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Synthetic Difference-in-Differences†

By Dmitry Arkhangelsky, Susan Athey, David A. Hirshberg, 
Guido W. Imbens, and Stefan Wager*

We present a new estimator for causal effects with panel data that 
builds on insights behind the widely used difference-in-differences 
and synthetic control methods. Relative to these methods we find, 
both theoretically and empirically, that this “synthetic differ-
ence-in-differences” estimator has desirable robustness properties, 
and that it performs well in settings where the conventional estima-
tors are commonly used in practice. We study the asymptotic behav-
ior of the estimator when the systematic part of the outcome model 
includes latent unit factors interacted with latent time factors, and 
we present conditions for consistency and asymptotic normality. 
(JEL C23, H25, H71, I18, L66)

Researchers are often interested in evaluating the effects of policy changes using 
panel data, i.e., using repeated observations of units across time, in a setting where 
some units are exposed to the policy in some time periods but not others. These pol-
icy changes are frequently not random—neither across units of analysis, nor across 
time periods—and even unconfoundedness given observed covariates may not be 
credible (e.g., Imbens and Rubin 2015). In the absence of exogenous variation 
researchers have focused on statistical models that connect observed data to unob-
served counterfactuals. Many approaches have been developed for this setting but, 
in practice, a handful of methods are dominant in empirical work. As documented 
by Currie, Kleven, and Zwiers (2020), difference-in-differences (DID) methods 
have been widely used in applied economics over the last three decades; see also 
Ashenfelter and Card (1985); Bertrand, Duflo, and Mullainathan (2004); and Angrist 
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and Pischke (2008). More recently, synthetic control (SC) methods, introduced in a 
series of seminal papers by Abadie and coauthors (Abadie and Gardeazabal 2003; 
Abadie, Diamond, and Hainmueller 2010; 2015; Abadie and L’Hour 2016), have 
emerged as an important alternative method for comparative case studies.

Currently these two strategies are often viewed as targeting different types of 
empirical applications. In general, DID methods are applied in cases where we have 
a substantial number of units that are exposed to the policy, and researchers are will-
ing to make a “parallel trends” assumption that implies that we can adequately con-
trol for selection effects by accounting for additive unit-specific and time-specific 
fixed effects. In contrast, SC methods, introduced in a setting with only a single (or 
small number) of units exposed, seek to compensate for the lack of parallel trends 
by reweighting units to match their pre-exposure trends. 

In this paper, we argue that although the empirical settings where DID and SC 
methods are typically used differ, the fundamental assumptions that justify both 
methods are closely related. We then propose a new method, synthetic difference in 
differences (SDID), that combines attractive features of both. Like SC, our method 
reweights and matches pre-exposure trends to weaken the reliance on parallel trend 
type assumptions. Like DID, our method is invariant to additive unit-level shifts, 
and allows for valid large-panel inference. Theoretically, we establish consistency 
and asymptotic normality of our estimator. Empirically, we find that our method is 
competitive with (or dominates) DID in applications where DID methods have been 
used in the past, and likewise is competitive with (or dominates) SC in applications 
where SC methods have been used in the past.

To introduce the basic ideas, consider a balanced panel with ​N​ units and ​T​ 
time periods, where the outcome for unit ​i​ in period ​t​ is denoted by ​​Y​it​​​, and expo-
sure to the binary treatment is denoted by ​​W​it​​  ∈  {0, 1}​. Suppose moreover that 
the first ​​N​co​​​ (control) units are never exposed to the treatment, while the last ​​N​tr​​ 
=  N − ​N​co​​​ (treated) units are exposed after time ​​T​pre​​​.1 Like with SC methods, we 
start by finding weights ​​​ω ˆ ​​​ sdid​​ that align pre-exposure trends in the outcome of unex-
posed units with those for the exposed units, e.g., ​​∑ i=1​ ​N​co​​ ​​ ​​ω ˆ ​​ i​ sdid​ ​Y​it​​  ≈ ​ N​ tr​ −1​ ​∑ i=​N​co​​+1​ N  ​​ ​Y​it​​​ 
for all ​t  =  1, …, ​T​pre​​​. We also look for time weights ​​​λ ˆ ​​ t​ sdid​​ that balance pre-exposure 
time periods with postexposure ones (see Section I for details). Then we use these 
weights in a basic two-way fixed effects regression to estimate the average causal 
effect of exposure (denoted by ​τ​):2

(1) ​ ​(​​τ ˆ ​​​ sdid​, ​μ ˆ ​, ​α ˆ ​, ​β ˆ ​)​  = ​ arg min​ 
τ,μ,α,β

​ 
 
 ​​ {​ ∑ 

i=1
​ 

N

 ​​ ​ ∑ 
t=1

​ 
T

  ​​ ​​(​Y​it​​ − μ − ​α​i​​ − ​β​t​​ − ​W​it​​ τ)​​​ 2​ ​​ω ˆ ​​ i​ sdid​ ​​λ ˆ ​​ t​ sdid​}​​.

In comparison, DID estimates the effect of treatment exposure by solving the same 
two-way fixed effects regression problem without either time or unit weights:

(2)	​ ​(​​τ ˆ ​​​ did​, ​μ ˆ ​, ​α ˆ ​, ​β ˆ ​)​  = ​ arg min​ 
α,β,μ,τ

​ 
 
 ​​ {​ ∑ 

i=1
​ 

N

 ​​ ​ ∑ 
t=1

​ 
T

  ​​ ​​(​Y​it​​ − μ − ​α​i​​ − ​β​t​​ − ​W​it​​ τ)​​​ 2​}​​.

1 Throughout the main part of our analysis, we focus on the block treatment assignment case where ​​W​it​​  =  1({i  > ​
N​co​​, t  >  ​T​pre​​})​. In the closely related staggered adoption case (Athey and Imbens 2021) where units adopt the 
treatment at different times, but remain exposed after they first adopt the treatment, one can modify the methods 
developed here. See the Appendix for details.

2 This estimator also has an interpretation as a DID of weighted averages of observations. See equations (7) 
and (8) below.
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The use of weights in the SDID estimator effectively makes the two-way fixed effect 
regression “local,” in that it emphasizes (puts more weight on) units that on average 
are similar in terms of their past to the target (treated) units, and it emphasizes peri-
ods that are on average similar to the target (treated) periods.

This localization can bring two benefits relative to the standard DID estimator. 
Intuitively, using only similar units and similar periods makes the estimator more 
robust. For example, if one is interested in estimating the effect of anti-smoking 
legislation on California (Abadie, Diamond, and Hainmueller 2010), or the effect of 
German reunification on West Germany (Abadie, Diamond, and Hainmueller 2015), 
or the effect of the Mariel boatlift on Miami (Card 1990, Peri and Yasenov 2019), 
it is natural to emphasize states, countries or cities that are similar to California, 
West Germany, or Miami respectively relative to states, countries, or cities that are 
not. Perhaps less intuitively, the use of the weights can also improve the estima-
tor’s precision by implicitly removing systematic (predictable) parts of the outcome. 
However, the latter is not guaranteed: If there is little systematic heterogeneity in 
outcomes by either units or time periods, the unequal weighting of units and time 
periods may worsen the precision of the estimators relative to the DID estimator.

Unit weights are designed so that the average outcome for the treated units is 
approximately parallel to the weighted average for control units. Time weights are 
designed so that the average posttreatment outcome for each of the control units 
differs by a constant from the weighted average of the pretreatment outcomes for the 
same control units. Together, these weights make the DID strategy more plausible. 
This idea is not far from the current empirical practice. Raw data rarely exhibit paral-
lel time trends for treated and control units, and researchers use different techniques, 
such as adjusting for covariates or selecting appropriate time periods to address this 
problem (e.g., Abadie 2005, Callaway and Sant’anna 2020). Graphical evidence that 
is used to support the parallel trends assumption is then based on the adjusted data. 
SDID makes this process automatic and applies a similar logic to weighting both 
units and time periods, all while retaining statistical guarantees. From this point of 
view, SDID addresses pretesting concerns recently expressed in Roth (2018).

In comparison with the SDID estimator, the SC estimator omits the unit fixed 
effect and the time weights from the regression function:

(3)	​ ​(​​τ ˆ ​​​ sc​, ​μ ˆ ​, ​β ˆ ​)​  = ​ arg min​ 
μ,β,τ

​ 
 
 ​​ {​ ∑ 

i=1
​ 

N

 ​​ ​ ∑ 
t=1

​ 
T

  ​​ ​​(​Y​it​​ − μ − ​β​t​​ − ​W​it​​ τ)​​​ 2​ ​​ω ˆ ​​ i​ sc​}​​.

The argument for including time weights in the SDID estimator is the same as the 
argument for including the unit weights presented earlier: The time weight can both 
remove bias and improve precision by eliminating the role of time periods that are 
very different from the posttreatment periods. Similar to the argument for the use of 
weights, the argument for the inclusion of the unit fixed effects is twofold. First, by 
making the model more flexible, we strengthen its robustness properties. Second, 
as demonstrated in the application and simulations based on real data, these unit 
fixed effects often explain much of the variation in outcomes and can improve pre-
cision. Under some conditions, SC weighting can account for the unit fixed effects 
on its own. In particular, this happens when the weighted average of the outcomes 
for the control units in the pretreatment periods is exactly equal to the average of 
outcomes for the treated units during those pretreatment periods. In practice, this 
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equality holds only approximately, in which case including the unit fixed effects 
in the weighted regression will remove some of the remaining bias. The benefits of 
including unit fixed effects in the SC regression (3) can also be obtained by apply-
ing the SC method after centering the data by subtracting, from each unit’s trajec-
tory, its pretreatment mean. This estimator was previously suggested in Doudchenko 
and Imbens (2016) and Ferman and Pinto (2019). To separate out the benefits of 
allowing for fixed effects from those stemming from the use of time weights, we 
include in our application and simulations this synthetic control with intercept DIFP 
(Doudchenko-Imbens Ferman-Pinto) estimator.

I.  An Application

To get a better understanding of how ​​​τ ˆ ​​​ did​​, ​​​τ ˆ ​​​ sc​​, and ​​​τ ˆ ​​​ sdid​​ compare to each other, 
we first revisit the California smoking cessation program example of Abadie, 
Diamond, and Hainmueller (2010). The goal of their analysis was to estimate the 
effect of increased cigarette taxes on smoking in California (based on the data from 
Orzechowski & Walker 2005). We consider observations for 39 states (including 
California) from 1970 through 2000. California passed Proposition  99 increas-
ing cigarette taxes (i.e., is treated) from 1989 onwards. Thus, we have ​​T​pre​​  =  19​ 
pretreatment periods, ​​T​post​​  =  T − ​T​pre​​  =  12​ posttreatment periods, ​​N​co​​  =  38​ 
unexposed states, and ​​N​tr​​  =  1​ exposed state (California).

A.  Implementing SDID

Before presenting results on the California smoking case, we discuss in detail how 
we choose the SC type weights ​​​ω ˆ ​​​ sdid​​ and ​​​λ ˆ ​​​ sdid​​ used for our estimator as specified in 
(1). Recall that, at a high level, we want to choose the unit weights to roughly match 
pretreatment trends of unexposed units with those for the exposed ones, ​​∑ i=1​ ​N​co​​ ​​ ​​ω ˆ ​​ i​ sdid​ ​
Y​it​​  ≈ ​ N​ tr​ −1​ ​∑ i=​N​co​​+1​ N  ​​ ​Y​it​​​ for all ​t  =  1, …, ​T​pre​​​, and similarly we want to choose the 
time weights to balance pre- and postexposure periods for unexposed units.

In the case of the unit weights ​​​ω ˆ ​​​ sdid​​, we implement this by solving the optimiza-
tion problem

(4)	​ ​(​​ω ˆ ​​0​​, ​​ω ˆ ​​​ sdid​)​  = ​  arg min​ 
​ω​0​​∈ℝ,ω∈Ω

​ 
 
 ​  ​ℓ​unit​​​(​ω​0​​, ω)​​,

where

	​ ​ℓ​unit​​​(​ω​0​​, ω)​  = ​  ∑ 
t=1

​ 
​T​pre​​

 ​​ ​​(​ω​0​​ + ​ ∑ 
i=1

​ 
​N​co​​

 ​​ ​ω​i​​ ​Y​it​​ − ​ 1 _ ​N​tr​​
 ​ ​  ∑ 
i=​N​co​​+1

​ 
N

  ​​​Y​it​​)​​​ 
2

​ + ​ζ​​ 2​ ​T​pre​​ ​∥ω∥​ 2​ 2​​ ,

	​ Ω  = ​ {ω  ∈ ​ ℝ​ +​ N ​ : ​ ∑ 
i=1

​ 
​N​co​​

 ​​ ​ω​i​​  =  1, ​ω​i​​  = ​ N​ tr​ −1​ for all i  = ​ N​co​​ + 1, …, N}​​,

where ​​ℝ​+​​​ denotes the positive real line. We set the regularization parameter ​ζ​ as

(5) ​ ζ  = ​​ (​N​tr​​ ​T​post​​)​​​ 1/4​​σ ˆ ​    with    ​​σ ˆ ​​​ 2​  = ​   1 _  
​N​co​​​(​T​pre​​ − 1)​ ​ ​ ∑ 

i=1
​ 

​N​co​​

 ​​​ ∑ 
t=1

​ 
​T​pre​​−1

​​​​(​Δ​it​​ − ​Δ 
–
 ​)​​​ 2​​,
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where

	​ ​Δ​it​​  = ​ Y​i​(t+1)​​​ − ​Y​it​​,    and   ​ Δ 
–
 ​  = ​   1 _  

​N​co​​​(​T​pre​​ − 1)​ ​ ​ ∑ 
i=1

​ 
​N​co​​

 ​​ ​ ∑ 
t=1

​ 
​T​pre​​−1

​​​Δ​it​​​ .

That is, we choose the regularization parameter ​ζ​ to match the size of a typical 
one-period outcome change ​​Δ​it​​​ for unexposed units in the pre-period, multiplied by 
a theoretically motivated scaling ​​(​N​tr​​ ​T​post​​)​​ 1/4​​. The SDID weights ​​​ω ˆ ​​​ sdid​​ are closely 
related to the weights used in Abadie, Diamond, and Hainmueller (2010), with 
two minor differences. First, we allow for an intercept term ​​ω​0​​​, meaning that the 
weights ​​​ω ˆ ​​​ sdid​​ no longer need to make the unexposed pre-trends perfectly match the 
exposed ones; rather, it is sufficient that the weights make the trends parallel. The 
reason we can allow for this extra flexibility in the choice of weights is that our 
use of fixed effects ​​α​i​​​ will absorb any constant differences between different units. 
Second, following Doudchenko and Imbens (2016), we add a regularization pen-
alty to increase the dispersion, and ensure the uniqueness, of the weights. If we 
were to omit the intercept ​​ω​0​​​ and set ​ζ  =  0​, then (4) would correspond exactly to 
a choice of weights discussed in Abadie, Diamond, and Hainmueller (2010) in the 
case where ​​N​tr​​  =  1​.

We implement this for the time weights ​​​λ ˆ ​​​ sdid​​ by solving 3

(6)	​​ (​​λ ˆ ​​0​​, ​​λ ˆ ​​​ sdid​)​  = ​  arg min​ 
​λ​0​​∈ℝ,λ∈Λ

​ 
 
 ​   ​ℓ​time​​​(​λ​0​​, λ)​​,

where

	​ ​ℓ​time​​​(​λ​0​​, λ)​  = ​  ∑ 
i=1

​ 
​N​co​​

 ​​ ​​(​λ​0​​ + ​ ∑ 
t=1

​ 
​T​pre​​

 ​​ ​λ​t​​ ​Y​it​​ − ​  1 _ ​T​post​​
 ​  ​  ∑ 
t=​T​pre​​+1

​ 
T

  ​​​Y​it​​)​​​ 
2

​​,

	​ Λ  = ​ {λ  ∈ ​ ℝ​ +​ T ​ : ​ ∑ 
t=1

​ 
​T​pre​​

 ​​ ​λ​t​​  =  1, ​ λ​t​​  = ​ T​ post​ −1 ​  for all  t  = ​ T​pre​​ + 1, …, T}​​.

The main difference between (4) and (6) is that we use regularization for the former 
but not the latter. This choice is motivated by our formal results, and reflects the fact 
we allow for correlated observations within time periods for the same unit, but not 
across units within a time period, beyond what is captured by the systematic compo-
nent of outcomes as represented by a latent factor model.

We summarize our procedure as Algorithm 1.4 In our application and simula-
tions we also report the SC and DIFP estimators. Both of these use weights solv-
ing (4) without regularization. The SC estimator also omits the intercept ​​ω​0​​​.5 

3 The weights ​​​λ ˆ ​​​ sdid​​ may not be uniquely defined, as ​​ℓ​time​​​ can have multiple minima. In principle our results hold 
for any argmin of ​​ℓ​time​​​. These tend to be similar in the setting we consider, as they all converge to unique ‘oracle 
weights’ ​​​λ ̃ ​​​ sdid​​ that are discussed in Section  IIIB. In practice, to make the minimum defining our time weights 
unique, we add a very small regularization term ​​ζ​​ 2​ ​N​co​​ ​∥ λ ∥​​ 2​​ to ​​ℓ​time​​​, taking ​ζ  =  ​10​​ −6​ ​σ ˆ ​​ for ​​σ ˆ ​​ as in (5). 

4 Some applications feature time-varying exogenous covariates ​​X​it​​  ∈  ​ℝ​​ p​​. We can incorporate adjustment for 
these covariates by applying SDID to the residuals ​​Y​ it​ res​  =  ​Y​it​​ − ​X​it​​ ​β ˆ ​​ of the regression of ​​Y​it​​​ on ​​X​it​​​.

5 Like the time weights ​​​λ ˆ ​​​ sdid​​, the unit weights for the SC and DIFP estimators may not be uniquely defined. 
To ensure uniqueness in practice, we take ​ζ  =  ​10​​ −6​ ​σ ˆ ​​, not ​ζ  =  0​, in ​​ℓ​unit​​​. In our simulations, SC and DIFP with 
this minimal form of regularization outperform more strongly regularized variants with ​ζ​ as in (5). We show this 
comparison in Table 6.
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Finally, we report results for the matrix completion (MC) estimator proposed by  
Athey et al. (2021), which is based on imputing the missing ​​Y​it​​​(0)​​ using a low rank 
factor model with nuclear norm regularization.

B.  The California Smoking Cessation Program

The results from running this analysis are shown in Table 1. As argued in Abadie, 
Diamond, and Hainmueller (2010), the assumptions underlying the DID estimator 
are suspect here, and the −27.3 point estimate likely overstates the effect of the 
policy change on smoking. SC provides a reduced (and generally considered more 
credible) estimate of −19.6. The other methods, our proposed SDID, the DIFP and 
the MC estimator are all smaller than the DID estimator with the SDID and DIFP 
estimator substantially smaller than the SC estimator. At the very least, this differ-
ence in point estimates implies that the use of time weights and unit fixed effects 
in (1) materially affects conclusions, and, throughout this paper, we will argue that 
when ​​​τ ˆ ​​​ sc​​ and ​​​τ ˆ ​​​ sdid​​ differ, the latter is often more credible. Next, and perhaps surpris-
ingly, we see that the standard errors obtained for SDID (and also for SC, DIFP, and 
MC) are smaller than those for DID, despite our method being more flexible. This is 
a result of the local fit of SDID (and SC) being improved by the weighting.

To facilitate direct comparisons, we observe that each of the three estimators can 
be rewritten as a weighted average difference in adjusted outcomes ​​​δ ˆ ​​i​​​ for appropri-
ate sample weights ​​​ω ˆ ​​i​​​ :

(7)	​ ​τ ˆ ​  = ​​ δ ˆ ​​tr​​ − ​ ∑ 
i=1

​ 
​N​co​​

 ​​ ​​ω ˆ ​​i​​ ​​δ ˆ ​​i​​    where    ​​δ ˆ ​​tr​​  = ​  1 _ ​N​tr​​
 ​  ​  ∑ 
i=​N​co​​+1

​ 
N

  ​​​​δ ˆ ​​i​​​ .

Algorithm 1—SDID

Data:  Y, W
Result:  Point estimate ​​​τ ˆ ​​​ sdid​​

1.  Compute regularization parameter ζ using (5);
2.  Compute unit weights ​​​ω ˆ ​​​ sdid​​ via (4);
3.  Compute time weights ​​​λ ˆ ​​​ sdid​​ via (6);
4.  Compute the SDID estimator via the weighted DID regression

​​(​​τ ˆ ​​​ sdid​, ​μ ˆ ​, ​α ˆ ​, ​β ˆ ​)​  = ​ arg min​ 
τ,μ,α,β

​ 
 
 ​  ​{​ ∑ 

i=1
​ 

N

 ​​ ​ ∑ 
t=1

​ 
T

 ​​​​ (​Y​it​​ − μ − ​α​i​​ − ​β​t​​ − ​W​it​​ τ)​​​ 2​ ​​ω ˆ ​​ i​ 
sdid​ ​​λ ˆ ​​ t​ sdid​}​​;

 

Table 1

SDID SC DID MC DIFP

Estimate −15.6 −19.6 −27.3 −20.2 −11.1
Standard error (8.4) (9.9) (17.7) (11.5) (9.5)

Notes: Estimates for average effect of increased cigarette taxes on California per capita ciga-
rette sales over 12 posttreatment years, based on SDID, SC, DID, MC, DIFP, along with esti-
mated standard errors. We use the “placebo method” standard error estimator discussed in 
Section IV.
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DID uses constant weights ​​​ω ˆ ​​ i​ did​  = ​ N​ co​ −1​​, while the construction of SDID and SC 
weights is outlined in Section IA. For the adjusted outcomes ​​​δ ˆ ​​i​​​, SC uses unweighted 
treatment period averages, DID uses unweighted differences between average treat-
ment period and pretreatment outcomes, and SDID uses weighted differences of the 
same:

(8)	​ ​​​δ ˆ ​​ i​ 
sc

​  = ​   1 _ ​T​post​​
 ​  ​  ∑ 
t=​T​pre​​+1

​ 
T

  ​​​Y​it​​ ,

	​​ δ ˆ ​​ i​ 
did​  = ​   1 _ ​T​post​​

 ​  ​  ∑ 
t=​T​pre​​+1

​ 
T

  ​​​Y​it​​ − ​  1 _ ​T​pre​​
 ​ ​ ∑ 
t=1

​ 
​T​pre​​

 ​​ ​Y​it​​ ,

	​​ δ ˆ ​​ i​ 
sdid​  = ​   1 _ ​T​post​​

 ​  ​  ∑ 
t=​T​pre​​+1

​ 
T

  ​​​Y​it​​ − ​ ∑ 
t=1

​ 
​T​pre​​

 ​​ ​​λ ˆ ​​ t​ sdid​ ​Y​it​​​ .

The top panel of Figure 1 illustrates how each method operates. As is well-known 
(Ashenfelter and Card 1985), DID relies on the assumption that cigarette sales in 
different states would have evolved in a parallel way absent the intervention. Here, 
preintervention trends are obviously not parallel, so the DID estimate should be con-
sidered suspect. In contrast, SC reweights the unexposed states so that the weighted 
of outcomes for these states match California preintervention as close as possible, 
and then attributes any postintervention divergence of California from this weighted 
average to the intervention. What SDID does here is reweight the unexposed control 
units to make their time trend parallel (but not necessarily identical) to California 
preintervention, then apply a DID analysis to this reweighted panel. Moreover, 
because of the time weights, we only focus on a subset of the preintervention time 
periods when carrying out this last step. These time periods were selected so that 
the weighted average of historical outcomes predicts average treatment period out-
comes for control units, up to a constant. It is useful to contrast the data-driven SDID 
approach to selecting the time weights to both DID, where all pretreatment periods 
are given equal weight, and to event studies where typically the last pretreatment 
period is used as a comparison and so implicitly gets all the weight (e.g., Borusyak 
and Jaravel 2016; Freyaldenhoven, Hansen, and Shapiro 2019).

The lower panel of Figure 1 plots ​​​δ ˆ ​​tr​​ − ​​δ ˆ ​​i​​​ for each method and for each unex-
posed state, where the size of each point corresponds to its weight ​​​ω ˆ ​​i​​​; observations 
with zero weight are denoted by an ​×​ symbol. As discussed in Abadie, Diamond, 
and Hainmueller (2010), the SC weights ​​​ω ˆ ​​​ sc​​ are sparse. The SDID weights ​​​ω ˆ ​​​ sdid​​ are 
also sparse—but less so. This is due to regularization and the use of the intercept ​​ω​0​​​, 
which allows greater flexibility in solving (4), enabling more balanced weighting. 
Observe that both DID and SC have some very high influence states, that is, states 
with large absolute values of ​​​ω ˆ ​​i​​( ​​δ ˆ ​​tr​​ − ​​δ ˆ ​​i​​)​ (e.g., in both cases, New Hampshire). In 
contrast, SDID does not give any state particularly high influence, suggesting that 
after weighting, we have achieved the desired “parallel trends” as illustrated in the 
top panel of Figure 1 without inducing excessive variance in the estimator by using 
concentrated weights.
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II.  Placebo Studies

So far, we have relied on conceptual arguments to make the claim that SDID 
inherits good robustness properties from both traditional DID and SC methods, and 
shows promise as a method that can be used in settings where either DID and SC 
would traditionally be used. The goal of this section is to see how these claims play 
out in realistic empirical settings. To this end, we consider two carefully crafted sim-
ulation studies, calibrated to datasets representative of those typically used for panel 
data studies. The first simulation study mimics settings where DID would be used in 
practice (Section IIA), while the second mimics settings suited to SC (Section IIB). 
Not only do we base the outcome model of our simulation study on real datasets, 
we further ensure that the treatment assignment process is realistic by seeking to 
emulate the distribution of real policy initiatives. To be specific, in Section IIA, we 
consider a panel of US states. We estimate several alternative treatment assignment 
models to create the hypothetical treatments, where the models are based on the 
state laws related to minimum wages, abortion, or gun rights.

Figure 1.  A Comparison between DID, SC, 
and SDID Estimates for the Effect of California Proposition 99 
on Per-Capita Annual Cigarette Consumption (in Packs/Year)

Notes: In the first row, we show trends in consumption over time for California and the relevant weighted average of 
control states, with the weights used to average pretreatment time periods at the bottom of the graphs. The estimated 
effect is indicated by an arrow. In the second row, we show the state-by-state adjusted outcome difference ​​​δ ˆ ​​tr​​ − ​​δ ˆ ​​i​​​ as 
specified in (7) and (8), with the weights ​​​ω ˆ ​​i​​​ indicated by dot size and the weighted average of these differences: the 
estimated effect—indicated by a horizontal line. States are ordered alphabetically. Observations with zero weight 
are denoted by an ​×​ symbol.
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In order to run such a simulation study, we first need to commit to an econo-
metric specification that can be used to assess the accuracy of each method. Here, 
we work with the following latent factor model (also referred to as an “interactive 
fixed-effects model” in Xu 2017; see also Athey et al. 2021),

(9)	​ ​Y​it​​  = ​ γ​i​​ ​υ​ t​ ⊤​ + τ ​W​it​​ + ​ε​it​​​ ,

where ​​γ​i​​​ is a vector of latent unit factors of dimension ​R​, and ​​υ​t​​​ is a vector of latent 
time factors of dimension ​R​. In matrix form, this can be written

(10)	​ Y  =  L + τW + E    where  L  =  Γ ​ϒ​​ ⊤​​.

We refer to ​E​ as the idiosyncratic component or error matrix, and to ​L​ as the sys-
tematic component. We assume that the conditional expectation of the error matrix ​
E​ given the assignment matrix ​W​ and the systematic component ​L​ is zero. That is, 
the treatment assignment cannot depend on ​E​. However, the treatment assignment 
may in general depend on the systematic component ​L​ (i.e., we do not take ​W​ to be 
randomized). We assume that ​​E​i​​​ is independent of ​​E​​i ′ ​​​​ for each pair of units ​i, ​i ′ ​​, but 
we allow for correlation across time periods within a unit. Our goal is to estimate 
the treatment effect ​τ​.

The model (10) captures several qualitative challenges that have received consid-
erable attention in the recent panel data literature. When the matrix ​L​ takes on an 
additive form, i.e., ​​L​it​​  = ​ α​i​​ + ​β​t​​​, then the DID regression will consistently recover ​
τ​. Allowing for interactions in ​L​ is a natural way to generalize the fixed-effects 
specification and discuss inference in settings where DID is misspecified (Bai 2009; 
Moon and Weidner 2015, 2017). In our formal results given in Section III, we show 
how, despite not explicitly fitting the model (10), SDID can consistently estimate ​τ​ 
in this design under reasonable conditions. Finally, accounting for correlation over 
time within observations of the same unit is widely considered to be an import-
ant ingredient to credible inference using panel data (Angrist and Pischke 2008; 
Bertrand, Duflo, and Mullainathan 2004).

In our experiments, we compare DID, SC, SDID, and DIFP, all implemented 
exactly as in Section I. We also compare these four estimators to an alternative that 
estimates ​τ​ by directly fitting both ​L​ and ​τ​ in (10); specifically, we consider the MC 
estimator recommended in Athey et al. (2021) that uses nuclear norm penalization 
to regularize its estimate of ​L​. In the remainder of this section, we focus on com-
paring the bias and root-mean-squared error (RMSE) of the estimator. We discuss 
questions around inference and coverage in Section IV.

A.  Current Population Survey Placebo Study

Our first set of simulation experiments revisits the landmark placebo study of 
Bertrand, Duflo, and Mullainathan (2004) using the Current Population Survey 
(CPS). The main goal of Bertrand, Duflo, and Mullainathan (2004) was to study 
the behavior of different standard error estimators for DID. To do so, they randomly 
assigned a subset of states in the CPS dataset to a placebo treatment and the rest to 
the control group, and examined how well different approaches to inference for DID 
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estimators covered the true treatment effect of zero. Their main finding was that only 
methods that were robust to serial correlation of repeated observations for a given 
unit (e.g., methods that clustered observations by unit) attained valid coverage.

We modify the placebo analyses in Bertrand, Duflo, and Mullainathan (2004) in 
two ways. First, we no longer assigned exposed states completely at random, and 
instead use a nonuniform assignment mechanism that is inspired by different policy 
choices actually made by different states. Using a nonuniformly random assignment 
is important because it allows us to differentiate between various estimators in ways 
that completely random assignment would not. Under completely random assign-
ment, a number of methods, including DID, perform well because the presence of ​
L​ in (10) introduces zero bias. In contrast, with a nonuniform random assignment 
(i.e., treatment assignment is correlated with systematic effects), methods that do 
not account for the presence of ​L​ will be biased. Second, we simulate values for the 
outcomes based on a model estimated on the CPS data, in order to have more control 
over the data generating process.

The Data Generating Process.—For the first set of simulations we use as the start-
ing point data on wages for women with positive wages in the March outgoing rota-
tion groups in the CPS for the years 1979 to 2019. We first transform these by taking 
logarithms and then average them by state/year cells (we use data from National 
Bureau of Economic Research). Our simulation design has two components, an out-
come model and an assignment model. We generate outcomes via a simulation that 
seeks to capture the behavior of the average by state/year of the logarithm of wages 
for those with positive hours worked in the CPS data as in Bertrand, Duflo, and 
Mullainathan (2004). Specifically, we simulate data using the model (10), where 
the rows ​​E​i​​​ of ​E​ have a multivariate Gaussian distribution ​​E​i​​  ∼   (0, Σ)​, and we 
choose both ​L​ and ​Σ​ to fit the CPS data as follows. First, we fit a rank four factor 
model for ​L​:

(11)	​ L  ≔ ​  arg min​ 
L:rank​(L)​=4

​ 
 
 ​  ​∑ 

it
​ 

 
 ​​ ​​ (​Y​ it​ ∗ ​ − ​L​it​​)​​​ 2​​,

where ​​Y​ it​ ∗ ​​ denotes the true state/year average of log wage in the CPS data. We then 
estimate ​Σ​ by fitting an AR(2) model to the residuals of ​​Y​ it​ ∗ ​ − ​L​it​​​. For purpose of 
interpretation, we further decompose the systematic component ​L​ into an additive 
(fixed effects) term ​F​ and an interactive term ​M​, with

(12)	​ ​F​it​​  = ​ α​i​​ + ​β​t​​  = ​  1 _ T ​ ​ ∑ 
l=1

​ 
T

  ​​ ​L​il​​ + ​ 1 _ 
N ​ ​ ∑ 

j=1
​ 

N

 ​​ ​L​jt​​ − ​ 1 _ 
NT ​ ​∑ 

it
​ ​​ ​L​it​​​ ,

	​ ​M​it​​  = ​ L​it​​ − ​F​it​​​ .

This decomposition of ​L​ into an additive two-way fixed effect component ​F​ and an 
interactive component ​M​ enables us to study the sensitivity of different estimators 
to the presence of different types of systematic effects.

Next we discuss generation of the treatment assignment. Here, we are designing 
a “null effect” study, meaning that treatment has no effect on the outcomes and all 
methods should estimate zero. However, to make this more challenging, we choose 
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the treated units so that the assignment mechanism is correlated with the systematic 
component ​L​. We set ​​W​it​​  = ​ D​i​​ ​1​t>​T​0​​​​​, where ​​D​i​​​ is a binary exposure indicator gen-
erated as

(13)	​ ​D​i​​ | ​E​i​​, ​α​i​​, ​M​i​​  ∼  Bernoulli​(​π​i​​)​,

​π​i​​  =  π​(​α​i​​, ​M​i​​; ϕ)​  = ​ 
exp​(​ϕ​α​​ ​α​i​​ + ​ϕ​M​​ ​M​i​​)​  _________________   

1 + exp​(​ϕ​α​​ ​α​i​​ + ​ϕ​M​​ ​M​i​​)​
 ​​ .

In particular, the distribution of ​​D​i​​​ may depend on ​​α​i​​​ and ​​M​i​​​; however, ​​D​i​​​ is inde-
pendent of ​​E​i​​​, i.e., the assignment is strictly exogenous.6 To construct probabilities ​
{​π​i​​}​ for this assignment model, we choose ​ϕ​ as the coefficient estimates from a 
logistic regression of an observed binary characteristic of the state ​​D​i​​​ on ​​M​i​​​ and ​​α​i​​​. 
We consider three different choices for ​​D​i​​​, relating to minimum wage laws, abortion 
rights, and gun control laws.7 As a result, we get assignment probability models that 
reflect actual differences across states with respect to important economic variables. 
In practice the ​​α​i​​​ and ​​M​i​​​ that we construct predict a sizable part of variation in ​​D​i​​​, 
with ​​R​​ 2​​ varying from 15 percent to 30 percent.

Simulation Results.—Table 2 compares the performance of the four aforemen-
tioned estimators in the simulation design described above. We consider various 
choices for the number of treated units and the treatment assignment distribu-
tion. Furthermore, we also consider settings where we drop various components 
of the outcome-generating process, such as the fixed effects ​F​ or the interactive 
component ​M​, or set the noise correlation matrix ​Σ​ to be diagonal. In the baseline 
simulation design (the first row of Table 2) these components have the following 
sizes: ​​∥F∥​F​​/​√ 

_
 NT ​  =  0.992​, ​​∥M∥​F​​/​√ 

_
 NT ​  =  0.100​, and ​​√ 

______
 tr(Σ)/T ​  =  0.098​. The 

covariance matrix ​Σ​ is based on an AR(2) process with autoregressive coefficients  
​​(ρ​−1​​, ​ρ​−2​​ ) = (0.01, − 0.06)​.

At a high level, we find that SDID has excellent performance relative to the 
benchmarks—both in terms of bias and RMSE. This holds in the baseline simula-
tion design and over a number of other designs where we vary the treatment assign-
ment (from being based on minimum wage laws to gun laws, abortion laws, or 
completely random), the outcome (from average of log wages to average hours and 
unemployment rate), and the maximal number of treated units (from ten to one) and 
the number of exposed periods (from ten to one). We find that when the treatment 
assignment is uniformly random, all methods are essentially unbiased, but SDID is 
more precise. Meanwhile, when the treatment assignment is not uniformly random, 
SDID is particularly successful at mitigating bias while keeping variance in check.

In the second panel of Table  2 we provide some additional insights into the 
superior performance of the SDID estimator by sequentially dropping some of 
the components of the model that generates the potential outcomes. If we drop 
the interactive component ​M​ from the outcome model (“No ​M​”), so that the fixed 

6 In the simulations below, we restrict the maximal number of treated units (either to ten​​ or ​​one). To achieve 
this, we first sample ​​D​i​​​ independently and accept the results if the number of treated units satisfies the constraint. 
If it does not, then we choose the maximal allowed number of treated units from those selected in the first step 
uniformly at random.

7 See the Appendix for details.
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effect specification is correct, the DID estimator performs best (alongside MC). In 
contrast, if we drop the fixed effects component (“No ​F​”) but keep the interactive 
component, the SC estimator does best. If we drop both parts of the systematic com-
ponent, and there is only noise, the superiority of the SDID estimator vanishes and 
all estimators are essentially equivalent. On the other hand, if we remove the noise 
component so that there is only signal, the increased flexibility of the SDID estima-
tor allows it (alongside MC) to outperform the SC and DID estimators dramatically.

Next, we focus on two designs of interest: one with the assignment probability 
model based on parameters estimated in the minimum wage law model and one 
where the treatment exposure ​​D​i​​​ is assigned uniformly at random. Figure 2 shows 
the errors of the DID, SC, and SDID estimators in both settings, and reinforces our 
observations above. When assignment is not uniformly random, the distribution of 
the DID errors is visibly off-center, showing the bias of the estimator. In contrast, 
the errors from SDID are nearly centered. Meanwhile, when treatment assignment 
is uniformly random, both estimators are centered but the errors of DID are more 
spread out. We note that the right panel of Figure 2 is closely related to the simu-
lation specification of Bertrand, Duflo, and Mullainathan (2004). From this per-
spective, Bertrand, Duflo, and Mullainathan (2004) correctly argue that the error 
distribution of DID is centered, and that the error scale can accurately be recovered 

Table 2

RMSE Bias

SDID SC DID MC DIFP SDID SC DID MC DIFP

1. Baseline 0.28 0.37 0.49 0.35 0.32 0.10 0.20 0.21 0.15 0.07

Outcome model
2. No corr 0.28 0.38 0.49 0.35 0.32 0.10 0.20 0.21 0.15 0.07
3. No M 0.16 0.18 0.14 0.14 0.16 0.01 0.04 0.01 0.01 0.01
3. No F 0.28 0.23 0.49 0.35 0.32 0.10 0.04 0.21 0.15 0.07
4. Only noise 0.16 0.14 0.14 0.14 0.16 0.01 0.01 0.01 0.01 0.01
5. No noise 0.06 0.17 0.47 0.04 0.11 0.05 0.04 0.20 0.00 0.01

Assignment process
6. Gun law 0.26 0.27 0.47 0.36 0.30 0.08 −0.03 0.15 0.15 0.09
7. Abortion 0.23 0.31 0.45 0.31 0.27 0.04 0.16 0.03 0.02 0.01
8. Random 0.24 0.25 0.44 0.31 0.27 0.01 −0.01 0.02 0.01 −0.00

Outcome variable
9. Hours 1.90 2.03 2.06 1.85 1.97 1.12 −0.49 0.85 1.00 1.00
10. U-rate 2.25 2.31 3.91 2.96 2.30 1.77 1.73 3.60 2.63 1.69

Assignment block size
11.  ​​T​post​​  =  1​ 0.50 0.59 0.70 0.51 0.54 0.20 0.17 0.38 0.21 0.12

12.  ​​N​tr​​  =  1​ 0.63 0.73 1.26 0.81 0.83 0.03 0.15 0.11 0.05 −0.02

13.  ​​T​post​​  = ​ N​tr​​  =  1​ 1.12 1.24 1.52 1.07 1.16 0.14 0.24 0.33 0.16 0.11

Notes: Simulation results for CPS data. The baseline case uses state minimum wage laws to simulate treat-
ment assignment, and generates outcomes using the full data-generating process described in Section IIA, with ​​
T​post​​  =  10​ posttreatment periods and at most ​​N​tr​​ = 10​ treatment states. In subsequent settings, we omit parts of 
the data-generating process (rows 2–6), consider different distributions for the treatment exposure variable ​​D​i​​​ (rows 
7–9) and different distributions for the outcome variable (rows 10 and 11), and vary the number of treated cells 
(rows 12–14). The full dataset has ​N = 50​, ​T = 40​, and outcomes are normalized to have mean zero and unit vari-
ance. All results are based on 1,000 simulation replications and are multiplied by ten for readability. 
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using appropriate robust estimators. Here, however, we go further and show that this 
noise can be substantially reduced by using an estimator like SDID that can exploit 
predictable variation by matching on pre-exposure trends.

Finally, we note that Figure 2 shows that the error distribution of SDID is nearly 
unbiased and Gaussian in both designs, thus suggesting that it should be possible 
to use ​​​τ ˆ ​​​ sdid​​ as the basis for valid inference. We postpone a discussion of confidence 
intervals until Section IV, where we consider various strategies for inference based 
on SDID and show that they attain good coverage here.

B.  Penn World Table Placebo Study

The simulation based on the CPS is a natural benchmark for applications that 
traditionally rely on DID-type methods to estimate the policy effects. In contrast, 
SC methods are often used in applications where units tend to be more hetero-
geneous and are observed over a longer timespan as in, e.g., Abadie, Diamond, 
and Hainmueller (2015). To investigate the behavior of SDID in this type of 
setting, we propose a second set of simulations based on the Penn World Table 
(Feenstra, Inklaar, and Timmer 2015). This dataset contains observations on 
annual real GDP for ​N  =  111​ countries for ​T  =  48​ consecutive years, starting 
from 1959; we end the dataset in 2007 because we do not want the treatment 
period to coincide with the Great Recession. We construct the outcome and the 
assignment model following the same procedure outlined in the previous subsec-
tion. We select ​log(realGDP)​ as the primary outcome. As with the CPS dataset, 
the two-way fixed effects explain most of the variation; however, the interactive 
component plays a larger role in determining outcomes for this dataset than for the 
CPS data. We again derive treatment assignment via an exposure variable ​​D​i​​​, and 
consider both a uniformly random distribution for ​​D​i​​​ as well as two nonuniform 
ones based on predicting Penn World Table indicators of democracy and education 
respectively.

Figure 2.  Distribution of the Errors of SDID, SC, and DID in the Setting of the 
“Baseline” (i.e., with Minimum Wage) and Random Assignment Rows of Table 2
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Results of the simulation study are presented in Table 3. At a high level, these 
results mirror the ones above: SDID again performs well in terms of both bias and 
RMSE and across all simulation settings dominates the other estimators. In par-
ticular, SDID is nearly unbiased, which is important for constructing confidence 
intervals with accurate coverage rates. The main difference between Tables 2 and 3 
is that DID does substantially worse here relative to SC than before. This appears to 
be due to the presence of a stronger interactive component in the Penn World Table 
dataset, and is in line with the empirical practice of preferring SC over DID in set-
tings of this type. We again defer a discussion of inference to Section IV.

III.  Formal Results

In this section we discuss the formal results. For the remainder of the paper, we 
assume that the data generating process follows a generalization of the latent factor 
model (10),

(14)	​ Y  =  L + W ∘ τ + E,  where  ​​(W ∘ τ)​​it​​  = ​ W​it​​ ​τ​it​​​ .

The model allows for heterogeneity in treatment effects ​​τ​it​​​, as in de Chaisemartin 
and D’Haultfœuille (2020). As above, we assume block assignment ​​W​it​​ 
=  1({i  > ​ N​co​​, t  > ​ T​pre​​})​, where the subscript “​co​” stands for control group, 
“tr” stands for treatment group, “​pre​” stands for pretreatment, and “​post​” stands 
for posttreatment. It is useful to characterize the systematic component ​L​ as a fac-
tor model ​L  =  Γ ​ϒ​​ ⊤​​ as in (10), where we define factors ​Γ  =  U​D​​ 1/2​​ and ​​ϒ​​ ⊤​ 
= ​ D​​ 1/2​ ​V​​ ⊤​​ in terms of the singular value decomposition ​L  =  UD​V​​ ⊤​​. Our target 
estimand is the average treatment effect for the treated units during the periods they 
were treated, which under block assignment is

(15)	​ τ  = ​   1 _ ​N​tr​​ ​T​post​​
 ​  ​  ∑ 
i=​N​co​​+1

​ 
N

  ​​  ​  ∑ 
t=​T​pre​​+1

​ 
T

  ​​ ​τ​it​​​ .

For notational convenience, we partition the matrix ​Y​ as

	​ Y  = ​ (​
​Y​co,pre​​​ 

​Y​co,post​​​  ​Y​tr,pre​​
​  ​Y​tr,post​​

 ​)​​,

Table 3

RMSE Bias

SDID SC DID MC DIFP SDID SC DID MC DIFP

Democracy 0.31 0.38 1.97 0.58 0.39 −0.05 −0.04 1.75 0.43 −0.07
Education 0.30 0.53 1.72 0.49 0.39 −0.03 0.25 1.62 0.40 −0.05
Random 0.37 0.46 1.29 0.63 0.45 −0.02 −0.11 −0.06 −0.04 −0.04

Notes: Simulation results based on the Penn World Table dataset. We use ​log​(GDP)​​ as the outcome, with ​​N​tr​​ = 10​ 
out of ​N = 111​ treatment countries, and ​​T​post​​ = 10​ out of ​T = 48​ treatment periods. In the first two rows we con-
sider treatment assignment distributions based on democracy status and education metrics, while in the last row 
the treatment is assigned completely at random. All results are based on 1,000 simulations and multiplied by ten 
for readability. 
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with ​​Y​co,pre​​​, an ​​N​co​​ × ​T​pre​​​ matrix; ​​Y​co,post​​​, an ​​N​co​​ × ​T​post​​​ matrix; ​​Y​tr,pre​​​, an ​​N​tr​​ × ​T​pre​​​ 
matrix; and ​​Y​tr,post​​​, an ​​N​tr​​ × ​T​post​​​ matrix; and similar for ​L​, ​W​, ​τ​, and ​E​. Throughout 
our analysis, we will assume that the errors ​​E​i.​​​ are homoskedastic across units (but 
not across time), i.e., that ​var[​E​i⋅​​]  =  Σ  ∈ ​ ℝ​​ T×T​​ for all units ​i  =  1, …, n​. We par-
tition ​Σ​ as

	​ Σ  = ​ (​ 
​Σ​pre,pre​​​ 

​Σ​pre,post​​​  ​Σ​post,pre​​
​  ​Σ​post,post​​

​)​​.

Given this setting, we are interested in guarantees on how accurately SDID can 
recover ​τ​.

A simple, intuitively appealing approach to estimating ​τ​ in (14) is to directly fit 
both ​L​ and ​τ​ via methods for low-rank matrix estimation, and several variants of this 
approach have been proposed in the literature (e.g., Athey et al. 2021, Bai 2009, Xu 
2017, Agarwal et al. 2019). However, our main interest is in ​τ​ and not in ​L​, and so 
one might suspect that approaches that provide consistent estimation of ​L​ may rely 
on assumptions that are stronger than what is necessary for consistent estimation of ​
τ​.

SC methods address confounding bias without explicitly estimating ​L​ in (14). 
Instead, they take an indirect approach more akin to balancing as in Zubizarreta 
(2015) and Athey, Imbens, and Wager (2018). Recall that the SC weights ​​​ω ˆ ​​​ sc​​ 
seek to balance out the preintervention trends in ​Y​. Qualitatively, one might hope 
that doing so also leads us to balance out the unit factors ​Γ​ from (10), render-
ing ​​∑ i=​N​co​​+1​ N  ​​ ​​ω ˆ ​​ i​ sc​ ​Γ​i⋅​​ − ​∑ i=1​ ​N​co​​ ​​ ​​ω ˆ ​​ i​ sc​ ​Γ​i⋅​​  ≈  0​. Abadie, Diamond, and Hainmueller 
(2010) provide some arguments for why this should be the case, and our for-
mal analysis outlines a further set of conditions under which this type of phe-
nomenon holds. Then, if ​​​ω ˆ ​​​ sc​​ in fact succeeds in balancing out the factors in ​Γ​, 
the SC estimator can be approximated as ​​​τ ˆ ​​​ sc​  ≈  τ + ​∑ i=1​ N  ​​(2​W​i​​ − 1) ​​ω ˆ ​​ i​ sc​ ​​ε – ​​i​​​ with ​​​ε – ​​i​​ 
= ​ T​ post​ −1 ​ ​∑ t=​T​pre​​+1​ T  ​​​ε​it​​​ ; in words, SC weighting has succeeded in removing the bias 
associated with the systematic component ​L​ and in delivering a nearly unbiased 
estimate of ​τ​.

Much like the SC estimator, the SDID estimator seeks to recover ​τ​ in (14) by 
reweighting to remove the bias associated with ​L​. However, the SDID estimator 
takes a two-pronged approach. First, instead of only making use of unit weights ​​ω ˆ ​​ 
that can be used to balance out ​Γ​, the estimator also incorporates time weights ​​λ ˆ ​​ that 
seek to balance out ​ϒ​. This provides a type of double robustness property, whereby 
if one of the balancing approaches is effective, the dependence on ​L​ is approxi-
mately removed. Second, the use of two-way fixed effects in (1) and intercept terms 
in (4) and (6) makes the SDID estimator invariant to additive shocks to any row or 
column; i.e., if we modify ​​L​it​​  ← ​ L​it​​ + ​α​i​​ + ​β​t​​​ for any choices ​​α​i​​​ and ​​β​t​​​ the esti-
mator ​​​τ ˆ ​​​ sdid​​ remains unchanged. The estimator shares this invariance property with 
DID (but not SC).8

The goal of our formal analysis is to understand how and when the SDID weights 
succeed in removing the bias due to ​L​. As discussed below, this requires assumptions 

8 More specifically, as suggested by (3), SC is invariant to shifts in ​​β​t​​​ but not ​​α​i​​​. In this context, we also note 
that the DIFP estimator proposed by Doudchenko and Imbens (2016) and Ferman and Pinto (2019) that center each 
unit’s trajectory before applying the SC method is also invariant to shifts in ​​α​i​​​.
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on the signal to noise ratio. The assumptions require that ​E​ does not incorporate too 
much serial correlation within units, so that we can attribute persistent patterns in ​
Y​ to patterns in ​L​; furthermore, ​Γ​ should be stable over time, particularly through 
the treatment periods. Of course, these are nontrivial assumptions. However, as dis-
cussed further in Section V, they are considerably weaker than what is required in 
results of Bai (2009) or Moon and Weidner (2015, 2017) for methods that require 
explicitly estimating ​L​ in (14). Furthermore, these assumption are aligned with 
standard practice in the literature; for example, we can assess the claim that we 
balance all components of ​Γ​ by examining the extent to which the method succeeds 
in balancing preintervention periods. Historical context may be needed to justify the 
assumption that there were no other shocks disproportionately affecting the treat-
ment units at the time of the treatment.

A.  Weighted Double-Differencing Estimators

We introduced the SDID estimator (1) as the solution to a weighted two-way 
fixed effects regression. For the purpose of our formal results, however, it is conve-
nient to work with the alternative characterization described in equation (16). For 
any weights ​ω  ∈  Ω​ and ​λ  ∈  Λ​, we can define a weighted double-differencing 
estimator 9

(16)�​ ​τ ˆ ​​(ω, λ)​  = ​ ω​ tr​ ⊤​ ​Y​tr,post​​​λ​post​​ − ​ω​ co​ ⊤ ​ ​Y​co,post​​​λ​post​​ − ​ω​ tr​ ⊤​ ​Y​tr,pre​​​λ​pre​​+ ​ω​ co​ ⊤ ​​Y​co,pre​​ ​λ​pre​​​ .

One can verify that the basic DID estimator is of the form (16), with constant 
weights ​​ω​tr​​  =  1 / ​N​tr​​​ , etc. The proposed SDID estimator (1) can also be written as 
(16), but now with weights ​​​ω ˆ ​​​ sdid​​ and ​​​λ ˆ ​​​ sdid​​ solving (4) and (6) respectively. When 
there is no risk of ambiguity, we will omit the SDID superscript from the weights 
and simply write ​​ω ˆ ​​ and ​​λ ˆ ​​.

Now, note that for any choice of weights ​ω  ∈  Ω​ and ​λ  ∈  Λ​, we have ​​ω​tr​​  ∈ ​
ℝ​​ ​N​tr​​​​ and ​​λ​post​​  ∈ ​ ℝ​​ ​T​post​​​​ with all elements equal to ​1 / ​N​tr​​​ and ​1 / ​T​post​​​ respectively, 
and so ​​ω​ tr​ ⊤​ ​τ​tr,post​​ ​λ​post​​  =  τ​. Thus, we can decompose the error of any weighted 
double-differencing estimator with weights satisfying these conditions as the sum 
of a bias and a noise component:

(17) ​ ​τ ˆ ​​(ω, λ)​ − τ

	   = ​​​ ω​ tr​ ⊤​ ​L​tr,post​​ ​λ​post​​ − ​ω​ co​ ⊤ ​ ​L​co,post​​ ​λ​post​​ − ​ω​ tr​ ⊤​ ​L​tr,pre​​ ​λ​pre​​ + ​ω​ co​ ⊤ ​ ​L​co,pre​​ ​λ​pre​​      


​​    
bias B​(ω,λ)​

​ 
 
  ​

	 + ​​​ω​ tr​ ⊤​ ​E​tr,post​​ ​λ​post​​ − ​ω​ co​ ⊤ ​ ​E​co,post​​ ​λ​post​​ − ​ω​ tr​ ⊤​ ​E​tr,pre​​ ​λ​pre​​ + ​ω​ co​ ⊤ ​ ​E​co,pre​​ ​λ​pre​​      


​​    
noise ε​(ω,λ)​

​ 
 
  ​​.

9 This weighted double-differencing structure plays a key role in understanding the behavior of SDID. As dis-
cussed further in Section V, despite relying on a different motivation, certain specifications of the recently proposed 
“augmented synthetic control” method of Ben-Michael, Feller, and Rothstein (2018) also result in a weighted 
double-differencing estimator.
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In order to characterize the distribution of ​​​τ ˆ ​​​ sdid​ − τ​, it thus remains to carry out two 
tasks. First, we need to understand the scale of the errors ​B(ω, λ)​ and ​ε(ω, λ)​, and 
second, we need to understand how data adaptivity of the weights ​​ω ˆ ​​ and ​​λ ˆ ​​ affects 
the situation.

B.  Oracle and Adaptive Synthetic Control Weights

To address the adaptivity of the SDID weights ​​ω ˆ ​​ and ​​λ ˆ ​​ chosen via (4) and (6), 
we construct alternative “oracle” weights that have similar properties to ​​ω ˆ ​​ and ​​λ ˆ ​​ in 
terms of eliminating bias due to ​L​, but are deterministic. We can then further decom-
pose the error of ​​​τ ˆ ​​​ sdid​​ into the error of a weighted double-differencing estimator with 
the oracle weights and the difference between the oracle and feasible estimators. 
Under appropriate conditions, we find the latter term negligible relative to the error 
of the oracle estimator, opening the door to a simple asymptotic characterization of 
the error distribution of ​​​τ ˆ ​​​ sdid​​.

We define such oracle weights ​​ω ̃ ​​ and ​​λ ̃ ​​ by minimizing the expectation of the 
objective functions ​​ℓ​unit​​( ⋅ )​ and ​​ℓ​time​​( ⋅ )​ used in (4) and (6) respectively, and set

(18) ​ ​​(​​ω ̃ ​​0​​, ​ω ̃ ​)​  = ​  arg min​ 
​ω​0​​∈ℝ,ω∈Ω

​ 
 
 ​  E​[​ℓ​unit​​​(​ω​0​​, ω)​]​,   ​ (​​λ ̃ ​​0​​, ​λ ̃ ​)​  = ​  arg min​ 

​λ​0​​∈ℝ,λ∈Λ
​ 

 
 ​  E​[​ℓ​time​​​(​λ​0​​, λ)​]​​.

In the case of our model (14) these weights admit a simplified characterization

(19)	​ ​(​​ω ̃ ​​0​​, ​ω ̃ ​)​  = ​  arg min​ 
​ω​0​​∈ℝ,ω∈Ω

​ 
 
 ​  ||​ω​0​​ + ​ω​ co​ ⊤ ​ ​L​co,pre​​ − ​ω​ tr​ ⊤​ ​L​tr,pre​​​||​ 2​ 2​

	 + ​(tr​(​Σ​pre,pre​​)​ + ​ζ​​ 2​ ​T​pre​​)​ ​||ω||​ 2​ 2​​ ,

(20)	​ ​(​​λ ̃ ​​0​​, ​λ ̃ ​)​  = ​  arg min​ 
​λ​0​​∈ℝ,λ∈Λ

​ 
 
 ​ ​ ||λ​0​​ + ​L​co,pre​​ ​λ​pre​​ − ​L​co,post​​ ​λ​post​​|​|​ 2​ 2​ + ||​Σ ̃ ​λ|​|​ 2​ 2​​ ,

where

	​ ​Σ ̃ ​  = ​ (​ 
​Σ​pre,pre​​​ 

− ​Σ​pre,post​​​  − ​Σ​post,pre​​
​  ​Σ​post,post​​

 ​)​​.

The error of the SDID estimator can now be decomposed as follows,

(21)	​ ​​τ ˆ ​​​ sdid​ − τ  = ​ ​ ε​(​ω ̃ ​, ​λ ̃ ​)​ 
⏟

​​ 
oracle noise

​ 
 
 ​  +​ ​  B​(​ω ̃ ​, ​λ ̃ ​)​ 

⏟
 ​​  

oracle confounding bias

​ 
 
 ​ + ​​​τ ˆ ​​(​ω ˆ ​, ​λ ˆ ​)​ − ​τ ˆ ​​(​ω ̃ ​, ​λ ̃ ​)​  


​​  

deviation from oracle

​ 
 
 ​ ​ ,

and our task is to characterize all three terms.
First, the oracle noise term tends to be small when the weights are not 

too concentrated, i.e., when ​​∥ ​ω ̃ ​ ∥​2​​​ and ​​∥ ​λ ̃ ​ ∥​2​​​ are small, and we have a suf-
ficient number of exposed units and time periods. In the case with ​Σ 
= ​ σ​​ 2​ ​I​T×T​​​, i.e., without any cross-observation correlations, we note that ​var[ε(​ω ̃ ​, ​λ ̃ ​)] 
= ​ σ​​ 2​(​N​ tr​ −1​ + ​∥ ​ω ̃ ​ ∥​ 2​ 2​ )(​T​ post​ −1 ​ + ∥ ​λ ̃ ​ ​∥​ 2​ 2​ )​. When we move to our asymptotic analysis 
below, we work under assumptions that make this oracle noise term dominant rela-
tive to the other error terms in (21).
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Second, the oracle confounding bias will be small either when the pre-exposure ora-
cle row regression fits well and generalizes to the exposed rows, i.e., ​​​ω ̃ ​​0​​ + ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,pre​​ 
≈ ​​ ω ̃ ​​ tr​ ⊤​ ​L​tr,pre​​​ and ​​​ω ̃ ​​0​​ + ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,post​​  ≈ ​​ ω ̃ ​​ tr​ ⊤​ ​L​tr,post​​​, or when the unexposed oracle col-
umn regression fits well and generalizes to the exposed columns, ​​​λ ̃ ​​0​​ + ​L​co,pre​​ ​​λ ̃ ​​pre​​ 
≈ ​ L​co,post​​ ​​λ ̃ ​​post​​​ and ​​​λ ̃ ​​0​​ + ​L​tr,pre​​ ​​λ ̃ ​​pre​​  ≈ ​ L​tr,post​​ ​​λ ̃ ​​post​​​. Moreover, even if neither model 
generalizes sufficiently well on its own, it suffices for one model to predict the gen-
eralization error of the other:

	​ B​(ω, λ)​  = ​ (​ω​ tr​ ⊤​ ​L​tr,post​​ − ​ω​ co​ ⊤ ​ ​L​co,post​​)​ ​λ​post​​ − ​(​ω​ tr​ ⊤​ ​L​tr,pre​​ − ​ω​ co​ ⊤ ​ ​L​co,pre​​)​ ​λ​pre​​​

	​ = ​ω​ tr​ ⊤​​(​L​tr,post​​ ​λ​post​​ − ​L​tr,pre​​ ​λ​pre​​)​ − ​ω​ co​ ⊤ ​​(​L​co,post​​ ​λ​post​​ − ​L​co,pre​​ ​λ​pre​​)​​.

The upshot is even if one of the sets of weights fails to remove the bias from the 
presence of ​L​, the combination of weights ​​ω ̃ ​​ and ​​λ ̃ ​​ can compensate for such failures. 
This double robustness property is similar to that of the augmented inverse proba-
bility weighting estimator, whereby one can trade off between accurate estimates of 
the outcome and treatment assignment models (Ben-Michael, Feller, and Rothstein 
2018; Scharfstein, Rotnitzky, and Robins 1999).

We note that although poor fit in the oracle regressions on the unexposed rows 
and columns of ​L​ will often be indicated by a poor fit in the realized regressions 
on the unexposed rows and columns of ​Y​, the assumption that one of these regres-
sions generalizes to exposed rows or columns is an identification assumption with-
out clear testable implications. It is essentially an assumption of no unexplained 
confounding: any exceptional behavior of the exposed observations, whether due to 
exposure or not, can be ascribed to it.

Third, our core theoretical claim, formalized in our asymptotic analysis, is 
that the SDID estimator will be close to the oracle when the oracle unit and time 
weights look promising on their respective training sets, i.e, when ​​​ω ̃ ​​0​​ + ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,pre​​ 
≈ ​​ ω ̃ ​​ tr​ ⊤​ ​L​tr,pre​​​ and ​​∥ ​ω ̃ ​ ∥​2​​​ is not too large and ​​​λ ̃ ​​0​​ + ​L​co,pre​​ ​​λ ̃ ​​pre​​  ≈ ​ L​co,post​​ ​​λ ̃ ​​post​​​ and ​​
∥ ​λ ̃ ​ ∥​2​​​ is not too large. Although the details differ, as described above these qualita-
tive properties are also criteria for accuracy of the oracle estimator itself.

Finally, we comment briefly on the behavior of the oracle time weights ​​λ ̃ ​​ in the 
presence of autocorrelation over time. When ​Σ​ is not diagonal, the effective regular-
ization term in (20) does not shrink ​​​λ ̃ ​​pre​​​ towards zero, but rather toward an autore-
gression vector

(22)	​ ψ  = ​ arg min​ 
v∈​ℝ​​ ​T​pre​​​

​ 
 
 ​ ​ ∥​Σ ̃ ​​(​ 

v
​ ​λ​post​​​)​∥​  = ​ Σ​ pre,pre​ −1  ​ ​Σ​pre,post​​ ​λ​post​​​ .

Here ​​λ​post​​​ is the ​​T​post​​​-component column vector with all elements equal to ​1 / ​T​post​​​ 
and ​ψ​ is the population regression coefficient in a regression of the average of the 
posttreatment errors on the pretreatment errors. In the absence of autocorrelation, ​
ψ​ is zero, but when autocorrelation is present, shrinkage toward ​ψ​ reduces the vari-
ance of the SDID estimator—and enables us to gain precision over the basic DID 
estimator (2) even when the two-way fixed effects model is correctly specified. This 
explains some of the behavior noted in the simulations.
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C.  Asymptotic Properties

To carry out the analysis plan sketched above, we need to embed our problem into 
an asymptotic setting. First, we require the error matrix ​E​ to satisfy some regularity 
properties.

ASSUMPTION 1 (Properties of Errors): The rows ​​𝐄​i​​​ of the noise matrix are inde-
pendent and identically distributed Gaussian vectors and the eigenvalues of its 
covariance matrix ​Σ​ are bounded and bounded away from zero.

Next, we spell out assumptions about the sample size. At a high level, we want 
the panel to be large (i.e., ​N, T  →  ∞​), and for the number of treated cells of the 
panel to grow to infinity but slower than the total panel size. We note in particular 
that we can accommodate sequences where one of ​​T​post​​​ or ​​N​tr​​​ is fixed, but not both.

ASSUMPTION 2 (Sample Sizes): We consider a sequence of populations where

	 (i )	 the product ​​N​tr​​ ​T​post​​​ goes to infinity, and both ​​N​co​​​ and ​​T​pre​​​ go to infinity,

	 (ii )	 the ratio ​​T​pre​​ / ​N​co​​​ is bounded and bounded away from zero,

	 (iii )	 ​​N​co​​ / (​N​tr​​ ​T​post​​ max(​N​tr​​, ​T​post​​)​log​​ 2​(​N​co​​))  →  ∞​.

We also need to make assumptions about the spectrum of ​L​; in particular, ​L​ 
cannot have too many large singular values, although we allow for the possibility 
of many small singular values. A sufficient, but not necessary, condition for the 
assumption below is that the rank of ​L​ is less than ​​√ 

__________
  min(​T​pre​​, ​N​co​​) ​​. Notice that 

we do not assume any lower bounds for nonzero singular values of ​L​; in fact can 
accommodate arbitrarily many nonzero but very small singular values, much like, 
e.g., Belloni, Chernozhukov, and Hansen (2014) can accommodate arbitrarily many 
nonzero but very small signal coefficients in a high-dimensional inference prob-
lem. We need the ​​√ 

__________
  min(​T​pre​​, ​N​co​​) ​​th singular value of ​​L​co,pre​​​ to be sufficiently small. 

Formally, we have the following result.

ASSUMPTION 3 (Properties of ​L​): Letting ​​σ​1​​(Γ), ​σ​2​​(Γ), …​ denote the singu-
lar values of the matrix ​Γ​ in decreasing order and ​R​ the largest integer less than ​​
√ 

__________
  min(​T​pre​​, ​N​co​​) ​​ ,

(23)	​ ​σ​R​​​(​L​co,pre​​)​ / R  =  o​(min​{​N​ tr​ −1/2​ ​log​​ −1/2​​(​N​co​​)​, ​T​ post​ −1/2​ ​log​​ −1/2​​(​T​pre​​)​}​)​​.

The last—and potentially most interesting—of our assumptions concerns the 
relation between the factor structure ​L​ and the assignment mechanism ​W​. At a high 
level, it plays the role of an identifying assumption, and guarantees that the oracle 
weights from (19) and (20) that are directly defined in terms of ​L​ are able to ade-
quately cancel out ​L​ via the weighted double-differencing strategy. This requires 
that the optimization problems (19) and (20) accommodate reasonably dispersed 
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weights, and that the treated units and after periods not be too dissimilar from the 
control units and the before periods respectively.

ASSUMPTION 4 (Properties of Weights and ​L​): The oracle unit weights ​​ω ̃ ​​ satisfy

(24)	​ ​∥ ​​ω ̃ ​​co​​ ∥​2​​  =  o​(​​[​(​N​tr​​ ​T​post​​)​log​(​N​co​​)​]​​​ 
−1/2

​)​ ​

and

	​ ​∥ ​​ω ̃ ​​0​​ + ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,pre​​ − ​​ω ̃ ​​ tr​ ⊤​ ​L​tr,pre​​ ∥​
2
​​

	     =  o​(​N​ co​ 1/4​ ​​(​N​tr​​ ​T​post​​ max​(​N​co​​, ​T​post​​)​)​​​ 
−1/4

​ ​log​​ −1/2​​(​N​co​​)​)​​,

the oracle time weights ​​λ ̃ ​​ satisfy

(25)	​ ​∥ ​​λ ̃ ​​pre​​ − ψ ∥​
2
​​  =  o​(​​[​(​N​tr​​ ​T​post​​)​log​(​N​co​​)​]​​​ 

−1/2
​)​ ​

and

	​ ​∥ ​​λ ̃ ​​0​​ + ​L​co,pre​​ ​​λ ̃ ​​pre​​ − ​L​co,post​​ ​​λ ̃ ​​post​​ ∥​
2
​​  =  o​(​N​ co​ 1/4​ ​​(​N​tr​​ ​T​post​​)​​​ −1/8​)​​,

and the oracle weights jointly satisfy

(26)  ​  ​​ω ̃ ​​ tr​ ⊤​ ​L​tr,post​​ ​​λ ̃ ​​post​​ − ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,post​​ ​​λ ̃ ​​post​​ − ​​ω ̃ ​​ tr​ ⊤​ ​L​tr,pre​​ ​​λ ̃ ​​pre​​ + ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,pre​​ ​​λ ̃ ​​pre​​

            =  o​(​​(​N​tr​​ ​T​post​​)​​​ −1/2​)​​.

Assumptions 1–4 are substantially weaker than those used to establish asymp-
totic normality of comparable methods.10 We do not require that double differ-
encing alone removes the individual and time effects as the DID assumptions do. 
Furthermore, we do not require that unit comparisons alone are sufficient to remove 
the biases in comparisons between treated and control units as the SC assumptions 
do. Finally, we do not require a low rank factor model to be correctly specified, as is 
often assumed in the analysis of methods that estimate ​L​ explicitly (e.g., Bai 2009, 
Moon and Weidner 2015, 2017). Rather, we only need the combination of the three 
bias-reducing components in the SDID estimator, (i ) double differencing, (ii )  the 
unit weights, and (iii )  the time weights, to reduce the bias to a sufficiently small 
level.

Our main formal result states that under these assumptions, our estima-
tor is asymptotically normal. Furthermore, its asymptotic variance is optimal, 

10 In particular, note that our assumptions are satisfied in the well-specified two-way fixed effect setting model. 
Suppose we have ​​L​it​​  =  ​α​i​​ + ​β​t​​​ with uncorrelated and homoskedastic errors, and that the sample size restrictions 
in Assumption 2 are satisfied. Then Assumption 1 is automatically satisfied, and the rank condition on ​L​ from 
Assumption 3 is satisfied with ​R  =  2​. Next, we see that the oracle unit weights satisfy ​​​ω ̃ ​​co,i​​  =  1 / ​N​co​​​ so that ​​
∥ ​ω ̃ ​ ∥​2​​  =  1 / ​​√ 

_
 N ​​co​​​, and the oracle time weights satisfy ​​​λ ̃ ​​pre,i​​  =  1 / ​T​pre​​​ so that ​​∥ ​λ ̃ ​ − ψ ∥​2​​  =  1 / ​​√ 

_
 N ​​co​​​. Thus if 

the restrictions on the rates at which the sample sizes increase in Assumption 2 are satisfied, then (24) and (25) 
are satisfied. Finally, the additive structure of ​L​ implies that, as long as the weights for the controls sum to one, 
​​​ω ̃ ​​ tr​ ⊤​ ​L​tr,post​​ ​​λ ̃ ​​post​​ − ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,post​​ ​​λ ̃ ​​post​​  =  0​, and ​​​ω ̃ ​​ tr​ ⊤​ ​L​tr,pre​​ ​​λ ̃ ​​pre​​ + ​​ω ̃ ​​ co​ ⊤ ​ ​L​co,pre​​ ​​λ ̃ ​​pre​​  =  0​, so that (26) is satisfied.
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coinciding with the variance we would get if we knew ​L​ and ​Σ​ a priori and 
could therefore estimate ​τ​ by a simple average of ​​τ​it​​​ plus unpredictable noise, 
​​N​ tr​ −1​ ​∑ i=​N​co​​+1​ N  ​​[​T​ post​ −1 ​ ​∑ t=​T​pre​​+1​ T  ​​(​τ​it​​ + ​ε​it​​) − ​E​i,pre​​ ψ]​.

THEOREM 1: Under the model (14) with ​𝐋​ and ​𝐖​ taken as fixed, suppose that we run 
the SDID estimator (1) with regularization parameter ​ζ​ satisfying ​​(​N​tr​​ ​T​post​​)​​ 1/2​ log(​N​co​​) 
=  o(​ζ​​ 2​)​. Suppose moreover that Assumptions 1–4 hold. Then,

(27) ​ ​​τ ˆ ​​​ sdid​ − τ  = ​  1 _ ​N​tr​​
 ​  ​  ∑ 
i=​N​co​​+1

​ 
N

  ​​​(​  1 _ ​T​post​​
 ​  ​  ∑ 
t=​T​pre​​+1

​ 
T

  ​​​ε​it​​ − ​E​i,pre​​ ψ)​ + ​o​p​​​(​​(​N​tr​​ ​T​post​​)​​​ −1/2​)​​,

and consequently

(28)	​ ​(​​τ ˆ ​​​ sdid​ − τ)​ / ​V​ τ​ 1/2​  ⇒   ​(0, 1)​​,

where

	​​ V​τ​​  = ​  1 _ ​N​tr​​
 ​ var​[​  1 _ ​T​post​​

 ​ ​   ∑ 
t=​T​pre​​+1

​ 
T

  ​​​ε​it​​ − ​E​i,pre​​ ψ]​​.

Here ​​V​τ​​​ is on the order of ​1 / (​N​tr​​ ​T​post​​)​, i.e., ​​N​tr​​ ​T​post​​ ​V​τ​​​ is bounded and bounded away 
from zero.

IV.  Large-Sample Inference

The asymptotic result from the previous section can be used to motivate practical 
methods for large-sample inference using SDID. Under appropriate conditions, the 
estimator is asymptotically normal and zero centered; thus, if these conditions hold 
and we have a consistent estimator for its asymptotic variance ​​V​τ​​​, we can use con-
ventional confidence intervals

(29)	​ τ  ∈ ​​ τ ˆ ​​​ sdid​ ± ​z​α/2​​ ​√ 
__

 ​​V ˆ ​​τ​​ ​​

to conduct asymptotically valid inference. In this section, we discuss three approaches 
to variance estimation for use in confidence intervals of this type.

The first proposal we consider, described in detail in Algorithm 2, involves a clus-
tered bootstrap (Efron 1979) where we independently resample units. As argued in 
Bertrand, Duflo, and Mullainathan (2004), unit-level bootstrapping presents a nat-
ural approach to inference with panel data when repeated observations of the same 
unit may be correlated with each other. The bootstrap is simple to implement and, 
in our experiments, appears to yield robust performance in large panels. The main 
downside of the bootstrap is that it may be computationally costly as it involves run-
ning the full SDID algorithm for each bootstrap replication, and for large datasets 
this can be prohibitively expensive.

To address this issue we next consider an approach to inference that is more 
closely tailored to the SDID method and only involves running the full SDID algo-
rithm once, thus dramatically decreasing the computational burden. Given weights ​​ω ˆ ​​ 
and ​​λ ˆ ​​ used to get the SDID point estimate, Algorithm 3 applies the jackknife (Miller 
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1974) to the weighted SDID regression (1), with the weights treated as fixed. The 
validity of this procedure is not implied directly by asymptotic linearity as in (27); 
however, as shown below, we still recover conservative confidence intervals under 
considerable generality.

THEOREM 2: Suppose that the elements of ​𝐋​ are bounded. Then, under the condi-
tions of Theorem 1, the jackknife variance estimator described in Algorithm 3 yields 
conservative confidence intervals, i.e., for any ​0  <  α  <  1​,

(30)	​ lim inf Pr​[τ  ∈ ​​ τ ˆ ​​​ sdid​ ± ​z​α/2​​ ​√ 
____

 ​​  V​​ τ​ jack​ ​]​  ≥  1 − α​.

Moreover, if the treatment effects ​​τ​it​​  =  τ​ are constant11 and

(31)	​ ​T​post​​ ​N​ tr​ −1​ ‖​​λ ˆ ​​0​​ + ​L​tr,pre​​ ​​λ ˆ ​​pre​​ − ​L​tr,post​​ ​​λ ˆ ​​post​​​‖​ 2​ 2​ ​→​p​​ 0​,

that is, the time weights ​​λ ˆ ​​ are predictive enough on the exposed units, then the jack-
knife yields exact confidence intervals and (30) holds with equality.

11 When treatment effects are heterogeneous, the jackknife implicitly treats the estimand (15) as random 
whereas we treat it as fixed, thus resulting in excess estimated variance; see Imbens (2004) for further discussion.

Algorithm 2—Bootstrap Variance Estimation

Data:  Y, W, B
Result:  Variance estimator ​​​V ˆ ​​ τ​ 

cb​​

1.    for i  ←  1 to B do

2.   Construct a bootstrap dataset ​(​Y​​ (b)​, ​W​​ (b)​)​ by sampling N rows of

3.   (Y, W) with replacement.

4.   if the bootstrap sample has no treated units or no control units then

5.   Discard and resample (go to 2)

6.   end

7.   Compute the SDID estimator ​​τ​​ (b)​​ based on ​(​Y​​ (b)​, ​W​​ (b)​)​

8.    end

9.    Define ​​​V ˆ ​​ τ​ 
b​  = ​  1 _ B ​ ​∑ b=1​ B ​​  (​​τ ˆ ​​​ (b)​ − ​ 1 _ B ​ ​∑ b=1​ B ​​  ​​τ ˆ ​​​ (b)​​)​​ 2​​ ;

 

Algorithm 3—Jackknife Variance Estimation

Data: ​​ ω ˆ ​​, ​​λ ˆ ​​, Y, W, ​​τ ˆ ​​
Result:  Variance estimator ​​​V ˆ ​​τ​​​

1.    for i  ←  1 to N do

2.   Compute ​​​τ ˆ ​​​ (−i)​ : arg ​min​τ,{​α​j​​,​β​t​​​}​j≠i,t​​​​ ​∑ j≠i,t​ 
   ​​ (​Y​jt​​ − ​α​j​​ − ​β​t​​ − τ ​W​it​​​)​​ 2​ ​​ω ˆ ​​j​​ ​​λ ˆ ​​t​​​

3.    end

4.    Compute ​​​V ˆ ​​ τ​ 
jack​  =  (N − 1) ​N​​ −1​ ​∑ i=1​ N  ​​ (​​τ ˆ ​​​ (−i)​ − ​τ ˆ ​​)​​ 2​​;
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In other words, we find that the jackknife is in general conservative and is exact 
when treated and control units are similar enough that time weights that fit the con-
trol units generalize to the treated units. This result depends on specific structure of 
the SDID estimator, and does not hold for related methods such as the SC estimator. 
In particular, an analogue to Algorithm 3 for SC would be severely biased upwards, 
and would not be exact even in the well-specified fixed effects model. Thus, we do 
not recommend (or report results for) this type of jackknifing with the SC estimator. 
We do report results for jackknifing DID since, in this case, there are no random 
weights ​​ω ˆ ​​ or ​​λ ˆ ​​ and so our jackknife just amounts to the regular jackknife.

Now, both the bootstrap- and jackknife-based methods discussed so far are 
designed with the setting of Theorem 1 in mind, i.e., for large panels with many 
treated units. These methods may be less reliable when the number of treated units ​​
N​tr​​​ is small, and the jackknife is not even defined when ​​N​tr​​  =  1​. However, many 
applications of SCs have ​​N​tr​​  =  1​, e.g., the California smoking application from 
Section I. To this end, we consider a third variance estimator that is motivated by 
placebo evaluations as often considered in the literature on SCs (Abadie, Diamond, 
and Hainmueller 2010,;2015), and that can be applied with ​​N​tr​​  =  1​. The main idea 
of such placebo evaluations is to consider the behavior of SC estimation when we 
replace the unit that was exposed to the treatment with different units that were not 
exposed.12 Algorithm 4 builds on this idea, and uses placebo predictions using only 
the unexposed units to estimate the noise level, and then uses it to get ​​​V ˆ ​​τ​​​ and build 
confidence intervals as in (29). See Bottmer et al. (2021) for a discussion of the 
properties of such placebo variance estimators in small samples.

Validity of the placebo approach relies fundamentally on homoskedasticity across 
units, because if the exposed and unexposed units have different noise distributions 
then there is no way we can learn ​​V​τ​​​ from unexposed units alone. We also note 
that nonparametric variance estimation for treatment effect estimators is in gen-
eral impossible if we only have one treated unit, and so homoskedasticity across 
units is effectively a necessary assumption in order for inference to be possible 

12 Such a placebo test is closely connected to permutation tests in randomization inference; however, in many 
SC applications, the exposed unit was not chosen at random, in which case placebo tests do not have the formal 
properties of randomization tests (Firpo and Possebom 2018, Hahn and Shi 2016), and so may need to be inter-
preted via a more qualitative lens.

Algorithm 4—Placebo Variance Estimation

Data: ​​ Y​co,⋅​​​ , ​​N​tr​​​ , B
Result:  Variance estimator ​​​V ˆ ​​ τ​ 

placebo​​

1.    for b  ←  1 to B do

2.   Sample ​​N​tr​​​ out of the ​​N​co​​​ control units without replacement to ‘receive the placebo’;

3.   Construct a placebo treatment matrix ​​W​ co,⋅​ 
(b) ​​ for the controls;

4.   Compute the SDID estimator ​​​τ ˆ ​​​ (b)​​ based on ​(​Y​co,⋅​​ , ​W​ co,⋅​ 
(b) ​)​;

5.    end

6.    Define ​​​V ˆ ​​ τ​ 
placebo​  = ​  1 _ B ​ ​∑ b=1​ B ​​  (​​τ ˆ ​​​ (b)​ − ​ 1 _ B ​ ​∑ b=1​ B ​​  ​​τ ˆ ​​​ (b)​​)​​ 2​​ ;
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here.13 Algorithm  4 can also be seen as an adaptation of the method of Conley 
and Taber (2011) for inference in DID models with few treated units and assuming 
homoskedasticity, in that both rely on the empirical distribution of residuals for 
placebo-estimators run on control units to conduct inference. We refer to Conley and 
Taber (2011) for a detailed analysis of this class of algorithms.

Table 4 shows the coverage rates for the experiments described in Section IIA 
and IIB, using Gaussian confidence intervals (29) with variance estimates obtained 
as described above. In the case of the SDID estimation, the bootstrap estimator 
performs particularly well, yielding nearly nominal 95 percent coverage, while both 
placebo and jackknife variance estimates also deliver results that are close to the 
nominal 95 percent level. This is encouraging, and aligned with our previous obser-
vation that the SDID estimator appeared to have low bias. That being said, when 
assessing the performance of the placebo estimator, recall that the data in Section IIA 
was generated with noise that is both Gaussian and homoskedastic across units—
which were assumptions that are both heavily used by the placebo estimator.

In contrast, we see that coverage rates for DID and SC can be relatively low, espe-
cially in cases with significant bias such as the setting with the state unemployment 
rate as the outcome. This is again in line with what one may have expected based 
on the distribution of the errors of each estimator as discussed in Section IIA, e.g., in 

13 In Theorem 1, we also assumed homoskedasticity. In contrast to the case of placebo inference, however, 
it’s likely that a similar result would also hold without homoskedasticity; homoskedasticity is used in the proof 
essentially only to simplify notation and allow the use of concentration inequalities which have been proven in the 
homoskedastic case but can be generalized.

Table 4

Bootstrap Jackknife Placebo

SDID SC DID SDID SC DID SDID SC DID

1. Baseline 0.96 0.93 0.89 0.93 — 0.92 0.95 0.88 0.96
2. Gun law 0.97 0.96 0.92 0.94 — 0.93 0.94 0.95 0.93
3. Abortion 0.96 0.94 0.93 0.93 — 0.95 0.97 0.91 0.96
4. Random 0.96 0.96 0.92 0.93 — 0.94 0.96 0.96 0.94
5. Hours 0.92 0.96 0.94 0.89 — 0.95 0.91 0.90 0.96
6. Urate 0.78 0.74 0.38 0.71 — 0.42 0.74 0.77 0.41
7. ​​T​post​​  =  1​ 0.93 0.94 0.84 0.92 — 0.88 0.92 0.90 0.92
8. ​​N​tr​​  =  1​ — — — — — — 0.97 0.95 0.96
9. ​​T​post​​  = ​ N​tr​​ = 1​ — — — — — — 0.96 0.94 0.94
10. Resample, ​N = 200​ 0.94 0.96 0.92 0.95 — 0.93 0.96 0.95 0.94
11. Resample, ​N = 400​ 0.95 0.91 0.96 0.96 — 0.95 0.96 0.90 0.96
12. Democracy 0.93 0.96 0.55 0.94 — 0.59 0.98 0.97 0.79
13. Education 0.95 0.95 0.30 0.95 — 0.34 0.99 0.90 0.94
14. Random 0.93 0.95 0.89 0.96 — 0.91 0.95 0.94 0.91

Notes: Coverage results for nominal 95 percent confidence intervals in the CPS and Penn World Table simulation 
setting from Tables 2 and 3. The first three columns show coverage of confidence intervals obtained via the clus-
tered bootstrap. The second set of columns show coverage from the jackknife method. The last set of columns show 
coverage from the placebo method. Unless otherwise specified, all settings have ​N = 50​ and ​T = 40​ cells, of which 
at most ​​N​tr​​  =  10​ units and ​​T​post​​  =  10​ periods are treated. In rows 7–9, we reduce the number of treated cells. In 
rows 10 and 11, we artificially make the panel larger by adding rows, which makes the assumption that the number 
of treated units is small relative to the number of control units more accurate. (We set ​​N​tr​​​ to ​10​ percents of the total 
number of units.) We do not report jackknife and bootstrap coverage rates for ​​N​tr​​ = 1​ because the estimators are 
not well-defined. We do not report jackknife coverage rates for SC because, as discussed in the text, the variance 
estimator is not well justified in this case. All results are based on 400 simulation replications.
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Figure 2: If the point estimates ​​τ ˆ ​​ from DID and SC are dominated by bias, then we 
should not expect confidence intervals that only focus on variance to achieve coverage.

V.  Related Work

Methodologically, our work draws most directly from the literature on SC meth-
ods, including Abadie and Gardeazabal (2003); Abadie, Diamond, and Hainmueller 
(2010, 2015); Abadie and L’Hour (2016); Doudchenko and Imbens (2016); and 
Ben-Michael, Feller, and Rothstein (2018). Most methods in this line of work can 
be thought of as focusing on constructing unit weights that create comparable (bal-
anced) treated and control units, without relying on any modeling or weighting 
across time. Ben-Michael, Feller, and Rothstein (2018) is an interesting exception. 
Their augmented SC estimator, motivated by the augmented inverse-propensity 
weighted estimator of Robins, Rotnitzky, and Zhao (1994), combines SC weights 
with a regression adjustment for improved accuracy. (See also Kellogg et al. 2020 
which explicitly connects SC to matching). They focus on the case of ​​N​tr​​  =  1​ 
exposed units and ​​T​post​​  =  1​ postexposure periods, and their method involves fitting 
a model for the conditional expectation ​m( ⋅ )​ for ​​Y​iT​​​ in terms of the lagged outcomes ​​ 
Y​i,pre​​​, and then using this fitted model to “augment” the basic SC estimator as 
follows:

(32)	​ ​​τ ˆ ​​asc​​  =  ​Y​NT​​ − ​(​ ∑ 
i=1

​ 
N−1

​​​​ω ˆ ​​ i​ sc​ ​Y​iT​​ + ​(​m ˆ ​​(​Y​N,pre​​)​ − ​ ∑ 
i=1

​ 
N−1

​​​​ω ˆ ​​ i​ sc​ ​m ˆ ​​(​Y​i,pre​​)​)​)​​.

Despite their different motivations, the augmented SC and SDID methods share an 
interesting connection: with a linear model ​m( ⋅ )​, ​​​τ ˆ ​​sdid​​​ and ​​​τ ˆ ​​asc​​​ are very similar. In 
fact, had we fit ​​​ω ˆ ​​​ sdid​​ without intercept, they would be equivalent for ​​m ˆ ​( ⋅ )​ fit by least 
squares on the controls, imposing the constraint that its coefficients are nonnegative 
and to sum to one, that is, for ​​m ˆ ​(​Y​i,pre​​)  = ​​ λ ˆ ​​ 0​ sdid​ + ​Y​i,pre​​ ​​λ ˆ ​​ pre​ sdid​​. This connection sug-
gests that weighted two-way bias-removal methods are a natural way of working 
with panels where we want to move beyond simple DID approaches.

We also note recent work of Roth (2018) and Rambachan and Roth (2019), who 
focus on valid inference in DID settings when users look at past outcomes to check 
for parallel trends. Our approach uses past data not only to check whether the trends 
are parallel, but also to construct the weights to make them parallel. In this setting, 
we show that one can still conduct valid inference, as long as ​N​ and ​T​ are large 
enough and the size of the treatment block is small.

In terms of our formal results, our paper fits broadly in the literature on panel 
models with interactive fixed effects and the matrix completion literature (Athey 
et  al. 2021; Bai 2009; Moon and Weidner 2015, 2017; Robins 1985; Xu 2017). 
Different types of problems of this form have a long tradition in the economet-
rics literature, with early results going back to Ahn, Lee, and Schmidt (2001); 
Chamberlain (1992); and Holtz-Eakin, Newey, and Rosen (1988) in the case of 
finite-horizon panels (i.e., in our notation, under asymptotics where ​T​ is fixed and only  
​N  →  ∞​). More recently, Freyberger (2018) extended the work of Chamberlain 
(1992) to a setting that’s closely related to ours, and emphasized the role of 
the past outcomes for constructing moment restrictions in the fixed-​T​ setting.  
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Freyberger (2018) attains identification by assuming that the errors ​​E​it​​​ are uncor-
related, and thus past outcomes act as valid instruments. In contrast, we allow for 
correlated errors within rows, and thus need to work in a large-​T​ setting.

Recently, there has considerable interest in models of type (10) under asymptotics 
where both ​N​ and ​T​ get large. One popular approach, studied by Bai (2009) and Moon 
and Weidner (2015, 2017), involves fitting (10) by “least squares,” i.e., by minimizing 
squared-error loss while constraining ​​L ˆ ​​ to have bounded rank ​R​. While these results 
do allow valid inference for ​τ​, they require strong assumptions. First, they require the 
rank of ​L​ to be known a priori (or, in the case of Moon and Weidner 2015, require 
a known upper bound for its rank), and second, they require a ​​β​min​​​-type condition 
whereby the normalized nonzero singular values of ​L​ are well separated from zero. In 
contrast, our results require no explicit limit on the rank of ​L​ and allow for ​L​ to have 
to have positive singular values that are arbitrarily close to zero, thus suggesting that 
the SDID method may be more robust than the least squares method in cases where 
the analyst wishes to be as agnostic as possible regarding properties of ​L​.14

Athey et al. (2021); Amjad, Shah, and Shen (2018); Moon and Weidner (2018;, 
and Xu (2017) build on this line of work, and replace the fixed-rank constraint with 
data-driven regularization on ​​L ˆ ​​. This innovation is very helpful from a computa-
tional perspective; however, results for inference about ​τ​ that go beyond what was 
available for least squares estimators are currently not available. We also note recent 
papers that draw from these ideas in connection to SC type analyses, including Chan 
and Kwok (2020) and Gobillon and Magnac (2016). Finally, in a paper contem-
poraneous to ours, Agarwal et al. (2019) provide improved bounds from principal 
component regression in an errors-in-variables model closely related to our setting, 
and discuss implications for estimation in SC type problems. Relative to our results, 
however, Agarwal et al. (2019) still require assumptions on the behavior of the small 
singular values of ​L​, and do not provide methods for inference about ​τ​.

In another direction, several authors have recently proposed various methods that 
implicitly control for the systematic component ​L​ in models of time (10). In one 
early example, Hsiao, Ching, and Ki Wan (2012) start with a factor model similar 
to ours and show that under certain assumptions it implies the moment condition

(33)	​ ​Y​Nt​​  =  a + ​ ∑ 
j=1

​ 
N−1

​​ ​β​j​​ ​Y​jt​​ + ​ϵ​Nt​​,    E​[​ε​Nt​​ | ​​{​Y​jt​​}​​ 
j=1

​ N−1​]​  =  0​,

for all ​t  =  1, …, T​. The authors then estimate ​​β​j​​​ by (weighted) ordinary least 
squares. This approach is further refined by Li and Bell (2017), who additionally 
propose to penalizing the coefficients ​​β​j​​​ using the lasso (Tibshirani 1996). In a 
recent paper, Chernozhukov, Wüthrich, and Zhu (2018) use the model (33) as a 
starting point for inference.

While this line of work shares a conceptual connection with us, the formal setting 
is very different. In order to derive a representation of the type (33), one essentially 
needs to assume a random specification for (10) where both ​L​ and ​E​ are stationary 

14 By analogy, we also note that, in the literature on high-dimensional inference, methods that do no assume 
a uniform lower bound on the strength of nonzero coefficients of the signal vector are generally considered more 
robust than ones that do (e.g., Belloni, Chernozhukov, and Hansen 2014; Zhang and Zhang 2014).
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in time. Li and Bell (2017) explicitly assumes that the outcomes ​Y​ themselves are 
weakly stationary, while Chernozhukov, Wüthrich, and Zhu (2018) makes the same 
assumption to derive the results that are valid under general misspecification. In our 
results, we do not assume stationarity anywhere: ​L​ is taken as deterministic and the 
errors ​E​ may be nonstationary. Moreover, in the case of most SC and DID analyses, 
we believe stationarity to be a fairly restrictive assumption. In particular, in our model, 
stationarity would imply that a simple pre-post comparison for exposed units would 
be an unbiased estimator of ​τ​ and, as a result, the only purpose of the unexposed units 
would be to help improve efficiency. In contrast, in our analysis, using unexposed 
units for double differencing is crucial for identification.

Ferman and Pinto (2019) analyze the performance of SC estimator using essen-
tially the same model as we do. They focus on the situations where ​N​ is small, while ​​
T​pre​​​ (the number of control periods) is growing. They show that unless time factors 
have strong trends (e.g., polynomial) the SC estimator is asymptotically biased. 
Importantly Ferman and Pinto (2019) focus on the standard SC estimator, without 
time weights and regularization, but with an intercept in the construction of the 
weights.

Finally, from a statistical perspective, our approach bears some similarity to the 
work on “balancing” methods for program evaluation under unconfoundedness, 
including Athey, Imbens, and Wager (2018); Graham, Pinto, and Egel (2012); 
Hirshberg and Wager (2017); Imai and Ratkovic (2014); Kallus (2020); Zhao 
(2019); and Zubizarreta (2015). One major result of this line of work is that, by 
algorithmically finding weights that balance observed covariates across treated and 
control observations, we can derive robust estimators with good asymptotic prop-
erties (such as efficiency). In contrast to this line of work, rather than balancing 
observed covariates, we here need to balance unobserved factors ​Γ​ and ​ϒ​ in (10) to 
achieve consistency; and accounting for this forces us to follow a different formal 
approach than existing studies using balancing methods.

Appendix.  Staggered Adoption

In the paper so far we have focused on the case where some units start receiving the 
treatment at a common point in time, what Athey et al. (2021) call block assignment. 
Under block assignment the ​N × T​ matrix of treatment assignments ​W​ has the form 
like the following matrix, where units 3–6 all adopt the treatment in period 5:

	​ W  = ​

⎛

 ⎜ 
⎝

 ​ 

 

​ 

1

​ 

2

​ 

3

​ 

4

​ 

5

​ 

6

​ 

7

​ 

​

​   

1

​ 

0

​ 

0

​ 

0

​ 

0

​ 

0

​ 

0

​ 

0

​ 

​

​   
2
​ 

0
​ 

0
​ 

0
​ 

0
​ 

0
​ 

0
​ 

0
​ 

​
​   3​  0​  0​  0​  0​  1​  1​  1​  ​​   

4
​ 

0
​ 

0
​ 

0
​ 

0
​ 

1
​ 

1
​ 

1
​ 

​
​   

5

​ 

0

​ 

0

​ 

0

​ 

0

​ 

1

​ 

1

​ 

1

​ 

​

​   

6

​ 

0

​ 

0

​ 

0

​ 

0

​ 

1

​ 

1

​ 

1

​ 

​

​

⎞

 ⎟ 
⎠

​​ .

This is a common setting, but there are other settings that are of interest. Another 
important special case is that of staggered adoption (e.g.,Athey and Imbens 2021) 
with multiple dates at which the treatment is started. For example, in the following 
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assignment matrix units 5 and 6 adopt the treatment in period 3, and units 3 and 4 
adopt the treatment in period 5 (and units 1 and 2 never adopt the treatment):

	​ W  = ​

⎛

 ⎜ 
⎝

 ​ 

​

​ 

1

​ 

2

​ 

3

​ 

4

​ 

5

​ 

6

​ 

7

​ 

​

​   

1

​ 

0

​ 

0

​ 

0

​ 

0

​ 

0

​ 

0

​ 

0

​ 

​

​   
2
​ 

0
​ 

0
​ 

0
​ 

0
​ 

0
​ 

0
​ 

0
​ 

​
​   3​  0​  0​  0​  0​  1​  1​  1​  ​​   

4
​ 

0
​ 

0
​ 

0
​ 

0
​ 

1
​ 

1
​ 

1
​ 

​
​   

5

​ 

0

​ 

0

​ 

1

​ 

1

​ 

1

​ 

1

​ 

1

​ 

​

​   

6

​ 

0

​ 

0

​ 

1

​ 

1

​ 

1

​ 

1

​ 

1

​ 

​

​

⎞

 ⎟ 
⎠

​​ .

With staggered adoption the weighted DID regression approach in SDID does not 
work directly. However, there are various alternatives. Here we discuss a simple 
modification to estimate the average treatment effect for the treated in that setting by 
applying the SDID estimator repeatedly, once for every adoption date. An alterna-
tive is the procedure developed in Ben-Michael, Feller, and Rothstein (2019). In the 
example above with two adoption dates, we can create two assignment matrices, ​​W​​ 1​​ 
and ​​W​​ 2​​, that both fit into the block assignment setting. We can then apply the SDID 
estimator to both samples, and calculate a weighted average of the two estimators, 
with the weight equal to the fraction of treated unit/time-period pairs in each of the 
two samples. In the above example, the first sample would consist of units 1, 2, 5 
and 6, and the second sample would consist of units 1, 2, 3, and 4, as illustrated in 
the two assignment matrices below:

	​ ​W​​ 1​  = ​

⎛

 ⎜ 
⎝

 ​ 
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1

​ 

2

​ 
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​ 
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​
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	​ W​​ 2​  = ​
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⎞
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⎠

​​ .

Alternatively we can create the two samples by splitting the data up by time periods. 
In that case the first sample would consist of time periods 1, 2, 3, and 4, and the 
second sample would consist of time periods 1, 2, 5, 6, and 7, as illustrated below:

	​ ​W​​ 1​ = ​

⎛

 ⎜ 
⎝

 ​ 
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