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The goal of this article is to test four distinct hypotheses about whether the relative

location of an economy affects economic growth and economic well-being using an

extended Solow–Swan neoclassical growth model that incorporates both space and

time dynamics. We show that the econometric specification takes the form of an un-

constrained spatial Durbin model, and we investigate whether the results depend on

some methodological issues, such as the choice of the time span and the inclusion of

fixed effects. To estimate the fixed effects spatial Solow–Swan model, we adjust the

Arrelano and Bond (1991) generalized method-of-moments (GMM) estimator to deal

with endogeneity not only arising from the initial income level, as in the basic model,

but also from the initial income levels and economic growth rates observed in neigh-

boring economies.

Introduction

Despite recent developments in the growth literature, the Solow–Swan neoclassical

growth model continues to be of great theoretical and empirical interest. One rel-

evant question asks to what extent differences found in the speed of convergence

are attributable to the way in which applied econometricians analyze a given body

of data. The empirical literature has moved in several different directions. One part

of the literature uses data in a cross-section, while another part combines time-

series and cross-sectional (TSCS) data. Mankiw, Romer, and Weil (1992) and Barro

and Sala-i-Martin (1995) are classic references of the first approach, while Islam

(1995) is the most prominent example of the second. Within the literature that

combines TSCS data, considerable discussion also occurs about two concerns: the

appropriate time length to use when a total sample period is divided into several

shorter periods, and the inclusion of fixed effects. An econometric problem related
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to this second issue is that the ordinary least squares (OLS) estimator of the growth

regression equation is inconsistent when the number of observations in the time

domain is fixed. This is because the regression equation is indeed equivalent to a

dynamic panel model. To remove this inconsistency, generalized method-of-mo-

ments (GMM) estimators have been suggested (Arrelano and Bond 1991).

The spatial econometrics literature (Fingleton 2003) points out that a more

satisfactory understanding of economic growth requires an appreciation of how

economies interact with one another, because economies’ income levels are in-

terdependent. Consider, for example, the savings rate. According to standard eco-

nomic theory, saving and investment are always equal. People cannot save without

investing their money somewhere, and they cannot invest without using some-

body’s savings. This is true for the world in general, but it is not true for individual

economies. Capital can flow across borders; hence the amount an individual econ-

omy saves does not have to be the same as the amount it invests. In other words, per

capita income in one economy depends partly on the savings rates of neighboring

economies.

The hypothesis that the relative location of an economy affects economic

growth has recently been underpinned by theoretical extensions of the Solow–

Swan model (López-Bazo, Vayá, and Artis 2004; Fingleton and López-Bazo 2006;

Ertur and Koch 2007). Moreover, a vast empirical literature exists that supports this

hypothesis using data in a cross-section (for an overview, see Fingleton 2003;

Abreu, de Groot, and Florax 2005; Rey and Janikas 2005). However, empirical

research to test this hypothesis using panel data techniques is still scarce because

the simultaneous modeling of dynamics in space and time requires quite complex

stochastic specifications. One relevant exception is the study by Badinger, Müller,

and Tondl (2004), which separates both types of dynamics. First, the variables are

spatially filtered to account for spatial dependencies between regional observa-

tions, and, second, conditional upon these spatially filtered variables, a dynamic

panel data model is estimated using GMM. However, it is more likely that these two

types of dynamics are interdependent since short-term dynamics may have major

long-run structural impacts, and, conversely, structural changes may alter the short-

run dynamics of certain economies.

This paper is organized as follows. The section that follows presents the basic

Solow–Swan model and its spatial extension. We use this model to derive four

distinct testable hypotheses of all the possible paths along which the relative

location of an economy can affect economic growth and economic well-being.

Furthermore, we show that its econometric specification takes the form of an un-

constrained spatial Durbin model. In presenting the empirical results, particular

attention is devoted to the choice of the time span and the inclusion of fixed effects.

Finally, to estimate the fixed effects spatial Solow–Swan model, we adjust the Arr-

elano and Bond (1991) GMM estimation procedure to deal with endogeneity aris-

ing not only from the initial income level as in the basic model but also from the

initial income levels and growth rates observed in neighboring economies.
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The Solow–Swan model and its spatial extension

The basic Solow–Swan model is characterized by the following expression for the

steady-state per capita income qt at time t:

lnðqtÞ ¼ lnðAt�T Þ þ gT þ a
1� a

ln½s=ðn þ g þ dÞ� ð1Þ

where T denotes the time span of the growth period considered, At� T is the state of

technology at the beginning of the observation period, a is the cost share of capital

in production under a Cobb–Douglas technology, s is the savings rate, n is the

population growth rate, g is the rate of technological progress, and d is the depre-

ciation rate.

The convenient growth-initial income-level regression equation is a linear ap-

proximation of the growth rate of output per capita, which is derived from a linear

approximation of the dynamics around the steady state in equation (1) using a

Taylor expansion (see Mankiw, Romer, and Weil 1992, pp. 422–23). This yields

lnðqt=qt�T Þ
T

¼ b0 þ b1 lnðqt�T Þ þ b2 ln½s=ðn þ g þ dÞ� þ e ð2Þ

where b0 ¼ ð1� e�lT Þ½lnðAt�T Þ þ gT �=T , b1 ¼ �ð1� e�lT Þ=T , and b2 ¼ a
1�a ð1�

e�lT Þ=T (see Barro and Sala-i-Martin 1995; Islam 1995; Fingleton 2003). In its

simplest version, e represents a normally distributed and independent error term, as

a result of which equation (2) can be estimated by OLS. This model implies that

economies tend toward the same equilibrium growth path for capital and hence

output per capita, except for differences in s, n, g, and d. The annual speed of

convergence implied by the parameter estimate of b1 is l ¼ � lnð1þ b1T Þ=T
(Fingleton 2003, p. 25), and capital’s share of income implied by the parameter

estimates of b1 and b2 is a5 b2/(b2� b1). According to Mankiw, Romer, and Weil

(1992, p. 410) and Durlauf and Quah (1999, p. 276), this share can be used as an

additional tool to test whether the basic Solow–Swan model is the correct speci-

fication (e.g., in addition to the classical goodness-of-fit measures), since its value is

expected to be roughly one-third.

Recently, the hypothesis that the relative location of an economy—the effect of

being located closer or farther away from other specific economies—is a determi-

nant of economic growth and the steady-state position of an economy has been

underpinned by economic–theoretical models (López-Bazo, Vayá, and Artis 2004;

Fingleton and López-Bazo 2006; Ertur and Koch 2007). To model interdependence

across space, López-Bazo, Vayá, and Artis (2004) assume that spatial externalities

derive from (physical and human) capital accumulation, while Ertur and Koch

(2007) assume that spatial externalities are generated from technological interde-

pendencies. More formally, Ertur and Koch (2007) model technology as being de-

pendent on three terms in the following way:

Ait ¼ Ot k
j
i ðtÞ

YN
j¼1

A
gwij

jt ð3Þ
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where i ( 5 1, . . . ,N) refers to a particular economy. Just as in the basic Solow–Swan

model, part of technological progress is assumed to be exogenous and identical to

all economies: Ot ¼ O0egt . The level of technology in economy i is also related to

the level of physical capital per worker kit in that particular economy, because of

knowledge spillovers generated by physical capital. The magnitude of this physical

capital externality is measured through the parameter j (with 0ojo1). Finally,

it is assumed that these externalities affect neighboring economies j ( 5 1, . . . ,N)

according to some distance decay function gwij, where g is an unknown parameter

to be estimated and wij is an element of a N � N spatial weights matrix W de-

scribing the spatial arrangement of the N economies.

Under the assumption that the speed of convergence is identical for all econ-

omies, this extension gives the following expression for the steady-state per capita

income:

lnðqtÞ ¼g
1� a

1� a�jW lnðqtÞ þ
1

1� a� j
lnðAt�T Þ þ gT þ aþ j

1� a� j
ln½s=ðn þ g þ dÞ�þ

g
a

1� a� j
W ln½s=ðn þ g þ dÞ�

ð4Þ

where ln(qt), ln(At�T), gT, and ln[s/(n1g1d)] now denote N � 1 vectors of the cor-

responding variable in each economy. This model simplifies to the basic Solow–

Swan model when both g and j are zero.

A linear approximation to the dynamics around the steady state in equation (4),

using a Taylor expansion, again produces a growth-initial income-level regression

equation:

lnðqt=qt�T Þ
T

¼rW
lnðqt=qt�T Þ

T
þ b0 þ b1 lnðqt�T Þ þ b2 ln½s=ðn þ g þ dÞ�

þ b3W lnðqt�T Þ þ b4W ln½s=ðn þ g þ dÞ� þ e
ð5Þ

where b1 ¼ �ð1� e�lT Þ=T , b2 ¼ aþj
1�a�j ð1� e�lT Þ=T , b3 ¼ g 1�a

1�a�j ð1� e�lT Þ=T ,

b4 ¼ �g a
1�a�j ð1� e�lT Þ=T , and r ¼ g 1�a

1�a�j. This model is referred to in the spa-

tial econometrics literature as an unconstrained spatial Durbin model, because of

the spatially lagged values of both the dependent variable and the independent

variables. Since 0oao1 and 0ojo1, g and r are defined on the same interval

(1/omin,1/omax), where omin denotes the smallest (i.e., most negative) and omax the

largest eigenvalue of W. Note that for row-normalized spatial weights omax 5 1. In

addition, W should satisfy the regularity conditions spelled out in Lee (2004) or Yu,

de Jong, and Lee (2008).1 The annual speed of convergence, l, implied by the pa-

rameter estimate of b1 (or b3), is the same as in the classical Solow–Swan model.

The unknown values of a, j, and g implied by the parameter estimates of b and r
are

a ¼ b4

b4 � b3

; j ¼ b2

b2 � b1

� b4

b4 � b3

; and g ¼ b4 � b3

b1 � b2

ð6Þ
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provided that the restriction b3 þ rb1 ¼ 0 holds; otherwise, these unknown param-

eters are overdetermined.

We presented Ertur and Koch’s (2007) extension of the technology term be-

cause it leads to a full spatial Durbin specification of equation (5), whereas the

extension of the technology term in López-Bazo, Vayá, and Artis (2004) yields

spatially lagged values of only the growth and the initial income variables and not

of ln[s/(n1g1d)] (see Fingleton and López-Bazo 2006 for details). In contrast, we

follow López-Bazo, Vayá, and Artis (2004), as well as Fingleton and López-Bazo

(2006), in that we estimate the model only under the condition that the speed of

convergence is identical for all economies, whereas Ertur and Koch (2007) estimate

their model in the more general context in which this assumption is removed.2

In contrast to equation (1), equation (4) does not give an explicit expression for

the steady-state per capita income, because the term ln(qt) also appears on the right-

hand side (see Egger and Pfaffermayr 2006). However, ln(qt) may be solved from

equation (5). We first multiply equation (5) by T and rewrite it as

B lnðqtÞ ¼ A lnðqt�T Þ þ bX ð7Þ

where bX ¼ Tfb0 þ b2 ln½s=ðn þ g þ dÞ� þ b4W ln½s=ðn þ g þ dÞ�g, A ¼ ð1þ Tb1Þ
I þ Tb3W � rW , and B ¼ I � rW . For this model to converge, Elhorst (2001) has

found that the eigenvalues of the matrix B�1A should lie inside the unit circle (see

also assumption 6 in Yu, de Jong, and Lee 2008). If oi denotes one of the N eigen-

values of the spatial weights matrix W, then the eigenvalues of B�1A are

ð1þ Tb1 þ Tb3 � roiÞ=ð1� roiÞ. If the spatial weights matrix W is row-normalized,

so that its largest eigenvalue equals one, then b11b3o0. Elhorst (2001) has

also found that the corresponding steady-state value can be obtained by

lnðqtÞ ¼ ðB � AÞ�1bX . In the present context (and after eliminating T) we obtain

following:

lnðqtÞ ¼
�

I þ b3

b1

W

��1�
� b0

b1

� b2

b1

ln½s=ðn þ g þ dÞ� � b4

b1

W ln½s=ðn þ g

þ dÞ�
�

ð8Þ

To test whether s, n, g, and d in a particular economy affect the rate of eco-

nomic growth and the steady-state position of that economy, we should verify

whether both b2 and � b2/b1 are significantly different from zero. The first test fol-

lows from equation (5) and the second test from equation (8). To test whether the

relative location of an economy affects economic growth and of the steady-state

position of a particular economy, we consider four distinct hypotheses:

H1. The rate of growth of a particular economy is related to that of its

neighbors.

H2. The rate of growth of a particular economy is affected by s, n, g, and d in its

neighboring economies.
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H3. The steady-state position of a particular economy and s, n, g, and d in its

neighboring economies have a direct relationship.

H4. The steady-state position of a particular economy is related to s, n, g, and d
in its neighboring economies due to indirect effects.

The first two hypotheses can be tested by verifying whether r and b4 in equa-

tion (5) are significantly different from zero, respectively. The last two hypotheses

can be tested by verifying whether � b4/b1 and b3/b1 in equation (8) are signifi-

cantly different from zero, respectively. Abreu, de Groot, and Florax (2005) provide

an explanation of the latter test.

Finally, the unconstrained spatial Durbin model derived in equation (5) gen-

eralizes both the spatial lag model and the spatial error model, two models that

have been the main focus of the spatial econometrics literature on economic

growth for a long time (see Abreu, de Groot, and Florax 2005; Arbia 2006). The

spatial lag is obtained when b3 5 b4 5 0. This implies that the spatial lag model

offers the opportunity to test only hypothesis H1. The spatial error model is obtained

when two nonlinear common factor constraints are imposed on the coefficients:

b3 5� rb1 and b4 5� rb1.3 In fact, this model is also known as a constrained spa-

tial Durbin model. The first constraint is also dictated by the economic–theoretical

model to avoid overdetermining the unknown parameters of this model (see equa-

tion [6]). However, the second constraint is unnecessarily restrictive because no

theoretical or empirical reason exists to impose it. These constraints will be tested

in the subsequent empirical analysis.

Regression results of the basic Solow–Swan model

In this study, we use data drawn from the Cambridge Econometrics European Re-

gional database. The data set consists of 193 regions over the period 1977–2002

across 15 countries: Austria, Belgium, Denmark, Finland, France, Germany,

Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain, Sweden,

and the United Kingdom (see Fig. 1).

The dependent variable is per capita GDP, s is measured as the ratio between

investment expenditures and gross value-added, and n is measured as the growth

rate of the working population over time. We assume that (g1d) is the same for all

Figure 1. Map of the study area: 193 EU NUTS-2 regions across 15 countries.
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economies and equal to 0.05 (Mankiw, Romer, and Weil 1992; Islam 1995; Ertur

and Koch 2007); g primarily reflects the advancement of knowledge, which is not

region- or country-specific. Similarly, no strong reason exists to expect depreciation

rates to vary greatly across regions or countries.4

Time span of the growth period

The first column of Table 1 reports the estimation results of the basic Solow–Swan

model when using the data in one single cross-section; that is, if T 5 25 and the

number of observations equals the number of spatial units in the sample (193). The

average annual growth rate over the entire period 1977–2002 is explained by

the initial level of per capita GDP in 1977 and the averages of s, n, g, and d for the

entire period. Using the single cross-section approach has three potential draw-

backs. First, it only utilizes data at the beginning and the end of the sample period.

Second, it assumes that s and n are constant over the sample period. Third, it over-

looks the possibility that different growth paths may lead to similar results in terms

of convergence.

Results in the second column of Table 1 are obtained by moving to cross-sec-

tions for shorter periods. In such a pooled regression, the average annual growth

rate over each period is explained by the initial level of per capita GDP for that

particular period, as well as the averages of s, n, g, and d for that particular period.5

The question arises: what is the appropriate length of such periods? A time span of

just one year is possible since the underlying data set provides annual information.

However, often yearly time spans are said to be too short for studying growth con-

vergence because short-term disturbances may loom large in such brief time spans

(Islam 1995). Therefore, we consider five-year time spans, T 5 5, just as in Islam

(1995). The number of observations in this regression equals 193 � 5 5 965 (1977–

1982, 1982–1987, 1987–1992, 1992–1997, 1997–2002).

The first two column entries in Table 1 demonstrate that the coefficient esti-

mates and the t-values of the constant and the initial income-level variable of the

single cross-section approach and of the TSCS approach do not differ to any great

extent. By contrast, the R2 of the TSCS approach over a five-year time span amounts

to 0.05, which is considerably less than the R2 of the single cross-section approach

of 0.26. The explanation is that the increase in the number of observations amplifies

the variation in the dependent variable. The capital’s share of income according to

the single cross-section approach is 0.21, which is o0.30 in the TSCS approach.

Thus, the single cross-section approach produces the greatest deviation from cap-

ital’s supposed one-third share of income. According to the single cross-section

approach, the speed of convergence is 1.08% per year, which is higher than the

speed of convergence of 0.86% implied by the TSCS approach.

One potential objection to both regressions is that the variable ln[s/(n1g1d)] is

not exogenous. For this reason, we used the Wu variable addition test to examine

the endogeneity of ln[s/(n1g1d)] (see Greene 2005, pp. 321–25 for details). First,

the variable ln[s/(n1g1d)] is regressed on the intercept, the initial income value
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and the savings rate at the beginning of the observation period. Then the predicted

values from this equation are added to the growth-initial income-level regression

equation. The t-value on the coefficient of the fitted variable ln[s/(n1g1d)] is 0.65

when using the single cross-section approach, and � 1.26 when using the TSCS

approach. Therefore, the hypothesis that the variable ln[s/(n1g1d)] is exogenous

cannot be rejected.

Fixed effects

A possible objection to pooling TSCS data is that this approach does not control for

fixed effects. Islam (1995) argues that fixed effects should be included, since the

strategy of replacing the term ð1� e�lT Þ½lnðAt�T Þ þ gT � in the growth-initial in-

come-level regression (equation [2]) with just a constant and a normally distributed

error term, b01e, is flawed. Since At�T not only reflects technology but also such

factors as resource endowments, climate, and institutions, At� T is anything but

constant among different economies and could probably be correlated with s, n, g,

and d, and thus with one of the explanatory variables in the regression model. Re-

placing this variable with a normally distributed error term and then estimating the

model by OLS violates the condition that the explanatory variables are independent

of the error term. A better solution is to replace At� T by a conventional error term as

well as a dummy variable for each economy in the sample, because the latter does

not need to be uncorrelated with the other explanatory variables in the model. As

the rate of technological process, gT, may also change over time, this variable is

replaced by time-period fixed effects (Islam 1995; Badinger, Müller, and Tondl

2004).

The growth-initial income-level regression in equation (2) extended to include

one dummy for every economy in the sample is known as a dynamic panel data

model (Islam 1995, p. 1136). As the lagged dependent variable appears as an ex-

planatory variable, the OLS estimator under the fixed effects formulation is no

longer consistent in the typical situation where a panel involves a large number of

economies, but for a small number of observations over time.6 To remove this in-

consistency, we adopt the GMM estimator developed by Arrelano and Bond (1991;

see also Baltagi 2005, pp. 136–42). This estimator takes first-differences to elim-

inate the intercept and the spatial fixed effects, and then applies GMM using a set of

appropriate instruments.7 Due to the reformulation in first-differences, 1987–1992

is the first period for which we can observe the fixed-effects model. Consequently,

the number of observations equals 193 � 4 5 772 (1987–1992, 1992–1997, 1997–

2002).

Column 3 in Table 1 reports the estimation results for the fixed-effects model.

The R2 increases to 0.527, which can be explained by the fixed-effects model

focusing only on the time-series variation between observations. Furthermore, the

deviation from capital’s supposed one-third share of income becomes smaller when

including fixed effects, 0.323 instead of 0.301. The speed of convergence becomes

almost 10 times as large than that of the TSCS approach, 7.80% per year. This
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tremendous increase is nonetheless in line with Islam’s (1995) findings: annual

convergence rates between 3.8% and 9.1%. It is questionable, however, whether

these convergence parameters are really comparable. The basic point here is that

the faster convergence that we observe is conditional upon the fixed effects in-

cluded in the model. The growth model with fixed effects measures the time re-

quired for the system to return to equilibrium due to shocks caused by changes in s,

n, g, and d (conditional on the fixed effects), while the growth model without fixed

effects measures the time required before these relatively persistent differences

disappear as well (see Durlauf and Quah 1999 for further details).

Regression results of the spatial Solow–Swan model

Corrections for endogenous interaction effects

Table 2 reports the estimation results of the spatial Solow–Swan model. The spatial

weights matrix used in these estimations is a row-normalized binary contiguity

matrix.8 Just as in Table 1, the first column refers to cross-sectional data over the

entire sample period, the second column to TSCS data pooled over periods of five

years, and the last column to panel data including fixed effects. Due to the spatially

lagged dependent variable, the spatial Solow–Swan model may no longer be es-

timated by OLS or by the Arrelano and Bond GMM estimator because it would

render these estimators biased and inconsistent. To estimate the spatial Solow–

Swan model based on cross-sectional data or pooled TSCS data, we used maximum

likelihood (Anselin 1988). LeSage (1999) furnishes a MATLAB routine to estimate

the cross-sectional version of this model, while Elhorst (2003) extends this routine

for spatial panels with and without fixed effects.9

The spatial growth-initial income-level regression equation (5) extended to in-

clude fixed effects can be rewritten as10

lnðqtÞ ¼rW lnðqtÞ þ Tb0 þ ð1þ Tb1Þ lnðqt�T Þ þ Tb2 ln½s=ðn þ g þ dÞ�t
þ ðTb3 � rÞW lnðqt�T Þ þ Tb4W ln½s=ðn þ g þ dÞ�t þ mþ et

ð9Þ

where m ¼ ðm1; :::; mNÞ0 because this equation is in vector form. This equation can-

not be consistently estimated by Elhorst’s (2003) ML estimator because it does not

cover the lagged dependent variable ln(qt�T). Nor can it be consistently estimated

by the Arrelano and Bond’s (1991) GMM estimator because it does not cover the

spatially lagged dependent variable Wln(qt). Therefore, we have developed a mix-

ture of both estimators.

Let Yt 5 ln(qt), Yt�T 5 ln(qt� T), t5 11Tb1, Z ¼ Tb3 � r, Xt ¼ ½ln½s=ðnþ
g þ dÞ�t W ln½s=ðn þ g þ dÞ�t �, and b ¼ T ½b2; b4�0. Then equation (9) becomes

Yt ¼ rWYt þ Tb0 þ tYt�T þ ZWYt�T þ Xtbþ mþ et . When taking first differences

to eliminate the intercept and the fixed effects, we get

DYt ¼ rWDYt þ tDYt�T þ ZWDYt�T þ DXtbþ Det

t ¼ 1987; 1992; 1997; 2002; and T ¼ 5
ð10Þ

Growth, Convergence, and Space–Time DynamicsPaul Elhorst et al.

347



T
ab

le
2

Es
ti

m
at

io
n

R
es

u
lt

s
o
f

th
e

Sp
at

ia
l

So
lo

w
–S

w
an

M
o
d
el

U
si

n
g

C
ro

ss
-S

ec
ti

o
n

D
at

a,
T
im

e-
Se

ri
es

C
ro

ss
-S

ec
ti

o
n

(T
SC

S)
D

at
a,

an
d

P
an

el
D

at
a

(I
n
cl

u
d
in

g
Fi

xe
d

Ef
fe

ct
s

in
Sp

ac
e

an
d

T
im

e)

C
ro

ss
-s

ec
ti

o
n

2
5

ye
ar

s
D

ep
.

va
r

ln
q
ð2

0
0
2
Þ

q
ð1

9
7
7
Þ

�
� =

2
5

T
SC

S
fi

ve
-y

ea
r

p
er

io
d
s

D
ep

.
va

r

ln
q
ðt
Þ

q
ðt
�

5
Þ

�
� =

5

P
an

el
fi

ve
-y

ea
r

p
er

io
d
s

D
ep

.v
ar

ln
q
ðt
Þ

q
ðt
�

5
Þ

�
� =

5

Ex
p
la

n
at

o
ry

va
ri

ab
le

C
o
ef

fi
ci

en
t

T
-v

al
u
e

Ex
p
la

n
at

o
ry

va
ri

ab
le

C
o
ef

fi
ci

en
t

T
-v

al
u
e

Ex
p
la

n
at

o
ry

va
ri

ab
le

C
o
ef

fi
ci

en
t

T
-v

al
u
e

W
�

ln
q
ð2

0
0
2
Þ

q
ð1

9
7
7
Þ

�
� =

2
5

0
.5

1
9
0

7
.5

1
W
�

ln
q
ðt
Þ

q
ðt
�

5
Þ

�
� =

5
0
.6

4
9
0

2
5
.5

3
W
�

ln
q
ðt
Þ

q
ðt
�

5
Þ

�
� =

5
0
.6

2
3
0

2
3
.3

6

C
o
n
st

an
t

0
.0

5
0
8

3
.8

7
C

o
n
st

an
t

0
.0

3
9
2

3
.9

9

ln
(q

(1
9
7
7
))

�
0
.0

1
0
4

�
5
.5

2
ln

(q
(t
�

5
))

�
0
.0

0
8
0

�
4
.7

2
ln

(q
(t
�

5
))

�
0
.0

6
3
4

�
1
.4

5

ln
ðs
Þ

ðn
þ

g
þ
dÞ

�
� =

2
5

0
.0

0
1
0

0
.9

2
ln

ðs
Þ

ðn
þ

g
þ
dÞ

�
� =

5
0
.0

0
1
4

1
.4

4
ln

ðs
Þ

ðn
þ

g
þ
dÞ

�
� =

5
0
.0

3
1
6

1
.2

7

W
�

ln
(q

(1
9
7
7
))

0
.0

0
5
5

2
.3

8
W
�

ln
(q

(t
�

5
))

0
.0

0
4
2

2
.1

6
W
�

ln
(q

(t
�

5
))

0
.0

3
7
2

2
.0

0

W
�

ln
ðs
Þ

ðn
þ

g
þ
dÞ

�
� =

2
5

0
.0

0
3
1

1
.6

2
W
�

ln
ðs
Þ

ðn
þ

g
þ
dÞ

�
� =

5
0
.0

0
3
1

1
.9

3
W
�

ln
ðs
Þ

ðn
þ

g
þ
dÞ

�
� =

5
�

0
.0

3
4
1

�
2
.2

1

R
2

0
.2

8
4

R
2

0
.4

8
1

R
2

0
.7

4
6

N
1
9
3

N
9
6
5

N
7
7
2

Im
p
li

ed
l

1
.1

9
8

Im
p
li

ed
l

0
.8

1
9

Im
p
li

ed
l

7
.6

2
8

Im
p
li

ed
a

o
0

Im
p
li

ed
a

o
0

Im
p
li

ed
a

0
.4

7
8

Im
p
li

ed
j

4
1

Im
p
li

ed
j

4
1

Im
p
li

ed
j

o
0

Im
p
li

ed
g

0
.2

1
3

Im
p
li

ed
g

0
.1

1
7

Im
p
li

ed
g

0
.7

5
0

b 1
1
b 3

�
0
.0

0
4
9

b 1
1
b 3

�
0
.0

0
3
8

b 1
1
b 3

�
0
.0

2
6
2

b 3
5
�
rb

1
w2

(1
)5

0
.0

1
N

o
t

re
j.

b 3
5
�
rb

1
w2

(1
)5

0
.7

9
N

o
t

re
j.

b 3
5
�
rb

1
w2

(1
)5

0
.0

7
N

o
t

re
j.

b 4
5
�
rb

1
w2

(1
)5

3
.9

5
R

ej
.

b 4
5
�
rb

1
w2

(1
)5

6
.7

6
R

ej
.

b 4
5
�
rb

1
w2

(1
)5

0
.6

7
N

o
t

re
j.

Geographical Analysis

348



where D is an operator that takes first-differences over a period of T years. To

estimate t, Arrelano and Bond (1991) suggest using Y1977 as an instrument for

DY1982 5 Y1982�Y1977 because it is highly correlated with DY1982 and not corre-

lated with De1987 5 e1987� e1982 as long as e is not serially correlated. X1977 and

X1982 are valid instruments, too, since they are not correlated with De1987. Similarly,

valid instruments for DY1987 are Y1977, Y1982, X1977, X1982, and X1987. One can

continue in this fashion, adding two extra valid instruments, one for Y and one for

X, for each forward period.

In equation (10), WDYt and WDYt� T also need to be instrumented. To estimate

the parameter r of the endogenous variable WYt, Kelejian, Prucha, and Yuzefovich

(2004) suggest using the instruments ½XtWXt . . . W d Xt �], where d is a preselected

constant.11 The set of instruments satisfying the conditions spelled out both in Arr-

elano and Bond (1991) and in Kelejian, Prucha, and Yuzefovich (2004) consists of

the variables Y1977 to Yt� 2T and X1977 to Xt� T (as in the dynamic panel data lit-

erature) and WY1977 to WYt�2T and WX1977 to WXt� T (as in the spatial econo-

metrics literature when d 5 1). Note that this setup was first considered by Revelli

(2001). The Arrelano and Bond GMM estimator extended to include WDYt and

WDYt� T therefore takes the form

ðr tZ b0Þ0 ¼ ½�X 0ZðZ 0ðG � INÞZÞ�1Z 0�X ��1 �X 0ZðZ 0ðG � INÞZ Þ�1Z 0DY ð11Þ

where � denotes the Kronecker product, and G is a matrix of order TGMM, whose

diagonal elements are 2 and subdiagonal elements are � 1 (see Baltagi 2005, p.

137). TGMM is the number of observations for each economy in the sample after

taking first-differences of time-series observations over five-year time spans. In this

particular case, TGMM 5 4, �X ¼ ½ðIT �W ÞDY DY�T ðIT �W ÞDY�T DX �, Z 5 di-

ag(Z1987, . . ., Z2002), and the block-diagonal submatrices of Zt (t 5 1987, 1992,

1997, 2002 and T 5 5) are

Zt ¼ ½Y1977 WY1977 . . . Yt�2T WYt�2T X1977 WX1977 . . . Xt�T WXt�T � ð12Þ

Because we assume that the data are sorted first by time and then by cross-

sectional units, we finally have G�IN instead of IN�G as in Baltagi (2005, p. 137).

Recently, Elhorst (2010) performed Monte Carlo simulation experiments to

study the performance of this extended GMM estimator. Unfortunately, he found

that the bias in r is unacceptable, whereas the bias in r, when using Elhorst’s ML

estimator, is rather small, even though the latter estimator does not cover dynamic

panel data models. On the basis of these findings, he suggests estimating r by ML

and the remaining parameters, given r, by

ðt Z b0Þ
0
¼ ½�X 0ZðZ 0ðG � INÞZÞ�1Z 0 �X��1 �X 0Z ðZ 0ðG � INÞZÞ�1Z 0ðDY
� rWDY Þ ð13Þ

To demonstrate the validity of this mixed estimator, we carried out a simple

Monte Carlo simulation experiment based on the reduced form of equation (9).12

Table 3 reports the bias and root mean squared error (RMSE) of the different
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estimators based on 1,000 replications. Results reported in this table reveal that the

bias in the coefficient t of the lagged dependent variable, DYt�T, when using

Elhorst’s (2003) ML estimator, is large and negative (� 0.0317), corresponding to

the Nickell (1981) bias in a dynamic panel data model without endogenous inter-

action effects. As expected, this bias in t is reduced when using the extended

Arrelano and Bond GMM estimator (� 0.0091). By contrast, whereas the bias in the

coefficient r of the spatially lagged dependent variable DWYt when using Elhorst’s

ML estimator is small (� 0.0149),13 it is large and unacceptable (0.3007) when us-

ing the extended Arrelano and Bond GMM estimator. Because the mixed estimator

produces the smallest bias in both the parameters t and r (� 0.0081 and� 0.0149,

respectively), and because its properties (bias and RMSE) with respect to the other

parameters are comparable with the extended Arrelano and Bond GMM estimator,

we have used this mixed estimator to estimate the fixed effects spatial Solow–Swan

model.

Discussion of the results

Results reported in Table 2 show that the explanatory power of the spatially

extended growth-initial income-level regression increases by 0.24, on average.

A necessary and sufficient condition for convergence is b11b3o0. For all regres-

sion results summarized in Table 2, this condition is satisfied. Furthermore, the

coefficient of the spatially lagged dependent variable is significantly different from

zero. This result strongly supports hypothesis H1, which states that the rate of eco-

nomic growth of a particular economy is related to that of its neighbors. The

econometric literature points out that if a relevant explanatory variable is omitted

from a regression equation, the OLS estimator of the coefficients for the remaining

variables is biased and inconsistent (Greene 2005, pp. 133–34). This also holds for

the spatially lagged dependent variable and for the spatially lagged independent

variables. The difference found between the speed of convergence in Tables 1 and

2 may shed more light on the size of this bias. For the single cross-section regression

Table 3 Bias� and RMSE of Elhorst’s ML Estimator, the Extended Arrelano and Bond GMM

Estimator (Equation [11]), and the Mixed Estimator (Equation [13])

Bias (RMSE)

Parameter

Experimental

valuew ML Extended A–B GMM Mixed estimator

r 0.6230 � 0.0149 (0.0329) 0.3007 (0.0879) � 0.0149 (0.0329)

t � 0.0634 � 0.0317 (0.0048) � 0.0091 (0.0133) � 0.0081 (0.0125)

Z 0.0372 0.0181 (0.0080) 0.0318 (0.0201) � 0.0029 (0.0190)

B2 0.0316 � 0.0032 (0.0045) � 0.0038 (0.0125) � 0.0038 (0.0122)

B4 � 0.0341 � 0.0006 (0.0072) 0.0017 (0.0196) 0.0022 (0.0224)

�Based on 1,000 replications.wBased on the parameter estimates in the last column of

Table 2.
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results summarized in Table 2, the speed of convergence is estimated at 1.20% per

year. If spatial interaction effects are omitted, the speed of convergence reduces to

1.08% (see Table 1), which, with respect to 1.20%, is an underestimation of 10.2%.

Similarly, we can calculate that the speed of convergence is overestimated by 4.4%

when using TSCS data over five-year time spans. If fixed effects are added to the

regressions, this percentage drops to 2.3%.

The speed of convergence of 1.20% obtained when using the data in a cross-

section is somewhat lower than the speed of convergence of 1.5–1.7% found in

Ertur and Koch (2007) and of 2.0% found in López-Bazo, Vayá, and Artis (2004).

However, each of these two studies investigated convergence among a smaller

group of economies (91 countries, and 108 regions across 12 EU countries, re-

spectively). When pooling TSCS data over five-year time spans, the speed of con-

vergence changes to 0.82% per year, and when using the panel data with fixed

effects, it changes to 7.63%. The latter percentage is in line with Badinger, Müller,

and Tondl (2004), who report a figure of 6.9% using a relatively large sample (194

regions across 14 EU countries).

The initial income-level variable in neighboring economies has a positive and

significant effect for all three of the regressions whose results are reported in Table

2. When the coefficient of this variable is divided by the coefficient of the initial

income-level variable in the economy itself, we can test our fourth hypothesis,

which states that the steady-state position of a particular economy is related to s, n,

g, and d in neighboring economies due to indirect effects (see equation [8]). This

calculation gives 0.0055/(� 0.0104) 5� 0.53 (t-value � 3.40) for the first, � 0.52

(� 3.26) for the second, and� 0.59 (� 0.02) for the third regression reported in

Table 2. These results imply that our fourth hypothesis is supported by the results

from the first two regressions.

The variable ln[s/(n1g1d)] observed in neighboring economies has a positive

but insignificant effect for all three of the regressions whose results are reported in

Table 2. When the coefficient of this variable is divided by the coefficient of the

initial income-level variable in the economy itself, we also obtain the impact of

ln[s/(n1g1d)] observed in neighboring economies on the steady-state per capita

income level. This calculation gives 0.0031/(� 0.0104) 5� 0.30 (t-value � 1.53)

for the first, � 0.38 (� 1.76) for the second, and 0.54 (0.01) for the third regression

shown in Table 2. Overall, these results imply that our second and third hypotheses,

which states that the rate of growth and the steady-state position of an economy are

affected by s, n, g, and d in its neighboring economies, are not supported by the

data.

We also tested whether the unconstrained spatial Durbin model can be sim-

plified to a spatial lag or a spatial error model. Because for all of the regression

results reported in Table 2, the coefficient of either the initial income-level variable

or the variable ln[s/(n1g1d)] observed in neighboring economies is significant, we

can reject the spatial lag model. To determine whether the spatial error model is

acceptable, we tested the two constraints b3 ¼ �rb1and b4 ¼ �rb1. The first
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constraint is acceptable for the data for all regressions whose results are summa-

rized in Table 2. The second constraint must be rejected for the first two regression

specifications but not for the last specification. This implies that the spatial error

model is consistent with the data for regressions with fixed effects but is unneces-

sarily restrictive if fixed effects are left aside.

Although the unconstrained spatial Durbin model appears to be a useful ex-

tension of the commonly used spatial lag and spatial error models, it is not so for the

economic-theoretical model that laid the groundwork for this empirical model. In

all of the regression results summarized in Table 2, one or more of the parameters a,

j, and g take values outside the interval on which they are defined (0oao1,

0ojo1, and 1/ominogo1). This problem improves for the regression including

fixed effects. In the latter case, only the parameter j takes a value outside the in-

terval on which it is defined, whereas the parameters a and g take reasonable val-

ues. A possible explanation is that we only allowed spatial heterogeneity in the

intercept. The performance of the model might further increase if the assumption

that the speed of convergence is identical in all economies is relaxed by allowing

spatial heterogeneity in the slope parameters too (Ertur and Koch 2007).

Conclusions

We found empirical evidence in favor of the hypotheses that the rate of growth of a

particular economy is related to that of its neighbors (H1) and that the steady-state

position of a particular economy is related to s, n, g, and d in its neighboring

economies due to indirect effects (H4). By contrast, we found no empirical evidence

in favor of the hypotheses that the rate of growth of a particular economy is affected

by s, n, g, and d in its neighboring economies (H2) and that the steady-state position

of a particular economy and s, n, g, and d in its neighboring economies have a

direct relationship (H3).

We also found that the speed of convergence when ignoring spatial interaction

effects is biased but that this bias decreases by including fixed effects and by re-

ducing the time interval over which the growth rate is measured. When pooling

TSCS data over five-year time spans, the speed of convergence amounts to 0.82%

per year and to 7.63% when using panel data with fixed effects. But the speed of

convergence obtained from a model without fixed effects is not comparable to that

of a model with fixed effects. Therefore, the strengths and weaknesses of fixed

effects, put forward, respectively, by Islam (1995) and Durlauf and Quah (1999),

can be maintained when spatial interaction effects are added to economic growth

models.
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Notes

1 In a cross-sectional setting, W should be a nonnegative matrix of known constants. The

diagonal elements are set to zero by assumption. The matrix IN� rW should be

nonsingular and its inverse be uniformly bounded. For a row-normalized W, this

condition is satisfied as long as r is in the interior of (1/omin,1/omax). Furthermore, the row

and column sums of the matrices W and (IN� rW)� 1 should be uniformly bounded in

absolute value as N goes to infinity. Finally, the row and column sums of W before row

normalization should not diverge to infinity at a rate equal to or faster than the rate of the

sample size N. In a panel data setting, the latter condition is not relevant (but note

Kelejian, Prucha, and Yuzefovich 2006).

2 Although Ertur and Koch (2007) find strong evidence supporting parameter

heterogeneity, the upsurge in the use of heterogeneous panel data estimators has been

criticized, both inside and outside of the growth literature (Quah 1996; Baltagi, Griffin,

and Xiong 2000).

3 See Anselin (1988, pp. 226–99) for mathematical details.

4 Several studies have also split the variable ln[s/(n1g1d)] into ln(s) and ln(n1g1d) to test

whether their coefficients are different. We do not report the results of these analyses,

because they did not change our overall conclusions.

5 Usually, s, n, g, d, and e are not indexed in the convergence literature (e.g., Mankiw,

Romer, and Weil 1992; Islam 1995). However, since s, n, g, and d are measured as

averages over the period t� T to t, these variables are different for different time periods

and therefore should be indexed by t. The same applies to e.
6 This also holds for the least-squares dummy variables estimator, which first eliminates the

intercept and the spatial fixed effects (see Baltagi 2005, pp. 135–36).

7 Note that first differencing a regression equation to eliminate spatial fixed effects (as well

as the intercept) does not eliminate time-period fixed effects. Also note that the structure

of these first-differenced time-period fixed effects is such that common time-period fixed

effects can replace them.

8 Note that islands (such as those associated with southern European countries) are

assumed to be connected to the mainland, so that each region has at least one neighbor.

We have also tested the robustness of our results using spatial weights matrices based on

the six nearest neighbors and on the 10 nearest neighbors. Although the parameter

estimates of l, a, j, and g appear to be sensitive to the spatial weights matrix used, none

of the conclusions with respect to the four hypotheses discussed below changed

(acceptance or rejection).

9 These routines are freely downloadable from http://www.spatial-econometrics.com and

http://www.regroningen.nl/elhorst

10 To ease the notation, time-period fixed effects are left aside. Since their number is small,

they can be added as additional explanatory variables, that is, as part of DX in equation (10).

11 Typically, one would take d 5 1 or 2, dependent on the number of regressors. Lee (2003)

introduced the optimal instrument 2SLS estimator, but Kelejian, Prucha, and Yuzefovich

(2004) found that the 2SLS estimator based on this set of instruments has quite similar

small sample properties.

12 To simulate the error term, we took eit ~Nð0;s2Þ, using the parameter estimate for s2,

which was 0.00083. Similarly, to simulate the spatial and time-period fixed effects, we

used the estimated values based on formulas (3.6) and (3.7) in Baltagi (2005).
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13 A similar result was found in the Monte Carlo simulation experiment by Yu, de Jong, and

Lee (2008). They experimented with t, r, and Z5 0.2 and 0.3 for N 5 49 and 196, and

T 5 10 and 50, and found that the bias in r for this set of experimental parameter values

does not exceed 0.0105 (absolute value).
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