth
noting that the estimation of multivariate volatility models with mixed sam-
pling frequencies is a relatively unexplored area. One approach that appears
promising was proposed by Colacito, Engle, and Ghysels (2011) and also
applied by Baele, Bekaert, and Inghelbrecht (2010) to the determinants of
stock and bond return co-movements. In particular, Colacito, Engle, and
Ghysels (2011) address the specification, estimation, and interpretation of
correlation models that distinguish short and long-run components driven
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Coefficient Std.Error t-Statistic Prob.
C 0.000 0.000 7.143 0.000

Almon polynomial

PDL01 1.089 0.133 8.184 0.000
PDL02 -0.780 0.154 -5.069 0.000
PDL03 0.157 0.038 4.109 0.000

R-squared 0.488 Mean dep var 0.000
Adjusted R-squared 0.487 S.D. dep var 0.000
S.E. of regression 0.000 Akaike IC -15.681
Sum squared resid 0.000 Schwarz IC -15.668
Log likelihood 13599.330 Hannan-Quinn -15.676

Table 14.6.8: RV-MIDAS one-day ahead estimation results for the pre-crisis
estimation period

by mixed-frequency data. They show that the changes in correlations are
indeed very different. The model is called DCC-MIDAS, where DCC stands
for dynamic conditional correlation following Engle (2002) and MIDAS refers
to the mixed-frequency specification for the long-run component. In terms
of empirical implementation, Colacito, Engle, and Ghysels (2011) and Baele,
Bekaert, and Inghelbrecht (2010) consider examples involving stocks and
bonds. Both papers show the usefulness of the component specification in
correlations and in particular the appeal of using MIDAS filters to specify
long-run component of correlations. Formal testing reported in both papers
show that the DCC-MIDAS models outperform standard DCC models. Co-
lacito, Engle, and Ghysels (2011) also study asset allocation with multiple
international equities (five international stock markets) and a single MIDAS
filter. Using the methodology proposed by Engle and Colacito (2012) pertain-
ing to minimum variance portfolio management, they document the economic
significance of using the DCC-MIDAS specification as well. Other applica-
tions include Asgharian, Christiansen, and Hou (2016), Baele and Londono
(2013), Boffelli, Skintzi, and Urga (2015), Conrad, Loch, and Rittler (2014),
Perego and Vermeulen (2016), among others.
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RV-MIDAS vs HAR RV-MIDAS vs HAR RV-MIDAS vs HAR
Pre-crisis During crisis Post-crisis

One-day ahead
MSE
DM test stat -1.351 -2.175 -2.416
p-value 0.088 0.015 0.008
QLIKE
DM test stat -2.103 -1.738 -1.818
p-value 0.018 0.041 0.035
One-week ahead
MSE
DM test stat -0.216 -0.903 -1.409
p-value 0.414 0.183 0.079
QLIKE
DM test stat 5.833 -1.881 -1.263
p-value 0.000 0.030 0.103
One-month ahead
MSE
DM test stat -1.715 -3.661 -1.507
p-value 0.043 0.000 0.066
QLIKE
DM test stat -2.320 -2.093 -1.700
p-value 0.010 0.018 0.045
Six-months ahead
MSE
DM test stat -1.651 -2.419 -2.001
p-value 0.049 0.008 0.023
QLIKE
DM test stat -2.467 -2.029 -1.609
p-value 0.007 0.021 0.054

Table 14.6.9: Forecast comparison; RV-MIDAS vs. HAR models
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