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We study a coordination game among agents in a network. The agents choose whether to take action
(e.g. adopting a new technology) in an uncertain environment that yields increasing value in the actions
of neighbours. We develop an algorithm that fully partitions the network into communities (coordination
sets) within which agents have the same propensity to adopt. Our main finding is that a novel measure
of network connectedness, which we term “social connectedness,” determines the propensity to adopt for
each agent. Social connectedness captures both the number of links each agent has within her community
(interconnectedness) as well as the number of links she has with members of other communities who have
a higher propensity to adopt (embeddedness). There is a single coordination set if and only if the network
is balanced—that is, the average degree of each subnetwork is no larger than the average degree of the
network. Finally, we demonstrate that contagion is localized within coordination sets, such that a shock
to an agent uniformly affects this agent and all members of her coordination set but has no impact on the
other agents in the network.

Key words: Global games, Networks, Social connectedness, Welfare.

JEL Codes: D85, C72, Z13.

1. INTRODUCTION

In numerous real-world situations, agents make binary choices in an unknown state of the world
while being positively influenced by their neighbours. For example, in developing countries,
agents choose whether or not to adopt a new technology, such as a new crop (Bandiera and Rasul,
2006), weather insurance (Cai et al., 2015), or a new rice technology (Islam et al., 2018), but
the value/benefit of the technology is only partially known and increases with peer adoption.
Similarly, individuals decide whether to join a gym (Babcock et al., 2020) or to participate in
crime when the proficiency of the criminal, and thus the likelihood of not getting caught, is
unknown and increasing in terms of the criminality of accomplices (Chalfin and McCrary, 2017).
In each of these examples, uncertainty in a common state influences the value of adoption: the
underlying value of the technology, the strength or presence of the police force, and each binary
decision is influenced by peers’ decisions.

The editor in charge of this paper was Adam Szeidl.
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This article is the first to study coordination issues with binary choices in these uncertain
environments in a network setting.1 The model employs the tools of global games embedded in
a network game. Players’ positions in the network define their preferences regarding the action
choices of others. Using the language of technology adoption, the total value an agent receives
from adopting the technology increases in the technology’s underlying value (the state) and
in its adoption by neighbours. Agents receive noisy signals that inform them of the state. In
equilibrium, agents further use their private information to infer the observations and actions
of neighbouring agents and to anticipate the ultimate value that they are likely to enjoy from
adopting the technology. The classic equilibrium selection of global games is obtained. In our
setting with binary actions, the equilibrium selected in the noiseless limit comes in the form of
cut-off strategies. Agents adopt the technology when their private signal exceeds their equilibrium
cutoff, which is determined by the agent’s position in the network.

We explore the role of the network’s architecture in determining who coordinates their adoption
choices with whom. Currently, there are no results in the literature describing exactly who, as a
function of the agents’ position in the network, takes a common action together in the noiseless
limit. The main methodological contribution of this article is to provide an exact prediction by
putting forward the notion of coordination sets, which provides a unique endogenous partitioning
of the agents in a network. Agents within a coordination set are path-connected and take a common
cut-off strategy in order to adopt the technology together.

Further, we develop an algorithm called the Sequential Average Network Density (SAND)
to fully characterize the equilibrium partitions and thresholds using the primitives of the model:
intrinsic valuations for adoption, network topology, and the strength of network effects. In order
to understand the manner in which the SAND algorithm works, assume that all agents have the
same intrinsic valuations for adoption; thus, their only heterogeneity stems from their position
in the network. First, the SAND algorithm identifies the community (or coordination set) with
the highest interconnectedness —that is, the highest average number of links—as these members
obtain the highest level of network effects; thus, they will have the highest propensity to adopt in
the network. Then, for the remaining agents in the network, SAND determines the community
that maximizes both interconnectedness and the number of links to the first community; this is
referred to as embeddedness. Indeed, in order to have a high propensity to adopt, agents need to
be part of a well-connected community as well as to have a high average number of edges with
those who have a higher propensity to adopt. Communities that have both high interconnectedness
and embeddedness are referred to as highly socially connected.2 The SAND then continues until
every agent in the network is part of a community (or coordination set). In a nutshell, the SAND
algorithm creates an order of a set of players based on their index of social connectedness and
shows how to divide the agents in terms of their marginal contributions to this index. This order
defines a partition of coordination sets within which cutoff strategies are uniform. When we
introduce different intrinsic valuations for adoption, the SAND algorithm proceeds in the same
manner but maximizes the sum of network effects and these valuations.

Contrary to the standard network games with complementarities in actions and perfect
information (e.g. Ballester et al., 2006; Bramoullé et al., 2014) in which Katz-Bonacich centrality

1. In numerous situations, agents may have more than two choices. For example, when someone has to decide
whether or not to get insured, she may also decide which insurance to choose from a non-singleton menu. In this article,
we focus our attention on binary actions because our aim is not to address general coordination problems in discrete
games with an arbitrary number of actions but rather to investigate the impact of network structure on binary choices in
coordination games.

2. Bailey et al. (2018) were the first to empirically introduce the notion of social connectedness; however, it is not
microfounded and it only corresponds to our notion of embeddedness.
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totally determines agents’ actions, we show that, in certain networks, agents with a lower Katz–
Bonacich centrality can have a higher propensity to adopt if they are well embedded with agents in
coordination sets that have an even higher propensity to adopt. The novel conceptual contribution
of our model is that it enables us to create a precise connection between network structure
and the propensity to adopt; specifically, it reveals how community structure and an agent’s
particular links interact in determining her “social connectedness.” This provides a more nuanced
picture of adoption patterns under vanishing uncertainty as compared to the conventional Katz–
Bonacich centrality (Ballester et al., 2006). Moreover, the distinction from the Katz–Bonacich
centrality provides a general insight regarding why underlying uncertainty complicates agents’
adoption decisions and the consequent adoption pattern. Indeed, it turns out that both links within
a coordination set (interconnectedness) and between coordination sets (embeddedness) are of
significance when agents face sufficient incentive to adopt. For the former, agents must form
expectations regarding their neighbours adopting within the same coordination set, while for
the latter, they put a probability of either 0 (lower-propensity coordination sets) or 1 (higher-
propensity coordination sets) on these neighbours adopting. The SAND algorithmic solution
untangles this added complication due to uncertainty by identifying the community boundaries
that are of significance for the adoption decision. In particular, the notion of “social connectedness”
simplifies the network coordination analysis and enables us to condense the problem down to
dividing the network into communities.

We study the role of network structure on adoption by considering the case of homogeneous
values, where the network alone introduces (ex ante) heterogeneity across agents. We provide an
exact characterization for which a single coordination set exists in the network. This condition
requires that the network structure must be balanced, that is, the average degree of each sub-
network (comprising any nonempty subset of agents in the network) is not greater than the
average degree of the entire network.3 This characterization implies that, remarkably, agents with
very different positions in the network may belong to the same coordination set. For example, in a
star network, regardless of the number of peripheral agents, all agents coordinate together, thereby
implying that they have the same propensity to adopt. The same is true for regular networks, tree
networks, regular bipartite networks, and those that have a maximum of four agents.

Thereafter, we explore the policy implications of our model. We first investigate how
equilibrium coordination is adjusted as intrinsic valuations change. We show that small shocks
to intrinsic valuations do not change the coordination set partition, but they do change the
adoption thresholds for the agents within the coordination sets that are affected by the shocks.
Strikingly, perturbations are shown to influence equilibrium adoption only across members within
the perturbed agents’ coordination set. Thus, the contagion of such perturbations extends within
coordination sets but does not spread across other coordination sets: contagion is local.

We then study the marginal gains of subsidizing intrinsic valuations to a policy designer aiming
at maximizing either (1) ex ante adoption or (2) welfare under a budget constraint. We show that,
for a sufficiently small budget, the marginal impact of these targeted policies is independent of
the particular target selected from the target’s coordination set. In other words, optimal policy
design becomes a problem of targeting a given coordination set rather than a particular agent.
Strikingly, under certain conditions on primitives, the adoption- and welfare-maximizing planner

3. Observe that our balance condition characterizing networks with a single coordination set resembles the
necessary and sufficient conditions for a single social status class to emerge in the setting of Immorlica et al. (2017) and
for the law of one price to hold in Manea (2011). However, these models are rather different from ours. In Immorlica et al.
(2017), the actions are continuous and the information is complete; thus, there are multiple equilibria, which lead to
different implications (see our discussion in Section I in the Supplementary Appendix). In addition, the shortage ratio of
Manea (2011) shares the averaging functional of our SAND algorithm.
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targets opposite extremes; the former targets the coordination set where agents take the highest
cutoff, while the latter targets the coordination set where agents take the lowest cutoff. Indeed,
the welfare-maximizing planner incorporates the effect of the intervention on both equilibrium
adoption and externalities, while the adoption-maximizing planner values only its effect on the
former.

We also study policies that aim at changing the structure of the network. First, we investigate
the key-player policy—that is, finding players who, once removed, reduce total crime or adoption
the most. In the standard key-player policy (Ballester et al., 2006), what matters the most is the
complementarity in actions between agents; thus, the key players are the agents who generate the
highest level of spillovers to themselves and to others. In our model, we also have complementarity
in actions. However, in addition to this, there is a coordination problem since agents do not know
with certainty whether their neighbours will adopt (or commit a crime); thus, they do not know
the level of complementarity in the actions to which they are exposed. As stated above, the social
connectedness of each agent determines who has the highest propensity to adopt; it also indicates
who the key players are. Second, we determine how adding links in a network affects adoption.
We show that, under certain conditions, adding links between agents from different coordination
sets does not affect the cutoff of agents from the coordination set with the lower cutoff. However,
it reduces the cutoff of agents from the coordination set with the higher cutoff.

Finally, we show that our results significantly differ from those of the studies on complete
information (Milgrom and Roberts, 1990; Vives, 1990), in which multiple equilibria prevail and
where the customary equilibrium selection, which focuses on either the biggest or the smallest
possible sets of players taking action, is rather arbitrary. Compared to these studies, we provide
a clean, elegant method for selecting equilibria. We show that our unique equilibrium can
correspond to neither the maximum nor minimum equilibrium and that the comparative statics
properties as well as the policy implications can be very different in these two types of information
settings.

1.1. Related literature

Our article contributes to the global games literature. Carlsson and van Damme (1993)
first exhibited a selection device for global games of two players and two actions.4

Frankel et al. (2003) extended the result to arbitrary games of strategic complements. In a
two-sided environment, Morris and Shin (1998) provided closed forms to their common limit-
equilibrium cutoff to studying the interaction of a government defending a currency from a
continuum of currency speculators. In the global games literature, most papers consider binary
action global games with symmetric and supermodular payoffs. However, there are remarkably
few papers that look at the extensions with asymmetric payoffs across players. There are certain
papers with heterogeneous payoffs but parametric assumptions that ensured a single coordination
set (Corsetti et al., 2004; Guimaraes and Morris, 2007; Sákovics and Steiner, 2012 are examples).
In particular, Sákovics and Steiner (2012) studied the policy impact of a global game with a
continuum of agents who value an agent-weighted average action. However, a number of papers
have examined cases in which there are multiple coordination sets but with different parameterized
classes of payoffs than ours —including Dai and Yang (2019), Abadi and Brunnermeier (2018),
Drozd and Serrano-Padial (2018), and Serrano-Padial (2018).5

4. They show that the risk-dominant equilibrium is selected in these games.
5. In particular, Dai and Yang (2019) studied a similar model to that of Sákovics and Steiner (2012), in which the

continuum of agents carries private information regarding idiosyncratic costs of adoption, incorporating multiple cutoffs
in the noiseless limit. In this setting, the authors focus on the role of organizations in mitigating miscoordination.
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Compared to this literature, the network structure introduces heterogeneity through the
agents’ network positions. In addition, the application to a network coordination setting grounds
the abstract results from general global games (e.g. Frankel et al., 2003) in an interpretable
environment that enables us to more clearly interpret the implications of the global games
structure.6

Our equilibrium characterization in terms of coordination sets is also related to other network
models, which also partition agents into endogenous community structures, including risk-sharing
(Ambrus et al., 2014), information resale and intermediation (Manea, 2021), and interaction
between market and community (Gagnon and Goyal, 2017). However, the driving forces and
policy implications are very different.

More broadly, this article adds to the growing literature on network games.7 In numerous
situations in which networks are of significance, agents make both binary decisions (extensive
margin) and quantity decisions (intensive margin). Consider, for example, crime. First, an
individual has to decide whether to become a criminal; this is a binary decision (extensive
margin). Then, if he becomes a criminal, he must decide how many crimes to commit (intensive
margin). The literature on network games has mostly focused on the intensive margin by assuming
that actions are continuous. With strategic complements in actions and complete information,
a unique equilibrium is usually obtained under certain condition on the eigenvalues of the
network (see e.g. Ballester et al., 2006; Bramoullé et al., 2014);8 agents with more connections
(in terms of degree/Katz-Bonacich/eigenvector centrality) exert higher effort.9 In the present
article, we focus on the extensive margin by assuming binary actions. We also assume strategic
complements under incomplete information. We show that, in the noiseless limit of our game,
there is a unique equilibrium that we are able to characterize in terms of coordination sets.
Further, we show that it is not only a larger number of connections (interconnectedness)
but also connections to coordination sets with lower cutoffs (embeddedness) that are of
significance.

Finally, we contribute to the literature on both network and global games by making predictions
in terms of adoption curves that substantially differ from leading alternatives in these two
literatures. Indeed, our model generates adoption that is neither smooth nor fully coordinated
but comes in batches. In other words, the share of agents who adopt as a function of the price is
neither a continuous function (as e.g. in Ballester et al., 2006) nor a jump at a single threshold
(as e.g. in Sákovics and Steiner, 2012), but instead a step function. This prediction is unique to
our model.

6. Our results also have bearing on those of the studies on network contagion and community structure
(Chwe, 2000; Morris, 2000; Oyama and Takahashi, 2015; Jackson and Storms, 2017); however, our focus is mainly
on partitioning the network into coordination sets, while these studies examined coordination games on a network to
determine when a convention spreads contagiously from a finite subset of players to the entire population in certain
networks.

7. See Jackson (2008) chapter 9, Jackson and Zenou (2015), and Bramoullé and Kranton (2016) for
surveys.

8. Indeed, in network games with strategic complementarities and complete information (e.g. Ballester et al.,
2006), the uniqueness of equilibrium is guaranteed by an (largest) eigenvalue condition, which requires that the strength
of complementarities (positive cross-effects) is smaller than own-concavity. Ollar and Penta (2017, 2019) generalized
this result for general incomplete information structure, both with and without a common prior, and for general payoff
functions that satisfy weak concavity and smoothness requirements.

9. There is also more recent literature on network games with incomplete information (see, in particular,
Calvó-Armengol and de Martí, 2007; Galeotti et al., 2010; Calvó-Armengol et al., 2015; de Martí and Zenou, 2015;
Golub and Morris, 2017a,b; Myatt and Wallace, 2019; Leister, 2020).
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2. MODEL SETUP

A finite set of agents N , connected via a network G = (N,E), simultaneously choose whether or
not to adopt a technology.10 E defines the set of edges between unordered pairs ij taken from N .
We assume a connected and undirected graph: i∈Nj if and only if j∈Ni, where Ni ≡{j : (i,j)∈E}
is the set of i’s neighbours, and di ≡|Ni| her degree. Let ai ∈�i ≡{0,1} denote agent i’s binary
choice: ai =1 implies that agent i adopts, while ai =0 implies that she does not adopt.

Payoffs from adopting the technology depend on the action profile a= (a1,...,a|N |)∈∏
i∈N �i

and the underlying fundamental state θ ∈�, where � is a bounded interval in R. Specifically, we
assume each i obtains the following payoff:11

ui(a,θ )=
{

vi +θ +φ
∑

j∈Ni
aj if ai =1,

0 if ai =0,
(1)

where vi ∈R, and φ>0. Here, vi provides the intrinsic (state-independent) value to i from
adopting, θ the state dependent value, with the adoption of each of i’s neighbours having a positive
influence on the value of technology. The externality benefit in (1) is equal to φ

∑
j∈Ni

aj, which
is referred to as the local-aggregate model in the network games literature (Topa and Zenou,
2015). Alternatively, we can consider the local-average model, in which the network externality
is equal to the proportion of adopting neighbours rather than to their absolute number—that is,
φ(

∑
j∈Ni

aj)/di. We discuss this alternative model in Section G.6 in the Supplementary Appendix.
In particular, we show that, in the local-average model, if vi =v for all i, for any network structure,
all agents adopt or do not adopt together.12 Further, a more general model with weighted networks
is analysed in Section G.3 in the Supplementary Appendix.

Dominance regions and multiplicity of equilibria. In the stage game where θ is commonly known
among agents, each agent i has a dominant strategy to adopt (not to adopt) when θ is sufficiently
high (low). For each i, we assume vi andφ are such that there exist θ i and θ i in the interior of�, such
that vi +θ +φdi <0 when θ <θ i and vi +θ >0 when θ >θ i. Thus, there exist dominant regions
[min�,θ] and [θ,max�], with θ ≡mini∈N {θ i} and θ ≡maxi∈N {θ i} such that not adopting and
adopting the technology (respectively) are dominant strategies for all players. Obviously, when
θ lies within the dominance regions, a unique Nash equilibrium is obtained; when θ lies outside
the dominance regions, multiple pure strategy Nash equilibria may occur.

In this article, we adopt the global game approach for equilibrium selection (see e.g.
Carlsson and van Damme, 1993; Frankel et al., 2003).

Information structure and the perturbed game. Following the global games literature, we perturb
the stage game of complete information into a Bayesian game of incomplete information. In the
perturbed game, the common state, θ , is observed with noise by all agents.13 Each i receives a

10. For the sake of the exposition, we use the example of technology adoption but, of course, all results subsume
arbitrary binary action sets.

11. In Section G.4 in the Supplementary Appendix, we consider a slightly different utility function in which agents
face miscoordination costs in their adoption choices, while in Section G.5 in the Supplementary Appendix, we introduce
non-strategic externalities in the utility function. In both cases, we show that our main results still hold.

12. Ushchev and Zenou (2020) obtained a similar network-independent result in a continuous action, local-average
network model. Among other things, they showed that, if all agents are ex-ante identical (vi =v for all i), the network
position does not matter, and all agents exert the same effort and adopt the same social norm.

13. Here, we introduce small noises to θ but not to {vi}i∈N . In Section H in the Supplementary Appendix, we consider
an extension in which both θ and vi are perturbed. All of our results continue to hold in this extension as perturbations
shrink to zero.
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private signal si =θ +νεi, ν >0, where εi is distributed via density function g and cumulative
function G with support [−1,1]. All signals are independently drawn across agents conditional
on θ . The agents share a common prior belief regarding θ , which is denoted by the CDF H(·) with
continuously differentiable density h(·)>0.14 For each ν >0, we write �ν for the corresponding
global game.15 We are interested in the perturbed game �ν for ν close to zero.16

3. EQUILIBRIUM ANALYSIS

3.1. Limiting equilibrium and coordination sets

We formally introduce the global games machinery to determine the limiting equilibrium. We
first analyse the Bayesian Nash equilibrium of �ν for each ν >0. Then, we determine the limit
of the equilibrium as ν approaches zero. Here, we apply standard results in the literature (see e.g.
Carlsson and van Damme, 1993 and Frankel et al., 2003) to obtain the existence and essential
uniqueness of the limiting equilibrium, thereby deferring the explicit characterization of the
limiting equilibrium to Section 3.2.

A strategy for i is a measurable function πi that assigns a probability mixture on �i ={0,1}
to each signal si of player i in �ν . We let Sν

i =[min�−ν,max�+ν] be the set of all possible
signals for i and 
ν

i denote the set of strategies for i, and we write πi(si) for the probability that
πi is assigned to action 1 at si. We write π ≡ (π1,...,π|N |).

Let Uν
i (π−i|si) denote the expected payoff for action ai =1 when agent i observes si and each

j �= i uses strategy πj:17

Uν
i (π−i|si)=vi +E[θ |si]+φ

∑
j∈Ni

E[πj(sj)|si].

In other words, i takes expectations of the state and of her neighbours’ actions, conditioning on
her private signal si. Since the payoff for action ai is zero, an optimal strategy for i is to set
πi(si)=1 when Uν

i (π−i|si)>0 and to set πi(si)=0 when Uν
i (π−i|si)<0. We use the indicator

function

πi(si)=I(si ≥ci)=
{

1 if si ≥ci
0 if si <ci

to denote agent i’s cut-off strategy at ci ∈Sν
i . Then, a Bayesian Nash Equilibrium π∗ν of �ν in

cutoff strategies with π∗ν
i =I(si ≥c∗ν

i ) for each i must satisfy18

Ui(π
∗ν−i|si =c∗ν

i )=0, ∀i∈N, (2)

14. The prior distribution H is inconsequential for the limiting equilibrium characterized in Theorem 1 (e.g.
Sákovics and Steiner (2012) assume agents hold a dispersed prior of θ ). However, H affects the analysis of policy
interventions in Section 5.1.

15. The assumption of a common noise structure is without loss of generality, as the limit-equilibrium selection
is robust to arbitrary, idiosyncratic Fi (see Section G.2 in the Supplementary Appendix). Moreover, all results in the
limit hold under unbounded supports—for example, Gaussian state and noise (see Section G.1 in the Supplementary
Appendix).

16. Because, as in all global games models, we use incomplete information as a means of equilibrium refinement,
the critique of Weinstein and Yildiz (2007) applies here: introducing even small amounts of higher-order uncertainty can
enable us to select other equilibria. This is a common critique of the global games literature that we acknowledge.

17. Observe that, in our model, there is no learning over time. Each individual makes a once-and-for-all decision
that involves coordination problems with her friends’ decision. We do not model the learning and dynamic aspect of this
decision. Hak (2019) develops a dynamic learning model by showing how establishments slowly adopt slot machines
over a few years.

18. In other words, Ui(π∗ν−i|si =c∗ν
i )=vi +E

[
θ |c∗ν

i

]+φ
∑

j∈Ni
E[I(sj ≥c∗ν

j )|c∗ν
i ]=0 for every i∈N .
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with each i indifferent between adopting and not adopting when observing signal si equal to her
equilibrium cutoff c∗ν

i . Indeed, a standard fixed-point argument reveals that a pure Bayesian
Nash Equilibrium of �ν in cutoff strategies always exists for ν >0. The properties of the
limit of π∗ν as ν tends to zero are formally presented in Theorem 1 in Frankel et al. (2003)
(which is stated in Proposition 0 in Appendix B). The vector of limiting state cutoffs θ∗ =
(θ∗

1 ,...,θ∗|N |)≡ (limν→0c∗ν
i )i∈N fully determines the limiting equilibrium π∗ = (π∗

1 ,...,π∗|N |),
with each i choosing to adopt when θ rises above θ∗

i —that is, π∗
i =I(θ ≥θ∗

i ). The uniqueness of
π∗ in Proposition 0 in Appendix B implies that the limiting cutoffs θ∗ are unique.

The ranking of the limiting cutoffs determines who has a higher propensity to adopt by taking
a lower cutoff and who has a lower propensity to adopt with a higher cutoff. The next definition
reveals a nice structure that captures the behaviour of agents in the limiting equilibrium.

Definition 1 (Coordination sets) The limiting cutoffs θ∗ map to a unique partition C∗ =
{C∗

1 ,...C∗
M} of N that satisfy:

(i) ∀m∈{1,...M}, ∀i,j∈C∗
m, we have θ∗

i =θ∗
j ;

(ii) for all (i,j)∈E satisfying θ∗
i =θ∗

j , there is some m∈{1,...,M}, such that i,j∈C∗
m.

Each element C∗
m, m=1,2,...,M, of the partition C∗ is called a coordination set.

This definition (i) implies that agents in the same coordination set have the same cutoffs. Item (ii)
requires that any pair of directly connected agents sharing the same cutoff must be in the same
coordination set. Item (i) guarantees that agents with distinct cutoffs cannot coexist in the same
coordination set, while item (ii) eliminates the fact that one could have singletons for reasons
other than everybody adopting a different threshold. Obviously, the limiting cutoffs θ∗ naturally
map to a unique partition C∗ thereby satisfying Definition 1 (i) and (ii).19

Remark 1 The global games approach that we employ functions as an equilibrium selection
device. Indeed, π∗(θ ) is a Nash equilibrium of the stage game (with complete information) at θ .20

The result of Frankel et al. (2003) proves the existence and essential uniqueness of the
equilibrium, but it cannot be used to derive a characterization of equilibrium cutoffs and
coordination sets in our network setting. This is the subject of the next section.

3.2. An algorithmic approach

We provide an algorithm to explicitly characterize the equilibrium cutoffs. To this end, we define
F(·), a mapping from 2N to R, in the following manner:

F(S)≡v(S)+φe(S), for any S ⊂N, (3)

where v(S)≡∑
i∈S vi, and e(S) is the number of edges between members of S. Formally, e(S)≡

1
2
∑

i∈S di(S), where di(S)≡|Ni ∩S| denotes the within-degree of i, or the number of edges between

19. Since θ∗ is unique according to Theorem 1 in Frankel et al. (2003) (which is stated in Proposition 0 in Appendix
B), the partition C∗ is well defined by Definition 1.

20. This well-known result follows from the upper semicontinuity of the equilibrium correspondence, which relies
on the continuity of prior density and noise density. In our setting, the selected equilibrium corresponds to the maximizer
of a potential function of the stage game and has several appealing features.
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i and the members of agent set S. In other words, F(S) captures the total internal intrinsic value
plus network effects for agents in S. The interpretation of F(·) will be evident after we explain
the close link between the equilibrium conditions for agents at cutoffs and the SAND algorithm
introduced below.21

Algorithm 1 (Sequential Average Network Density (SAND))
Step 1.

A∗
1 =argmax

S�∅
F(S)

|S| .

(If there are multiple maximizers, we set A∗
1 to the largest maximizer.

Step k.

A∗
k =argmax

S�A∗
k−1

F(S)−F(A∗
k−1)

|S|−|A∗
k−1|

. (4)

(If there are multiple maximizers, we set A∗
k to the largest maximizer.)

Continue until A∗
k =N.

The SAND algorithm partitions the network into communities or coordination sets (Definition
1), where, within each community, all agents have the same propensity to adopt. Indeed, when the
noise of the signal vanishes, the total expected value of adoption within a community S is equal to
F(S); thus, F(S)/|S| is the average of this value. Consequently, the SAND will first search for A∗

1,
the subset S of agents that maximizes F(S)/|S|. After knowing A∗

1, the algorithm continues and, in
Step 2, searches for S =A∗

2, a proper superset of A∗
1, with the next largest

(
F(S)−F(A∗

1)
)
/|S−A∗

1|
conditioning on the inclusion of A∗

1. Indeed, contrary to Step 1, in Step 2, the algorithm must take
into account the fact that certain members of A∗

2\A∗
1 have links to members of A∗

1 because the
former benefit in terms of network spillovers of being neighbours to agents who have a higher
propensity to adopt. Therefore, the expected value of adoption depends both on links within the
coordination set A∗

2\A∗
1 and on links between coordination sets —that is, between A∗

2\A∗
1 and A∗

1.
The SAND then continues until Step k, when all agents in the network have been selected—that
is, when A∗

k =N .
Let t∗[k] denote the maximum value obtained in Step k:

t∗[k] =
F(A∗

k )−F(A∗
k−1)

|A∗
k |−|A∗

k−1|
. (5)

Observation 1 The SAND algorithm terminates in finite K ≥1 steps. Furthermore, it yields a
sequence of strictly nested sets,

∅�A∗
1 �A∗

2 � ···�A∗
K =N, (6)

and a sequence of strictly decreasing numbers,

t∗[1] > t∗[2] > ···> t∗[K]. (7)

21. A major property of F(·) is supermodularity. In other words, for any S,T ∈2N , F(S∩T )+F(S∪T )≥F(S)+F(T ).
See Lemma C.1 in Appendix C. Observe that A∗

1 is well defined because we prove that, by the supermodularity of F(·),
the union of any two maximizers is again a maximizer and, therefore, the maximal maximizer exists; a similar argument
holds for each step k (see Observation C.2 in Appendix C). Further, for generic v, multiple maximizers cannot occur and,
thus, a unique maximizer is obtained in each step (see Observation C.4 in Appendix C).
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Observation 1 is intuitive. First, 1≤K ≤|N |, as at each Step the cardinality of A∗
k increases

by at least one. Second, the strict monotonicity of the maximum value, t∗[k], in k follows from
a simple optimization argument. To illustrate this point, consider k =1. Since A∗

1 is the largest
maximizer in Step 1 of the SAND algorithm, A∗

2 cannot be a maximizer in Step 1, thereby
implying that F(A∗

1)/|A∗
1|>F(A∗

2)/|A∗
2|, and t∗[1] > t∗[2]. Extending this logic to any Step k yields the

monotonicity of sequence t∗[k] in (7). The sequence of sets in (6) is closely related to coordination
sets in Definition 1, while the sequence of numbers in (7) is tightly linked to cutoffs, as illustrated
in Theorem 1.22

Definition 2 Agent i is said to be found in Step k if i∈A∗
k\A∗

k−1 (defining A∗
0 =∅).

Theorem 1 (Main Equilibrium Characterization) Suppose agent i is found in Step k in the
SAND algorithm. Then, her equilibrium cutoff θ∗

i satisfies

θ∗
i =−t∗[k]. (8)

Theorem 1 provides a simple algorithmic characterization of the limiting equilibrium using
the model primitives (v,φ,G) and indicates that an agent’s cutoff is exactly equal to the negative
value of the maximum obtained in the Step of the SAND algorithm where she is “found.”

We discuss several features of the SAND algorithm and illustrate how it works in two examples.
The economic and empirical implications of Theorem 1 are investigated in Section 3.4.

Remark 2 The computational complexity of the SAND algorithm is low, which is an appealing
feature that makes the computation of equilibrium cutoffs and coordination sets very fast, even
for very large networks.23

Remark 3 Theorem 1 also confirms that the limiting equilibrium π∗ is unique and is
independent of the noise distribution, as the algorithm does not use any details about the noise
distribution. Although these uniqueness and noise independence results are established in a more
general setting in Frankel et al. (2003), our approach using the SAND algorithm provides more
direct and informative proofs of such results in our setting.

Remark 4 The SAND algorithm is closely related to an alternative equilibrium characterization
using the potential function in Leister et al. (2019). By Frankel et al. (2003), the global game
machinery selects the maximizer of the potential P(a,θ ) for generic θ . Thus, we can effectively
infer the cutoffs of agents by identifying the potential maximizers at every state. In Leister et al.
(2019), we formally show how the SAND algorithm is used to determine the state-wise potential
maximizer under this alternative characterization.

22. Observe that SAND is similar to the algorithms in Manea (2011) and Immorlica et al. (2017) in that it identifies
the players with the most extreme equilibrium actions/payoffs, and then applies the same procedure to the remaining
network, which can either be analysed independently or taking the equilibrium actions/payoffs of “extreme” players
as given. The measures driving equilibrium outcomes in our model—interconnectedness and embeddedness—have
analogues in the algorithms of these papers: shortage ratio in the case of Manea (2011) and cohesion in Immorlica et al.
(2017).

23. Note that, in each Step of SAND, the program (4) is a combinatorial optimization problem that is solvable in
polynomial time by supermodularity of F(·) (see e.g. Fujishige, 2005). The total number of steps, K , is at most |N |. Thus,
SAND can be computed in polynomial time.
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(a)     Star network.

c

1p

3p 2p

(b)    Quad-core-periphery network.
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3p 2p

4p

Figure 1

Coordination and network structure.

Remark 5 Leister et al. (2019) provide an alternative characterization of the equilibrium
thresholds θ∗ by solving a simple constrained convex minimization program.24 In contrast to the
discrete nature of the SAND algorithm, this minimization problem is continuous. This program is
less demanding to compute than the SAND algorithm because it is a simple convex program with
linear constraints. The solution can be viewed as the dual to the SAND algorithm and provides
an alternative interpretation to our limit equilibrium.

To illustrate the SAND algorithm, we provide two examples using the networks in Figure 1.
For simplicity, in both examples, we set φ=1 and vi =0 for every i, so F(S)=e(S).

Example 1 For the star network in Figure 1(a), the SAND algorithm terminates in step 1:25

S {c} {c,1p} {c,1p,2p} N
e(S)/|S| 0 1/2 2/3 3/4

Example 2 For the quad-core-periphery network in Figure 1(b), the SAND algorithm
terminates in two steps. In Step 1, A∗

1 ={1c,2c,3c,4c}, as shown in the table below:

S {1c,2c,3c} {1c,2c,3c,4c} {1c,2c,3c,4c,1p} N
e(S)/|S| 3/3 6/4 7/5 10/8

In Step 2, the algorithm terminates with A∗
2 =N.26

3.3. The main idea of the proof of Theorem 1

The intuition underlying Theorem 1 lies in connecting the agents’ indifference conditions at the
equilibrium cutoffs with the combinatorial maximization programs in SAND.

24. In a different context, Nguyen (2015) also developed a new technique based on convex programming to
characterize the unique stationary equilibrium payoff in the setting of Manea (2011).

25. There is a unique coordination set as A∗
1 =N . Note that t∗[1] =e(N)/|N |=3/4.

26. Note that t∗[1] =e(A∗
1)/|A∗

1|=6/4=1.5 and t∗[2] =
e(N)−e(A∗

1)
|N |−|A∗

1 | = (10−6)/(8−4)=1.
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First, each agent i must be indifferent between adopting or not at her cutoff. Taking the limit
of equilibrium condition (2) yields the following equation for i:

θ∗
i +vi +φ

∑
j∈Ni

w∗
ij =0, ∀i∈N . (9)

In other words, the intrinsic value of adopting vi plus the aggregate of w∗
ij over i’s neighbours

must equal −θ∗
i , the minus of i’s cutoff, where

w∗
ij = lim

ν→0
E[I(sj ≥c∗ν

j )|si =c∗ν
i ] (10)

yields the limit of the conditional probability of agent j adopting (i.e., j’s signal sj is above c∗ν
j )

when agent i’s signal si is at her cutoff c∗ν
i . Clearly, 0≤w∗

ij ≤1.

Lemma 1 For each (i,j)∈E,

(i) the following identity holds:
w∗

ij +w∗
ji =1, (11)

(ii) If, in addition, θ∗
i <θ∗

j , then

w∗
ij =0, and w∗

ji =1. (12)

An identity similar to (11) is presented in Carlsson and van Damme (1993) and plays a key
role in the proof of their main theorem of selecting risk dominance equilibrium in the two-player
setting.27 We provide the intuition of (11) along similar lines as in Carlsson and van Damme, as
Lemma 1, similar to their setting, involves a pair of players. Consider two thresholds x1 and x2,
and let ε=ν(ε2 −ε1) be the difference of the two players’ idiosyncratic signal errors. Let G be
the CDF of ε. Upon receiving signal s1 =x1, agent 1 attaches probability 1−G(x2 −x1) to player
2 adopting.28 Upon observing signal s2 =x2, agent 2 attaches probability G(x2 −x1) to player 1
adopting.29 Thus, these two probabilities add up to 1. To understand the intuition of (12), assume
that θ∗

i <θ∗
j . Then, when player i observes the signal at i’s threshold, she infers that the state is

almost θ∗
i for ν >0 small and that j is not going to adopt almost surely (recall j’s threshold is

strictly higher than i’s). Consequently, in the limit as ν →0, w∗
ij =0.

The pairwise information in Lemma 1 regarding these weights w∗
ij is central to our analysis. We

differ from Carlsson and van Damme (1993) with two players in that in our network setting, we
would like to aggregate this pairwise information over a subset of agents to build a link between
the SAND algorithm and equilibrium cutoffs.

Second, we use Lemma 1 to show that, for any S,

F(S)/|S|≤−θ[1],

that is, the negative of the lowest cutoff θ[1] ≡minj∈N θ∗
j provides an upper bound of the average

F over S. This inequality, shown in Lemma C.2 in Appendix C, builds an interesting link between

27. See equation (4.1) on page 997 and Lemma 4.1 on page 999 in Carlsson and van Damme (1993). Technically,
this Lemma is fundamentally driven by the common belief assumption among players. See Morris, Shin, and Yildiz
(2016) and Morris and Yildiz (2019) for more discussion.

28. That is, E[s2 ≥x2|s1 =x1]=Pr(x1 −νε1 +νε2 ≥x2)=1−G(x2 −x1).
29. That is, E[s1 ≥x1|s2 =x2]=G(x2 −x1).
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the lowest cutoff and the maximization program in Step 1 of SAND, and it follows simply by
summing up the agents’ equilibrium conditions (equation (9)) over S:

0=
(∑

i∈S

θ∗
i

)
︸ ︷︷ ︸

≥|S|θ[1]

+
⎛
⎝v(S)+φ

∑
i∈S

∑
j∈Ni

w∗
ij

⎞
⎠

︸ ︷︷ ︸
≥v(S)+φe(S)=F(S)

. (13)

The first inequality in (13) is obvious, since θ[1] is the lowest cutoff. The second inequality
follows, as each link among the members of S contributes φ in the double summation above by
Lemma 1, and these extra terms in the summation are non-negative.

In fact, the upper bound −θ[1] is achievable for S =A1 ={i∈N |θi =θ[1]} (the set of agents
with the lowest cutoff), as both inequalities in (13) are equalities for A1:

F(A1)

|A1| =−θ[1] ≥ F(S)

|S| , ∀S.

In other words, A1, the set of agents who have the highest propensity to adopt (with the lowest
cutoff), is a maximizer to the program in Step 1 of SAND. It turns out that A1 is the largest
maximizer, that is, A1 =A∗

1.30 Further, the minus of the maximum value in Step 1 corresponds to
the lowest cutoff in the equilibrium (θ[1] =−t∗[1]).

After establishing that A1 =A∗
1 (i.e. the output in Step 1 of the SAND algorithm is exactly

the set of nodes with the lowest cutoff), the algorithm continues and in Step 2 selects the subset
of nodes with the second-lowest cutoff. The process then continues until it stops when all the
players are included.

3.4. Social connectedness in networks

The algorithmic approach in Theorem 1 provides a new method of determining who has the
highest propensity to adopt and why. In the standard network games with continuous actions (see
e.g. Jackson, 2008, Jackson and Zenou, 2015, Bramoullé and Kranton, 2016), the most central
agents (in terms of degree, Katz–Bonacich, or eigenvector centrality) or, equivalently, the most
interconnected agents are the ones who exert the highest efforts. This is not necessarily true in our
model. In fact, in our model, the agents with the highest social connectedness—that is, those with
high interconnectedness and high embeddedness—are the ones who have the highest propensity
of adopting. Let us first explain the notions of social connectedness in our framework and then
define it formally.

Consider the network in Figure 2 (for simplicity, we set φ=1 and vi =0 for every i; thus,
F(S)=e(S)). The SAND stops in three steps with

A∗
1 =S1, A∗

2 =S1 ∪S2,A
∗
3 =S1 ∪S2 ∪S3 =N,

where S1 ={1,2,3,4,5,6}, S2 ={i,j,k}, and S3 ={i′,j′,k′}. Indeed, in Step 1, the SAND algorithm
finds the subset that has the highest average degree e(S)/|S|, which is clearly A∗

1 =S1 with t∗[1] =
e(S1)/|S1|=5/2. Next, in Step 2, the SAND algorithm determines the subset S, which has the

30. To show the maximality, we note that the second inequality in (13) is strict whenever S contains any node with
a strictly higher cutoff than the lowest cutoff; thus, such S cannot be a maximizer.
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Figure 2

Interconnectedness versus Embeddedness.

highest value of
e(S)−e(A∗

1)
|S|−|A∗

1| (see (4)). It turns out that A∗
2 =S1 ∪S2 and t∗[2] =5/3. In Step 3, the

SAND algorithm terminates with A∗
3 =N and t∗[3] = 4

3 . Thus, we end up with three coordination
sets: C∗

1 =S1, C∗
2 =S2, and C∗

3 =S3.
What is notable is that agents in S2, instead of S3, are found in Step 2 since

t∗[3] =
e(S1 ∪S3)−e(A∗

1)

|S1 ∪S3|−|A∗
1| = 4

3
<

e(S1 ∪S2)−e(A∗
1)

|S1 ∪S2|−|A∗
1| = 5

3
= t∗[2].

This implies, in particular, that agent j∈S2 has a higher propensity to adopt than agent i′ ∈S3,
although j has fewer links than i′. Note that this observation holds for any value of φ in our model
(see Remark 6 and footnote 35). On the contrary, using Katz–Bonacich centrality (Ballester et al.,
2006), i′ is more influential than j when the peer effect is not overly strong.31

To understand this puzzling observation, we formally define the concept of social connected-
ness, which encompasses two (new) notions—interconnectedness and embeddedness—through
the lens of SAND and show that they are both of significance in determining who has the higher
propensity to adopt in the network. Define L(S′,S′′) for S′ ∩S′′ =∅ to be the number of links from
agents in S′ ⊂N to agents in S′′ ⊂N .32 Then, for S �A∗

k−1, we have

e(S)−e(A∗
k−1)=e(S\A∗

k−1)+L(S\A∗
k−1,A

∗
k−1),

such that Step k in SAND in (4) can be written in the following manner by setting T =S\A∗
k−1:33

max
∅�=T⊆N\A∗

k−1

interconnectedness︷︸︸︷
e(T )

|T | +

embeddedness︷ ︸︸ ︷
L(T ,A∗

k−1)

|T | . (14)

In other words, e(T )/|T |, which measures the average number of links within T =S\A∗
k−1,

corresponds to our concept of “interconnectedness,” while L(T ,A∗
k−1)/|T |, which measures the

average number of links between T and A∗
k−1 (note that the agents in A∗

k−1 have lower cutoffs and
adopt earlier than those in T ), corresponds to our concept of “embeddedness.” Together, the sum

31. Ballester et al. (2006) provide a microfoundation of Katz–Bonacich centrality using a network game with
continuous actions. Since i′ has a higher degree than j, i′ has a higher Katz–Bonacich centrality than j when the peer
effect φ>0 is not too strong (see Ballester et al., 2006).

32. Formally, L(S′,S′′)=∑
i∈S′ di(S′′), which also equals

∑
j∈S′′ dj(S′).

33. See Observation C.1 in Appendix C for the reformulation in the general case with vi >0 and φ that can take
any value.
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e(T )+L(T ,A∗
k−1) divided by the size of the set T , captures our notion of “social connectedness”

(see (14)).
Using this new concept, we can now easily explain why agents in S2 have a higher propensity

of adopting than agents in S3. Indeed, S2 is less interconnected than S3, as e(S2)
|S2| = 2

3 <
e(S3)
|S3| =1,

but it is more embedded than S3, as
L(S2,A∗

1)
|S2| =1>

L(S3,A∗
1)

|S3| = 1
3 . Because 2+3

3 > 3+1
3 , S2 clearly

has higher social connectedness than S3.34

We believe that this result—that is, more socially connected groups of people are more likely
to adopt—is demonstrably new and has intuitions that resonate and extend beyond our specific
model. Let us explain this intuition and why it is different from other standard network games
with complementarities, like that of Ballester et al. (2006) (BCZ hereafter). In BCZ, what matters
the most is the complementarity in actions between agents, so the agents who exert the highest
efforts are the ones who generate and receive the largest spillovers from their neighbours. This
is captured by how interconnected each agent is or, equivalently, her Katz–Bonacich centrality.
In our model, we also have complementarity in actions but, on top of it, we have a coordination
problem since agents do not know with certainty whether certain neighbours adopt and, thus, the
level of spillovers to which they are exposed. This is why both links within a coordination set
(interconnectedness) and between coordination sets (embeddedness) are of significance. In the
former, agents need to form expectations regarding their neighbours adopting within the same
coordination set (see Lemma 1 (i)), while in the latter, they place a probability of either 0 (higher-
cutoff agents) or 1 (lower-cutoff agents) on their neighbours adopting within other coordination
sets (see Lemma 1 (ii)).

4. NETWORK TOPOLOGY AND COORDINATION SETS

Throughout this section, we assume that Assumption 1 holds.

Assumption 1 (Homogeneous intrinsic valuations) vi =v for each i∈N.

Remark 6 Under Assumption 1, C∗ is independent of v and of φ.

Under homogeneous intrinsic values, scaling the size of common valuation v or the size of
network effects φ has no effect on the coordination sets. Moreover, the cutoff θ∗ is linearly
augmented by v and φ.35 Under such homogeneity, we analyse how the network topology in and
of itself shapes the coordination sets in subsequent subsections.

4.1. Networks with a single coordination set

In this section, we identify which classes of networks have a single coordination set. The following
proposition provides the necessary and sufficient conditions for this property.

Proposition 1 (Single coordination set) Under Assumption 1, a network G yields a single
coordination set if and only if it is balanced, in the sense that for every non-empty S ⊂N,

e(S)

|S| ≤ e(N)

|N | . (15)

34. To further see this point, let us consider another subset with three agents, S̃ ={i,k,i′} with e(S̃)=1 and L(S̃,A∗
1)=

3. Note that S̃ is equally embedded as S1 but is less interconnected than S1.

35. Moreover, under Assumption 1, θ∗ =−v1+φθ̂∗, where θ̂∗ denotes the cutoffs at v=0 and φ=1.
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From the lens of the SAND algorithm, the balanced condition in Proposition 1 is a necessary
and sufficient condition for SAND to terminate in one step—that is, K =1. The condition in (15)
states that a network G is balanced if the average degree of each subnetwork GS is no greater than
the average degree of the original network G. The following alternative condition for balancedness
is useful for certain applications.

Remark 7 G is balanced if and only if there exists w={wij,(i,j)∈E}, such that for all i,j∈N:

(i) wij ≥0, (ii) wij +wji =1, and (iii)
∑

k∈Ni
wik = e(N)

|N | .

Indeed, suppose G is balanced. Then, the SAND algorithm terminates in one Step and, thus, we
set wij equal to the w∗

ij defined in (9). Conditions (i), (ii), and (iii) are then clearly satisfied by
Lemma 1 and equilibrium condition (9). Conversely, if there exists w which satisfies these three
conditions, then we can directly verify that

e(S)=1/2
∑

i,j∈S:(i,j)∈E

(wij +wji)≤
∑
i∈S

∑
j∈Ni

wij =
∑
i∈S

e(N)

|N | =|S|e(N)

|N | , for all S ⊂N .

The first equality follows by (ii), and the inequality follows by (i). Thus, G is balanced.36

Applying Proposition 1 or Remark 7, we find that seemingly disparate classes of network
structures do satisfy this balancedness condition. Hence, for economies in which intrinsic
valuations are the same across individuals, each of these networks would induce a single
coordination set. Network G is called regular if di =d for all i. A tree is any connected network
without cycles. We say network G is a regular bipartite network with disjoint within-set symmetric
agent sets B1 and B2, with B1 ∪B2 =N , and of sizes ns ≡|Bs| and degrees ds ≡di for each i∈Bs
for sides s=1,2.

Proposition 2 (Classes of balanced networks) Under Assumption 1, there exists a single
coordination set if G has at least one of the following properties:37

(1) it is a regular network; or
(2) it is a tree network; or
(3) it is a regular bipartite network; or
(4) it has a unique cycle; or
(5) it has a maximum of four agents.

Proposition 2 provides a (non-exhaustive) list of networks that have one coordination set. Members
of all trees, regardless of their size and complexity, adopt together using a common limit cutoff.
This generalizes the star network of Example 1. Parts (2) and (4) establish the existence of at least
two distinct cycles in G as a necessary (but generally insufficient) condition for multiple limit
cutoffs in equilibrium.38 More generally, for any network of each of these families, there exists
no proper subset of agents who have greater average within-degree (i.e. interconnectedness) than
the entire network.

36. The w satisfying these three conditions might not necessarily correspond to w∗ defined in (9) using the
equilibrium cutoffs.

37. Note that we assume that G is connected throughout the article.
38. The statement in Proposition 2(4) cannot be extended to networks with multiple non-overlapping cycles. Certain

networks with multiple non-overlapping cycles are balanced, while some are not.
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In summary, to determine the (possible) presence of a single coordination set in a network,
the only aspect that needs to be checked is that the balanced condition given in (15) or Remark
7 is verified. If this condition is verified for each subset of agents, then we know that there is
a single, network-wide coordination set with a common threshold given by Theorem 1. If this
condition is not satisfied for at least a subset of agents, then one can use Algorithm 1 (SAND) to
construct the coordination sets and cutoffs and the notion of social connectedness to determine
who adopts at each Step (see e.g. Example 2).

4.2. Who has the highest propensity to adopt?

When the balanced condition is met, all the agents adopt together. When this condition fails, we
determine who has the highest propensity to adopt in the network. We provide a characterization
of the first coordination set in the following proposition.

Proposition 3 Under Assumption 1, the set of agents in N who have the highest propensity of
adopting, that is, A∗

1 is the unique nonempty set A⊂N that simultaneously satisfies the following
conditions:

(i) For any non-empty subset A of A, the average density of A is no greater than that of A,
that is,

e(A)

|A| ≤ e(A)

|A| , ∀∅�A⊆A.

(ii) For any nonempty subset T of N\A, the average number of links across T and A is smaller
than the difference in average densities between A and T, that is,

L(T ,A)

|T | <
e(A)

|A| − e(T )

|T | , ∀∅�T ⊆N\A.

Condition (i) implies that the subnetwork GA itself must be balanced; otherwise, agents in A
cannot adopt together. Condition (ii) states that, for any set of agents who have a lower propensity
of adopting than A, it must be the case that either the density among themselves (i.e. e(T )

|T | )

is low or the average number of links connecting to A (i.e. L(T ,A)
|T | ) is small. Interestingly, the

former corresponds to our notion of interconnectedness, while the latter corresponds to that of
embeddedness. In fact, condition (ii) is equivalent to saying that, for any strict superset Ā of A,

the average density of Ā is strictly lower than that of A, i.e., e(Ā)
|Ā| <

e(A)
|A| .

Clearly, if A is indeed A∗
1 (the agents found in Step 1 of the SAND algorithm), then it has the

largest density among all S. In particular, conditions (i) and (ii) must hold. Interestingly, these two
conditions are sufficiently strong to uniquely pin down A∗

1. Practically, Proposition 3 provides a
way to determine who has the highest propensity of adopting by checking these two conditions
instead of solving the full limiting equilibrium and cutoffs.

We revisit Examples 1 and 2 to illustrate Proposition 3. In Example 1, the star network is
balanced; hence, item (ii) is automatically satisfied for A=N . Indeed, all agents adopt together.
In Example 2, let A={ic,i=1,...,4} denote the core nodes. The subnetwork GA is regular with
degree 3; therefore, it is balanced (see Proposition 2 case (1)). Condition (ii) in Proposition 3
also holds, as each spoke node has only one link to the core, which has an average density of
3/2. Consequently, the members in the core have the highest propensity of adopting in the unique
limiting equilibrium for this example.
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As we have seen, the SAND algorithm is central to our analysis. If we are concerned
about knowing who has the second-highest propensity to adopt, A∗

2, we can formulate similar
conditions as those in Proposition 3 using the intuition guided by SAND. Even though we focus on
homogeneous intrinsic values to highlight the impact of network topology, the analysis throughout
this section can easily be extended by incorporating heterogeneous intrinsic values. To provide
an example, the balanced condition with heterogeneous intrinsic values becomes F(S)

|S| ≤ F(N)
|N | for

any S.

5. POLICY INTERVENTIONS

In this section, we consider the policy implications of our model by first studying the changes in
the intrinsic valuations and then studying the changes in network structure.

5.1. Changes to intrinsic valuations

We first investigate how the equilibrium adjusts as intrinsic valuations change.

Proposition 4 (Local contagion)

1. For a generic v, there exists a nonempty open neighbourhood N (v) around v, such that,
for any v′,v′′ ∈N (v), the coordination sets under v′ are the same as those under v′′.

2. The mapping θ∗(v) is piecewise linear, Lipschitz continuous, and monotone. For generic
v, for each i,j∈C∗

m, and k /∈C∗
m:

∂θ∗
j

∂vi
= −1

|C∗
m| , and

∂θ∗
k

∂vi
=0. (16)

Proposition 4(1) states that, in each Step of the SAND algorithm, the solution to the
maximization problem is locally invariant in v. Indeed, v affects the values of F(·) continuously,
while the argument of F(·) is discrete. For generic v, in each Step of SAND, the solution A∗

k as
well as the partition C∗ remain fixed.

Proposition 4(2) indicates that, increasing the intrinsic value of agent i, vi, reduces the common
cutoff value θ∗

j for any agent j in the coordination set C∗
m containing i such that all these individuals

are now more likely to adopt. However, for each k not in C∗
m, the effect of the shock to i does not

affect k’s cutoff. Thus, this shock to i remains local to i’s coordination set. Strikingly, the effect
of increasing vi lowers cutoffs at a rate inversely proportional to the size of the coordination set,
|C∗

m|. In other words, as the number of agents coordinating together increases, the coordination
set responds more slowly to an increase in vi. Intuitively, the agents in C∗

m continue to coordinate
together for small shocks (Proposition 4(1)). As we change vi by one (infinitesimal) unit, the
aggregate intrinsic valuations within C∗

m adjust by exactly one unit, while the network effects
—captured by the partition—remain the same. Thus, the average incentive to adopt across the
coordination set C∗

m increases by exactly one unit.39 We also see with (16) that the cutoffs depend
on network G only through the network’s impact on the partition C∗.

Our local contagion result in Proposition 4(2) is related to that of Ambrus et al. (2014), who
developed a model in which the network captures the connections between individuals and serves

39. This observation that the size of the coordination set is not relevant for the overall impact of a marginal subsidy
is related to a similar observation in Sákovics and Steiner (2012), who showed that the population size of the target groups
is not relevant for subsidy targeting.
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as social collateral to enforce informal insurance payments. They showed that the network can
be partitioned into endogenously organized connected groups called “risk-sharing islands.” This
partition has the property that agents fully share shocks within but only imperfectly across islands;
thus, insurance and spillovers are local.40

In Proposition 4, we established that, following perturbations to intrinsic value vi, there is a
homogeneous response for members of the same coordination set but unresponsiveness to these
perturbations for agents outside the perturbed agent’s coordination set. Given these results, we
ask a few important questions from a planner’s perspective. What marginal benefits are realized
with adoption subsidies? And which agents’ adoptions must be subsidized?

To address these questions, we first put forward the following planner’s problems. Consider
a planner who shares prior H(·) over θ and holds no private information.41 The planner has a
fixed budget B to be allocated to the users. Recall that, for each given v, Theorem 1 explicitly
gives the limiting equilibrium π∗ = (π∗

1 ,...,π∗|N |), where π∗
i (θ )=I(θ ≥θ∗

i ),i∈N . Here, we did
not explicitly mention the dependence of θ∗

i on v. Using this equilibrium, we define TA(v) as the
expected aggregate adoption:

TA(v)≡
∑
j∈N

E[π∗
i (θ )]=

∑
j∈N

(1−H(θ∗
j )), (17)

and TW (v) as the expected aggregate welfare:

TW (v)≡E[W (π∗(θ ),θ )], (18)

where W (a,θ )=∑
i∈N ui(a,θ ).

We assume that the planner can subsidize but cannot tax agents. Given a budget B>0, the
planner can allocate funds subject to the following feasible budget set:

K(v,B)≡
⎧⎨
⎩ṽ∈R|N | : ṽj ≥vj,∀j∈N, and

∑
j∈N

ṽj −vj ≤B

⎫⎬
⎭.

We say that a policy ṽ∈K(v,B) is “expended” if
∑

j∈N ṽj −vj =B.
An adoption–maximization planner, henceforth, an “A-planner,” solves maxṽ∈K(v,B)TA(ṽ). A

welfare-maximization planner, henceforth, a “W-planner,” solves maxṽ∈K(v,B)TW (ṽ). Recall the
sequence of nested sets (A∗

1,A∗
2,...,N) derived in SAND; we define A∗

0 ≡∅. By Proposition 4(1),
for generic v, there exists an open neighbourhood N (v) of v such that the coordination sets are
locally constant in N (v). When B is sufficiently small, the solutions to these problems are simple
and are characterized as shown below.

40. The local effect of “contagion” is consistent with the results of several empirical studies. For example,
Angelucci et al. (2018) showed that Progresa, a conditional cash transfer program in rural Mexico, had a positive impact
on the consumption of the untreated (i.e. spillover effects), but this was mainly due to increase in the consumption
of households who were relatives of the treated. Similarly, using an educational program targeted to very young kids
(early childhood) in disadvantaged neighbourhoods in Chicago, List et al. (2020) showed that there were very strong
spillover effects from treated to untreated kids, but these spillover effects were local: they mainly operated within a 5 km
radius. Rosenthal and Strange (2008) also indicated that human-capital spillover effects (i.e. proximity to college-educated
workers) attenuate with geographical distance, and most of the spillover effects occur within five miles.

41. One can interpret this to capture either the agents’ expertise relative to the planner or the fact that the policy
faced by the planner takes place before the realization of private information.
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Proposition 5 (Optimal policies) For sufficiently small B, the set of solutions to the A-planner’s
problem is given by the set of expended ṽ satisfying ṽi >vi, if and only if i maximizes H ′(θ∗

i ), and
the set of solutions to the W-planner’s problem is given by the set of expended ṽ satisfying ṽi >vi
if and only if i∈C∗

m ⊆A∗
k maximizes:

1−H(θ∗
i )+φ

(
L(C∗

m,A∗
k−1)+e(C∗

m)

|C∗
m|

)
H ′(θ∗

i ). (19)

Let us interpret (19). First, the aggregate marginal welfare is now decreasing in θ∗
i through the

direct effect on target i’s ex ante welfare, quantified by (1−H(θ∗
i )), for i∈C∗

m. Second, the W-
planner values the additional externalities among members of the targeted coordination set, as
these agents jointly increase their total adoption. Third, adoption subsidies can generate positive
welfare gains to coordination sets that may not contain the target agent i. More precisely, provided
that an agent j is either in C∗

m (along with i) or takes cutoff θ∗
j <θ∗

i and is a neighbour to a member
of C∗

m, agent j obtains additional value in all additional state realizations in which her neighbours
in C∗

m begin to adopt. Collectively, these components determine (19).

Remark 8 The targeting problems of the A-planner and the W-planner each reduce to targeting
key coordination sets rather than key players when B is sufficiently small.

The choice of targeting coordination sets that maximize H ′(θ∗
i ) can be interpreted in the

following manner. A subsidy to member i’s adoption increases adoption among other members
of C∗

m, while having no influence on members of other coordination sets. The effect on the adoption
of each member of C∗

m is inversely proportional to |C∗
m| by Proposition 4. Therefore, the aggregate

marginal effect of these adoption-based policies is left as a function of the targeted coordination
set C∗

m through the steepness of H at θ∗
i (which captures the probability of occurrence of the

state).
The next remark follows immediately as a corollary to Proposition 5. For this, assume that

SAND terminates in K >1 steps.42

Remark 9 Assume that B is sufficiently small. For H ′(.) decreasing, the A-planner and the
W-planner both target members of A∗

1. For H ′(.) increasing, (i) the A-planner targets members of
A∗

K\A∗
K−1 and (ii) there exists φ̄ >0, such that, if φ<φ̄, then the W-planner targets members of

A∗
1.

The A-planner maximizes adoption and, therefore, H ′(θ∗
i ) (Proposition 5), the probability density

function of the occurrence of θ . Thus, when H ′(.) is decreasing—that is, low values of θ are more
likely to occur—the A-planner will always subsidize individuals belonging to the coordination
set with the lowest θ and, thus, targets members of A∗

1. When H ′(.) is increasing, the reverse is
true and, thus, the A-planner targets members of A∗

K\A∗
K−1.

The W-planner maximizes welfare, which is equivalent to maximizing (19) (Proposition 5).
In other words, contrary to the A-planner, the W-planner takes into account both the direct effect
of the subsidy of individual i on the probability 1−H(θ∗

i ) that she adopts as well as the indirect
effect on the adoption of i’s neighbours, which depends on φ, the intensity of the spillover

effect,
(

L(C∗
m,A∗

k−1)+e(C∗
m)

|C∗
m|

)
, the social connectedness of C∗

m that contains i, which is the sum of

42. By Proposition 4(1), K , like the coordination sets, does not vary with v locally.
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its “interconnectedness” e(C∗
m)/|C∗

m| and its “embeddedness” L(C∗
m,A∗

k−1)/|C∗
m|, and H ′(θ∗

i ),
the probability of occurrence of θ∗

i . If H ′(·) is decreasing, then the W-planner will always target
members of A∗

1 since they are more likely to adopt because the probability that the state θ has a low
value is very high. In this case, only i and members of i’s coordination set A∗

1 will benefit from this
subsidy policy since there are no spillover effects to higher coordination sets (local contagion).
If H ′(·) is increasing, then there is trade off. On the one hand, because of the direct effect of the
subsidy, the W-planner wants to target individuals with the lowest θ —that is, members of A∗

1—
because they have the highest probability to adopt. On the other hand, because of the indirect
effect of i’s neighbours, the W-planner wants to target members of the coordination set that has
high social connectedness,—that is, numerous links within the same coordination set C∗

m (i.e.
high “interconnectedness”) and numerous links with coordination sets with lower cutoffs (i.e.
high “embeddedness”). Remark 9 reveals that, when φ is sufficiently small, the indirect effect is
negligible and only the direct effect matters. Thus, the W-planner will always target members of
A∗

1, which is the extreme opposite of what the A-planner will target in this case.
Clearly, when φ is sufficiently large (i.e. φ>φ̄), Remark 9 will no longer hold for the W-

planner when H ′(·) is increasing. The W-planner’s key coordination set will lie in some A∗
k ,

where the value of k will depend on the social connectedness of the coordination set. Let us
illustrate this with the network in Figure 2 and, for the sake of simplicity, set vi =0 for every
i, such that F(S)=φe(S). It is evident that the members of S1 ={1,2,3,4,5,6} have the highest
propensity of adopting (θ∗

1 =−5φ/2), those in S2 ={i,j,k} have the second highest propensity
of adopting (θ∗

2 =−5φ/3), and those in S3 ={i′,j′,k′} have the lowest propensity of adopting
(θ∗

3 =−4φ/3).
Assume that H ′(.) is increasing (states with higher θ are more likely to occur) and φ>φ̄. We

have seen in Section 3.4 that

L(S2,A∗
1)+e(S2)

|S2| = 3+2

3
= 5

3
>

4

3
= 1+3

3
= L(S3,A∗

1)+e(S3)

|S3| .

In other words, the coordination set S2 has higher social connectedness than S1. Consequently,
the W-planner may want to target the coordination set S2 because, compared to members of S3,
they have a higher social connectedness and a higher propensity to adopt. Further, compared to
members of S1, they have a lower probability of adopting but generate more externalities. Indeed,
when the W-planner subsidizes an individual i member of S2, it reduces the cutoff θ∗

i of all
members of S2 but also generates positive externalities on members of S1. On the contrary, when
it subsidizes a member of S1, there are no positive externalities on members of other coordinations
sets (local contagion).

Observe that, if the planner had a bigger budget, B, she would then be able to offer larger
subsidies. In this case, the planner would be more likely to subsidize nodes rather than coordination
sets because she will influence the manner in which the coordination sets are determined. In
particular, the planner will subsidize highly interconnected and embedded agents to maximize
either total welfare or total adoption. The problem is that, in this case, we would not have obtained
the simple analytical results as in Proposition 5 and Remark 8.

5.2. Changes to the network structure

In this subsection, we consider two policies that affect the network structure.

5.2.1. Key players. In the previous subsection, we analyse a policy that aims at
subsidizing agents in the network. The network literature has also focused on targets in networks,
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particularly key players. In the context of crime, Ballester et al. (2006) defined the key player(s)
as the player who, once removed, reduces total crime the most (see Zenou, 2016 for an overview
of the key-player policies). Let us now consider this policy in our model.

Consider a crime model (instead of a technology adoption model) in which ai =1 implies that
agent i commits a crime, and ai =0 implies that agent i does not commit a crime. The objective
of the planner is to find the key player(s)—that is, the player(s) whose removal from the network
leads to the highest total crime reduction.

Contrary to Ballester et al. (2006), we cannot calculate a precise formula that determines
the key players in each network (the so-called intercentrality measure). However, we can still
determine the key players using the SAND algorithm. The process is to start with a network
of n players and first remove player 1. Then, run the SAND algorithm, and obtain the different
coordination sets. Then, for a given distribution of H(θ ), we calculate the total expected crime
rate. Next, remove player 2 (while adding player 1 back), and proceed in the same manner to
determine the total expected crime. Continue until we reach player n. The key player is the one
that leads to the highest reduction in total expected crime. We then ascribe a key-player ranking
of all players in the network in terms of reduction of total expected crime.

In Appendix E.1, we illustrate this methodology with an example and compare the rankings
of the key players in our model with those in Ballester et al. (2006)’s model. We show that
the key-player rankings are in fact relatively similar but may differ because our concept of
social connectedness (i.e. interconnectedness and embeddedness) is different but related to the
intercentrality measure of key players in Ballester et al. (2006).

5.2.2. Adding links. Next, we investigate how adding a link in the network affects
adoption. Consider the network G+ij, which is defined as the network created by adding the
additional link ij in G, and C∗+ij, which is the limit partition under G+ij. While adding links may
affect the limit partition, SAND can be employed to verify when the coordination set is unchanged
(C∗+ij =C∗) or changed (C∗+ij �=C∗). Let θ∗

k and θ∗
k,+ij correspond to the cutoffs of agent k under

networks G and G+ij, respectively.

Proposition 6 (linkage) Take i,j with i∈C∗
m, ij /∈E.

(i) Assume that C∗+ij =C∗. If

(i1) j /∈C∗
m with θ∗

i >θ∗
j , then

θ∗
i −θ∗

i,+ij =φ
1

|C∗
m| , and θ∗

j,+ij =θ∗
j ;

(i2) j∈C∗
m, then

θ∗
i −θ∗

i,+ij =φ
1

|C∗
m| .

(ii) Assume that C∗+ij �=C∗. If

(ii1) j /∈C∗
m with θ∗

i >θ∗
j , then θ∗

i >θ∗
i,+ij ≥θ∗

j,+ij , where θ∗
j,+ij =θ∗

j if θ∗
i,+ij �=θ∗

j,+ij;
(ii2) j∈C∗

m, then i and j are in the same coordination set in C∗+ij .

First, consider part (i) of Proposition 6 when C∗+ij =C∗. We establish a disparity in the effects
of adding links on equilibrium cutoffs. While the addition of a link between agents belonging to

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdab022/6243732 by U

niversity of Exeter user on 30 M
ay 2021



Copyedited by: ES MANUSCRIPT CATEGORY: Article

[13:51 6/5/2021 OP-REST210023.tex] RESTUD: The Review of Economic Studies Page: 23 1–39

LEISTER ET AL. SOCIAL CONNECTEDNESS LOCAL CONTAGION 23

two different coordination sets (part (i1)) unambiguously encourages adoption among agents who
take higher cutoffs, the equilibrium adoption of the agent taking a lower cutoff is not influenced
by the additional link. In other words, the inclusion of links between agents i and j in distinct
coordination sets will likely expand the adoption outcomes within i’s coordination set, taking
a higher cutoff, but have zero influence on adoption within j’s coordination set, taking a lower
cutoff. Now, consider the case in which the additional link is between agents belonging to the
same coordination set (part (i2)). While the inclusion of link ij for agents i and j in the same
coordination set directly influences incentives to adopt within the coordination set, the decrease
in the equilibrium cutoff is comparable to that resulting from a single link to an agent who takes
a lower cutoff.

Now consider part (ii) of Proposition 6, when C∗+ij �=C∗. The additional link between i and j
always decreases the cutoff of i, taking a higher cutoff, toward the cutoff of j. If the link does not
bring the two agents into the same coordination set, then j’s cutoff is unchanged. Otherwise, the
link brings the two agents into the same coordination set. In other words, the addition of a link
never causes a linking agent who initially takes a higher cutoff to jump the other agent’s cutoff.
Intuitively, linkage only increases the incentives of the two agents to coordinate their adoption
choices.

We illustrate these results with an example in Appendix E.2 and show the importance of social
connectedness when adding links.

5.3. Complete versus incomplete information

We now explain our contribution with respect to the complete-information case. First, in most
real-world situations, incomplete information is ubiquitous and agents have limited information
on the state variable θ (e.g. the benefits of a new technology, a new crop, or the value of
migrating). Second, in supermodular games with complete information (Topkis, 1998; Vives,
1990; Milgrom and Roberts, 1990)—where agents can perfectly observe the state of the world
defined as a common component to the technology’s value—the set of pure strategy Nash
equilibria is a complete, non-empty sub-lattice and contains the greatest (maximal equilibrium)43

and lowest (minimal equilibrium)44 elements. In these types of games in which multiple equilibria
prevail, the minimal or the maximal equilibrium is usually selected.45

In Supplementary Appendix I, using a simple example, we show that the unique equilibrium
we select using the global game does not always correspond to the minimal or maximal
equilibrium. We also show that the comparative statics properties of these equilibria can be
rather different between the complete and incomplete information cases.

6. NEW PREDICTIONS ON ADOPTION

In this section, we compare the predictions of our model (referred to as LZZ) to leading alternatives
in the literature of network games (e.g. Ballester et al., 2006 (BCZ)), and of global games (e.g.
Sákovics and Steiner, 2012 (SS)). We introduce prices in these three models and show that our
model generates adoption that is neither smooth nor fully coordinated but comes in batches.46

43. The equilibrium in which the largest possible set of people (in set inclusion) take the action, given the underlying
state of the world.

44. The equilibrium in which the smallest possible set of people (in set inclusion) take the action, given the
underlying state of the world.

45. For example, the selection of extreme equilibrium is employed in Elliott et al. (2014) on financial networks and
in Immorlica et al. (2017) on social status.

46. For the technical details of these three models with price, see Appendix F.
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Demand DBCZ(p)

price pr

low φ

high φ

Figure 3

Aggregate demand in Ballester et al. (2006)

In other words, the share of agents who adopt as a function of the price is neither a continuous
function (as in BCZ; see Figure 3) nor a jump at a single threshold (as in SS; see Figure 4) but
instead a Step function (Figure 6). We then derive the comparative statics results of these models
by showing how the adoption curves change for increased spillover effects, φ, which is a common
parameter in all three models. We provide the intuition of our results and show how our model
can guide future empirical research.

6.1. Price, aggregate demand, and comparative statics in Ballester et al. (2006) (BCZ)

In Appendix F.1, we introduce price p in the model of BCZ and derive the aggregate demand
DBCZ (p) (given by (F.14)). Typically, DBCZ(p) is first linear in p with slope b(G,φ), the aggregate
Katz–Bonacich centrality in the network, and then truncated at the cutoff point r (see Figure 3),
above which the aggregate demand is zero. In particular, DBCZ (p) is continuous in price p. When
the spillover effect φ increases, b(G,φ) increases and, thus, the demand becomes more responsive
to price change as the slope becomes steeper (see Figure 3).

6.2. Price, aggregate demand, and comparative statics in Sákovics and Steiner (2012) (SS)

In Appendix F.2, we introduce price p in the model of SS and derive the aggregate demand DSS(p)
in (F.16) for a given realization of the state θ and for ν →0. For the adoption curve, there is a
jump at a single threshold p=p∗ (given by (F.15)), for which all agents adopt if p is below p∗,
and do not adopt otherwise. This feature follows from the common limiting threshold property
in SS. Further, when φ—the benefit of adopting—increases, the threshold p∗ increases and, thus,
the aggregate demand DSS(p) shifts to the right (Figure 4).

6.3. Price, aggregate demand, and comparative statics in our model (LZZ)

In Appendix F.3, we introduce price p in our model and derive the aggregate demand DLZZ (p)
in (F.17) for a given realization of the state θ and for ν →0. Unlike SS, in our model, there
are multiple threshold prices p∗[i], where the subscript [i] refers to the coordination set A∗

i . This
implies that agents in A∗

i all adopt if the adoption price p is below p∗[i] and none of them adopt

if it is above p∗[i]. Consequently, the aggregate demand DLZZ (p) is a Step function with multiple
jumps at different thresholds.
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Demand DSS(p)

price pp∗ p∗∗

low φ

high φ

Figure 4

Aggregate demand in Sákovics and Steiner (2012)

Figure 5

A network from Banerjee et al. (2013)

For the sake of concreteness, we use one real-world network in rural India, which is studied
in Banerjee et al. (2013) and displayed in Figure 5,47 to plot the aggregate demand DLZZ (p) in
Figure 6. It is evident that small price changes occasionally have no effect on adoption and other
times have large abrupt effects, depending on whether or not the price change occurs in the
vicinity of a threshold p∗[i]. This prediction in terms of multiple batches of different sizes cannot
occur in either BCZ or SS. Indeed, in BCZ, a change in price always has a small (continuous)
impact on aggregate demand (Figure 3). In SS, a small change of p has either no effect or a huge
effect (Figure 4).48 When φ—the intensity of the spillover effects—increases, the demand curve
of LZZ shifts to the right (Figure 6) but the general pattern of multiple jumps remains.

47. In Figure 5, different colours indicate different coordination sets. See Appendix F.3 for details.
48. It must be noted that the general pattern of the aggregate demand with multiple jumps displayed in Figure 6

will be similar for any network with multiple coordination sets.
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Demand DLZZ(p)
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Figure 6

Aggregate demand in our model

6.4. Predictions of our model: intuition and empirical predictions

The predictions of our model in terms of the adoption curve are, thus, very different from that
of BCZ or SS, since adoption is neither smooth (BCZ) nor fully coordinated (SS) but comes in
batches.

Intuition: In our model, in order to have a high propensity to adopt, or, equivalently, a
low price threshold, agents must have a high interconnectedness and embeddedness—that is, a
high social connectedness—because they both generate network effects. Interconnectedness is
determined by links to agents within the same coordination set, while embeddedness is determined
by links to agents with lower price threshold. Consequently, all agents belonging to a coordination
set whose threshold is below (above) the price p will (not) adopt, thereby generating adoption
curves with multiple batches. This prediction is unique to our model and did not occur in either
BCZ or SS. In particular, BCZ focus on the intensive margin (continuous decisions), while we
focus on the extensive margin (discrete decisions); moreover, in SS, players consider a common
weighted-average action and, thus, face no heterogeneity in terms of network position.

Empirical predictions: We are not aware of any direct empirical test of our predictions.49

However, we believe that our model can guide future empirical research on adoption, particularly
on the impact of price on adoption rate. Indeed, to test our model, one could design a field
experiment (or a lab experiment) where the network is measured as done in Banerjee et al. (2013).
At time t, a new technology is introduced in different villages at a given price pt . We can design
this price such that p∗[2] <pt <p∗[1], where the subscript [i] refers to the coordination set A∗

i . One
could record how many people adopt at time t. We should expect that only agents belonging to
coordination set A∗

1 adopt. Then, at time t+1, one could go back to the villages and announce that
the new technology is now available at a lower price pt+1 <pt , such that p∗[3] <pt+1 <p∗[2], and
expect that agents from coordination sets A∗

1 and A∗
2 adopt. Then, at time t+2, we can announce

that the new technology is available at a lower price pt+2 <pt+1 and examine how many new
individuals adopt, and so forth. A similar experiment could be implemented in a laboratory with

49. Some papers have tested the impact of prices on adoption but without networks. For example, see Ashraf et al.
(2010) for a field experiment in Zambia of a home water purification solution and Dupas (2014) for a field experiment in
Kenya of a long-lasting insecticide-treated bed net.
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different rounds at different prices.50 We expect that price changes lead to adoption that comes
in batches, as predicted by our model.

7. CONCLUDING REMARKS

This article studies a coordination model in networks within a global game environment. The
main contributions of this article are to provide a clean and elegant means of selecting equilibria
when information is incomplete by providing an algorithm that computes the limiting cutoffs
and to characterize the properties of the cutoffs as a function of the network structure. This
characterization enables a partition of the agents into coordination sets —that is, sets of path-
connected agents with the same cutoffs. In particular, we show that the individuals who have a
higher propensity to adopt are those who have high social connectedness; these are the agents
with a high degree—that is, high interconnectedness—and who are well connected to other
individuals belonging to coordination sets with lower cutoffs—that is, high embeddedness. We
also show that there is a single coordination set if and only if the network is “balanced”—that
is, the average degree of each subnetwork is smaller than the average degree of the full network.
Importantly, the set of coordination sets is revealed to be instrumental to the comparative statics
and welfare properties of the model. In particular, we show that contagion is localized within
coordination sets. We also demonstrate that, with a small budget, the planner is indifferent to
whom she wants to subsidize within a coordination set and, therefore, targets coordination sets
rather than individuals. In addition, we derive the key-player policy and investigate the effect of
adding links to the agents’ adoption rate.

A possible direction for future research is to study the effects of signalling (Angeletos et al.,
2006) or signal jamming (Edmond, 2013) on equilibrium properties, such as limit uniqueness
and coordination partitioning. Dahleh et al. (2016) studied information exchange through a social
network in a symmetric global game; however, the implications of information transmission
under a general network game remain an open question. Equilibrium characterizations under
more extensive departures from idiosyncratic noise, like the introduction of a public signal, also
remain a subject for future research.51
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APPENDIX

A. AUXILIARY RESULTS

Here, we present some auxillary results that are used in the proofs.

50. The laboratory can be leveraged to control for potential unobserved confounds (e.g. information diffusion) by
applying price treatments across distinct subject pools for a given network structure.

51. See Weinstein and Yildiz (2007) and Morris et al. (2016) for contributions.
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A.1. Preliminary results on supermodularity

Definition A.1 X is a finite set. f :2X →R is supermodular if for any S,T ∈2X ,

f (S∩T )+f (S∪T )≥ f (S)+f (T ).

An equivalent definition of supermodularity is that for any S ⊆T ⊆N\{i}
f (S∪{i})−f (S)≤ f (T ∪{i})−f (T ).

In other words, the marginal contribution of i to set S: f (S∪{i})−f (S), is monotone in S.

Lemma A.2 Suppose f (S) :2X →R is supermodular. Then, A is a maximizer of f over 2X , if and only if

(internal optimality) f (A)≥ f (A), ∀A⊆A.

and
(external optimality) f (A)≥ f (Ā), ∀Ā⊇A.

When the inequalities for internal and external optimality are strict for A �=A �= Ā, then A is the unique maximizer.

Proof of Lemma A.2 The only if direction is obvious. For the if direction, suppose f satisfies both internal and
external optimality. Take any set B; we have A∩B⊆A,A∪B⊇A. Therefore, f (A∩B)≤ f (A) and f (A∪B)≤ f (A). By
supermodularity of f :

f (B)≤ f (A∪B)+f (A∩B)−f (A)≤ f (A)+f (A)−f (A)= f (A).

Since the set B is arbitrary, A must be a maximizer of f .
Note that f (B)= f (A) only if f (A∩B)= f (A) and f (A∪B)= f (A). Therefore, when the inequalities for internal and

external optimality are strict for A �=A �= Ā, then A is in fact the unique maximizer. �

Lemma A.3 Suppose f is supermodular with f (∅)=0. The following statements are true for the set of maximizers of
the program maxA �=∅ f (A)

|A| .

1. Suppose that A1 and A2 are both maximizers of the program maxA �=∅ f (A)
|A| . Then, A1 ∪A2 is also a maximizer of

maxA �=∅ f (A)
|A| . If, in addition, A1 ∩A2 is not empty, A1 ∩A2 is also a maximizer of maxA �=∅ f (A)

|A| .

2. The largest maximizer exists.

Proof of Lemma A.3 For (1), suppose A1 and A2 are both maximizers of the program maxA �=∅ f (A)
|A| . Denote β = f (A1)

|A1| =
f (A2)
|A2 | ; then by optimality of β, f (A1 ∩A2))≤β|A1 ∩A2|. As a result,

f (A1 ∪A2) ≥ f (A1)+f (A2)−f (A1 ∩A2)) (A.1)

≥ β|A1|+β|A2|−β|A1 ∩A2|=β|A1 ∪A2|, (A.2)

that is, f (A1∪A2)
|A1∪A2 | ≥β. By optimality of β, so, f (A1∪A2)

|A1∪A2 | =β, thus A1 ∪A2 must be a maximizer too.

When A1 ∩A2 is not empty, since we know f (A1∪A2)
|A1∪A2 | =β,

f (A1 ∩A2) ≥ f (A1)+f (A2)−f (A1 ∪A2)) (A.3)

= β|A1|+β|A2|−β|A1 ∪A2|=β|A1 ∩A2|, (A.4)

so f (A1∩A2)
|A1∩A2 | ≥β. By optimality of β, A1 ∩A2, which is not empty by assumption, must be a maximizer too.
The result in (2) directly follows from (1). �

B. UNIQUENESS OF LIMIT EQUILIBRIUM

Proposition 0 (Frankel et al. 2003). There exists an essentially unique strategy profile π∗, which is in cutoff strategies,
such that any π∗ν surviving iterative elimination of strictly dominated strategies in �ν satisfies limν→0π∗ν =π∗.52

Any Bayesian Nash equilibrium of �ν obviously survives iterative elimination of strictly dominated strategies so
Proposition 0 applies to π∗ν = (π∗ν

i =I(si ≥c∗ν
i ))i∈N defined by (2). Given an equilibrium in cut-off strategies in �ν

always exists for ν >0, π∗ is also in cutoff strategies by Proposition 0.
Though there may exist multiple equilibria in cutoff strategies in �ν for a fixed ν >0, Proposition 0 shows that any

selection of such equilibria in �ν must converge to π∗ as ν goes to zero.

52. Observe that the elimination of strictly dominated strategies refers to the interim strategic form of the game.
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C. PROOF OF THEOREM 1 AND DISCUSSIONS

C.1. Auxiliary results about SAND

We present several preliminary results before proving Theorem 1. We start with some observations of SAND.

Lemma C.1 F(S)≡∑
i∈S vi +φe(S) is supermodular in S.

Proof of Lemma C.1 For any S not including i,

F(S∪{i})−F(S)=vi +φ(e(S∪{i})−e(S))=vi +φdi(S)

Since di(S)=|Ni ∩S| is obviously increasing in S, F is supermodular. �

Observation C.1 For each T ⊆N\A∗
k−1, define

v̂(T )≡
∑
i∈T

v̂i, F̂(T )≡ v̂(T )+φe(T ), (C.5)

where v̂i =vi +φdi(A∗
k−1),i∈N\A∗

k−1. Then, we can equivalently reformulate the program (4) in Step k of SAND as
follows:

max
∅�T⊆N\A∗

k−1

F̂(T )

|T | = v(T )+φ(e(T )+L(T ,A∗
k−1))

|T | , (C.6)

Furthermore, A∗
k\A∗

k−1 is the largest maximizer of (C.6) and
F̂(A∗

k \A∗
k−1)

|A∗
k \A∗

k−1| = t∗[k].

Proof of Observation C.1: The reformulation is obtained by changing variables. For each T ⊆N\A∗
k−1,

F(T ∪A∗
k−1)−F(A∗

k−1)=v(T )+φ(e(T )+
∑
i∈T

di(A
∗
k−1))=v(T )+φ(e(T )+L(T ,A∗

k−1))= F̂(T ),

and |T ∪A∗
k−1|−|A∗

k−1|=|T |. The results just follow by observing
F(T∪A∗

k−1)−F(A∗
k−1)

|T∪A∗
k−1|−|A∗

k−1| = F̂(T )
|T | . �

Observation C.2 The largest maximizers to program (4) exist in Step k of SAND.

Proof of Observation C.2: We first show the case for k =1. Since F is supermodular, the union of two maximizers to
the program maxS�∅ F(S)

|S| is also a maximizer by Lemma A.3; hence, the largest maximizer must exist. The proof for any

k follows similarly, using the reformulation of the program (4) in Step k of SAND in Observation C.1 (note F̂ is also
supermodular). �

Observation C.3 For program (4) in Step k of SAND, any connected component of subgraph GA∗
k \A∗

k−1
is a maximizer.53

In particular, suppose the subgraph GA∗
k \A∗

k−1
is not connected. Then there are multiple maximizers to program (4) in Step

k.

Proof of Observation C.3: We use the reformulation of the program (4) in Step k of SAND in Observation C.1 using
F̂. Suppose the subgraph GA∗

k \A∗
k−1

is not connected; then we can find B,B′ such that B∪B′ =A∗
k\A∗

k−1, B′ ∩B=∅,

53. Recall that any connected component of subgraph GA∗
k \A∗

k−1
is a separate coordination set by Lemma 1 and

Theorem 1. So each coordination set C∗
i contained in A∗

k\A∗
k−1 must be a maximizer to program (4) in Step k of SAND,

i.e.,
F(C∗

i ∪A∗
k−1)−F(A∗

k−1)

|C∗
i | = t∗[k] =

F(A∗
k )−F(A∗

k−1)

|A∗
k |−|A∗

k−1|
.
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and L(B,B′)=0, i.e., the agents in B are not connected to agents in B′. Then, e(B∪B′)=e(B)+e(B′) and F̂(B∩B′)=
F̂(B)+F̂(B′). Therefore,

t∗[k] =
F̂(B∪B′)
|B∪B′| = F̂(B)+F̂(B′)

|B|+|B′| ≤max(
F̂(B)

|B| ,
F̂(B′)
|B′| ).

By the optimality of A∗
k\A∗

k−1|, F̂(B)
|B| ≤ t∗[k] and F̂(B′)

|B′ | ≤ t∗[k]. These inequalities together show

F̂(B)

|B| = F̂(B′)
|B′| = t∗[k],

implying B and B′ are also maximizers of (C.6). Continuing this process yields that each connected component of subgraph
GA∗

k \A∗
k−1

is in fact a maximizer of (C.6). The rest just follows. �

Observation C.4 A unique maximizer exists in each Step of SAND for any v∈R|N |, with the exception of v in the union
of a finite number of hyperplanes in R|N |. Thus for generic v, there is a unique maximizer in each Step of SAND.

Proof of Observation C.4: Multiple maximizers exist at v in a Step of SAND only when we can find a triple A,B,B∈2N

satisfying (i) A�B,A�B′,B �=B′ and (ii) F(B)−F(A)
|B|−|A| = F(B′)−F(A)

|B′ |−|A| . As the network is finite, there exists a finite number

of triple A,B,B∈2N satisfying condition (1). For each such triple, condition (ii) imposes a linear restriction defining a
hyperplane in the space of v. Together, we show that the set of v generating multiple maximizers is included in the union
of a finite number of hyperplanes; thus, it has zero measure. The result just follows. �

Observation C.5 For generic v, the subnetwork GA∗
k \A∗

k−1
is connected; hence, A∗

k\A∗
k−1 is a coordination set by itself,

and the partition C∗ ={A∗
1,A

∗
2\A∗

1,...,A
∗
K\A∗

K−1}.

Proof of Observation C.5: It follows directly from Observations C.4 and C.3. �

The next lemma will be used repeatedly in the proof.

Lemma C.2 For any S ⊆N:

−
∑
i∈S

θ∗
i ≥F(S). (C.7)

Moreover, suppose for any i∈S and j∈N\S, θ∗
i <θ∗

j , the above inequality holds with equality.

Proof of Lemma C.2 Taking the summation of (9) over S, we obtain

−
∑
i∈S

θ∗
i =

∑
i∈S

vi +φ
∑
i∈S

∑
j∈Ni

w∗
ij

=
∑
i∈S

vi +φ
∑
i∈S

∑
j∈Ni∩S

w∗
ij +φ

∑
i∈S

∑
j∈Ni∩(N\S)

w∗
ij

≥
∑
i∈S

vi +φe(S)=F(S).

The final inequality is obtained by noticing that
∑

i∈S

∑
j∈Ni∩S w∗

ij =e(S) by Lemma 1 (1) and
∑

i∈S

∑
j∈Ni∩(N\S) w∗

ij is
non-negative and equal to zero when, for any i∈S and j∈N\S, θ∗

i <θ∗
j by Lemma 1 (2). �

C.2. Proof of Theorem 1

Now, we proceed to prove Theorem 1.

Proof of Theorem 1 Given the equilibrium cutoffs (θ∗
i )i∈N , we define θ[k], Ak,Bk , k =1,2,··· as follows:

θ[1] =minj∈N θ∗
j B1 ={s∈N |θs =θ[1]}, A1 =B1, (C.8)

θ[2] =minj∈N\A1 θ∗
j B2 ={s∈N |θs =θ[2]}, A2 =A1 ∪B2,
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··· ···
Intuitively, θ[1] is the lowest cutoff, while θ[2] is the second-lowest cutoff, and so on: θ[1] <θ[2] < ···. And Bk is the

agents with cutoff θ[k], while Ak is the agents with cutoffs in {θ[1],··· ,θ[k]}.
To prove Theorem 1, it suffices to show, for k =1,2,...,,

(†) θ[k] =−t∗[k], Ak =A∗
k , Bk =A∗

k\A∗
k−1.

The case with k =1 is already proven in Section 3.3. Now we use induction to show (†). Assume it holds for k−1.
To show the case for k, we first need a similar version of Lemma C.2: for any T ⊆N\A∗

k−1,

−
∑
i∈T

θ∗
i ≥v(T )+φ(e(T )+

∑
i∈T

di(A
∗
k−1))

︸ ︷︷ ︸
:=F(T∪A∗

k−1)−F(A∗
k−1)

. (C.9)

Moreover, suppose for any i∈T and j∈N\(T ∪A∗
k−1), θ∗

i <θ∗
j , the above inequality holds with equality. The proof is

exactly parallel to the proof of Lemma C.2 with the exception that each link from i∈T to agent j∈A∗
k−1 contributes φ by

Lemma 1 (ii) (note θ∗
i >θ∗

j ), which explains the extra term di(A∗
k−1) in (C.9).

Following the same logic in Step 1 in Section 3.3 , we show (C.9) implies

F(T ∪A∗
k−1)−F(A∗

k−1)

|T | ≤−θ[k] =
F(Bk ∪A∗

k−1)−F(A∗
k−1)

|Bk |
Therefore, Bk ∪A∗

k−1 is a maximizer in Step k of SAND (the fact that it is the largest maximizer follows the same logic
as k =1). Therefore, (†) is proven for k. �

Remark 10 Although the SAND algorithm does not explicitly generate the equilibrium w∗ ={w∗
ij,(i,j)∈E} as outputs,

the design of the SAND algorithm guarantees that such w∗ always exists and is consistent with θ∗ (Lemma 1).

D. PROOFS OF OTHER RESULTS IN THE MAIN TEXT

Proof of Observation 1: It follows from the discussion in the main text. �

Proof of Lemma 1 It largely follows from the discussion in the main text.54 �

Proof of Remark 6 Under homogeneous intrinsic values, F(S)/|S|=v+φe(S)/|S|. Therefore, in Step 1 of SAND:

A∗
1 =argmax

S�∅
e(S)

|S| .

Thus, A∗
1 is independent of (v,φ), and t∗[1] =v+φe(A∗

1)/|A∗
1|. Moreover, assume that in Step k >1, A∗

1 through A∗
k−1 are

each independent of (v,φ). Therefore:

A∗
k =argmax

S�A∗
k−1

e(S)−e(A∗
k−1)

|S|−|A∗
k−1|

.

Thus, A∗
k is also independent of (v,φ), and t∗[k] =v+φ

e(A∗
k )−e(A∗

k−1)

|A∗
k \A∗

k−1| . The result follows by induction on k. �

Proof of Proposition 1 Under homogeneous intrinsic values, F(S)/|S|=v+φe(S)/|S|. The rest just follows from
observing that the network is balanced if and only if the SAND algorithm terminates in Step 1. �

Proof of Remark 7 The remark follows from the discussion following Remark 7. �

Proof of Proposition 2 For any regular network with degree d, for any non-empty subset S, 2 e(S)
|S| =

∑
i∈S di(S)
|S| ≤

∑
i∈S d
|S| =

d =2 e(N)
|N | , so a regular graph is always balanced.

54. An identity similar to (11) is shown in Carlsson and van Damme (1993) (see equation (4.1) on page 997 and
Lemma 4.1 on page 999). We give a detailed proof of Lemma 1 in the working paper version of this paper (Leister et al.,
2019).
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For trees, there are no cycles, so e(N)=N −1, while for each subset S the resulting subnetwork GS is still cycle-free.
Therefore, the number of edges within S is at most |S|−1, so e(S)≤|S|−1; thus:

e(S)

|S| ≤ |S|−1

|S| ≤ e(N)

|N | = |N |−1

|N | .

For regular bipartite networks with two disjoint groups B1,B2 with sizes n1,n2 and degrees d1,d2, clearly d1n1 =
d2n2 =e(N). We set wij = n1

n1+n2
if i∈B1,j∈B2, and wij = n2

n1+n2
if i∈B2,j∈B1. We use Remark 7 to check that G is

balanced. For each i∈B1: ∑
k∈Ni

wik = n1

n1 +n2
d1 = e(N)

n1 +n2
= e(N)

|N | .

And for each i∈B2: ∑
k∈Ni

wik = n2

n1 +n2
d2 = e(N)

n1 +n2
= e(N)

|N | .

Therefore, G is balanced.
If G is a network with a unique cycle, then e(N)=N . For each subset S, the resulting subnetwork GS contains at most

one cycle. This means the number of edges within S is at most |S|, so that e(S)≤|S|; thus:

e(S)

|S| ≤ |S|
|S| =1= e(N)

|N | .

When G contains at most four nodes, all networks with three or fewer nodes contain at most one cycle. The only
network structures over four nodes that contain more than one cycle are the circle with a link connecting one non-adjacent
pair i and j (two networks) and the complete network. For the former, we can show these networks to have one coordination
set with weights: wij =wji =1/2, wki =wkj =5/8, and wij =wik =3/8 for each k �= i,j. The complete network with 4 nodes
and 6 edges is regular; hence, it is balanced. Note that when N =5, there exists a network such that two coordination sets
emerge. For example, a core with four nodes plus one periphery node has one link to one of the core nodes. �

Proof of Proposition 3 We can rewrite condition (ii) as F(T∪A)−F(A)
|T | <

F(A)
|A| , for any ∅ �=T ⊆N\A, which is equivalent to

saying that e(Ā)
|Ā| <

e(A)
|A| ,∀Ā�A. Under homogeneous intrinsic values, A∗

1 is uniquely characterized as the largest maximizer

of the following:

A∗
1 =argmax

S�∅
e(S)

|S| .

Obviously, any solution to the above program, A∗
1, must satisfy both conditions stated in Proposition 3. To prove the

other direction, we assume set A satisfies (i) and (ii). Denote β = e(A)
|A| . Take any set B; we have A∩B⊆A,A∪B⊇A, so

e(A∩B)≤β|A∩B| by condition (i)55 and e(A∪B)≤β|A∪B| by condition (ii). By supermodularity of e(·) (see Observation
C.1),

e(B)≤e(A∩B)+e(A∪B)−f (A)<β(|A∩B|+|A∪B|−|A|)=β|B|,
implying that e(B)/|B|≤β = e(A)

|A| . Since it holds for any B, it shows that A is indeed a maximizer. To show that it is in
fact the largest maximizer, we need on more step. Note that for any B such that A∪B is a proper superset A, we have a
strict inequality e(A∪B)<β|A∪B| by condition (ii); hence e(B)/|B|<β = e(A)

|A| . This effectively proves that any B having
non-empty intersection with N\A cannot be a maximizer; thus A is indeed the largest maximizer. �

Proof of Proposition 4 To prove part (1), we first note that, by Observation C.4 in Appendix C, for generic v, multiple
maximizers cannot occur in each Step (see also footnote 21). In other words, in fixing a generic v, suppose SAND gives
the sequence of nested sets, A∗

1,A
∗
2,...,A

∗
K at v in K steps; then A∗

k is the unique maximizer in Step k =1,...,K of SAND.
We claim that for v′ sufficiently close to v, SAND also terminates K steps with (the same) A∗

k being the unique maximizer
in Step k =1,...,K of SAND at v′ as well. To prove this claim, we note that, in Step 1 of SAND, at v∑

i∈S vi +φe(S)

|S| <

∑
i∈A∗

1
vi +φe(A∗

1)

|A∗
1|

for any nonempty S that is not equal to A∗
1 (the inequality is strict by the uniqueness of A∗

1). Since the above inequality
is an open condition on vi for each i, it must hold for any v′ that is sufficiently close to v, implying A∗

1 is the unique
maximizer in Step 1 for SAND at v′. By simple induction, we show that by any k =1,2,...,K ,A∗

k is the unique maximizer
in SAND at v′ as long as v′ is sufficiently close to v.

Since the coordination sets are uniquely pinned down by the sequences A∗
k ,k =1...,K , part (1) is proven.

We now show each claim of (2) below.

55. Note this also holds even if A∩B is empty, as e(∅)=0.
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Comparative statics. By part (1), for generic v, C∗ is locally constant in v, and we have the following relationship
between v and t∗[k]:

t∗[k] =
F(A∗

k )−F(A∗
k−1)

|A∗
k |−|A∗

k−1|
=

∑
i∈A∗

k \A∗
k−1

vi +φ(e(A∗
k )−e(A∗

k−1))

|A∗
k |−|A∗

k−1|
. (D.10)

(Recall that from part (1) that the sequences A∗
k ,k =1,...,K in the above equation do not vary with v when v changes

marginally.) The derivative results follow directly by differentiating equation (D.10) and applying Theorem 1.56

Piecewise linearity. This follows from the results of comparative statics.

Monotonicity. Every entry of the Jacobian matrix ∂θ∗/∂v is non-positive, so θ∗ is monotonically decreasing in v.

Lipschitz continuity. Every entry of the Jacobian matrix ∂θ∗/∂v is uniformly bounded for any v, so θ∗(v) is Lipschitz
continuous in v. �

Proof of Proposition 5 and Remark 8 Giving v, we choose B>0, which is small enough that the budget set K(v,B) is
contained in the neighbourhood N (v) around v. Such a B always exists as N (v) is open and nonempty by Proposition 4
(1). Furthermore, by Proposition 4 (2), θ∗ is linear in v for v in N (v); hence, it is in K(v,B) as well. From now on, we
fix such a B.

First, by Proposition 4 (2), for any j, we have

∂θ∗
j

∂vi
=− 1

|C∗
m| I(j∈C∗

m), (D.11)

where C∗
m is the coordination set containing i, and I(j∈C∗

m) is the indicator function, which equals 1 only when j lies in
C∗

m, and zero, otherwise.
We use (D.11) to evaluate the effects of vi on the total adoption TA(v) and total welfare TW (v). Differentiating

TA(v)=∑
j∈N (1−H(θ∗

j )) and using (D.11) yields

∂TA(v)

∂vi
=H ′(θ∗

i )

as a marginal increase in vi affects the cutoffs of agents contained in set C∗
m by Proposition 4 (2) with slopes given by

(D.11).
For TW , we first rewrite it as

TW (v)=
∑
j∈N

⎧⎨
⎩
∫ ∞

θ∗
j

(vj +θ )dH(θ )+φ
∑
k∈Nj

∫ ∞

max(θ∗
j ,θ∗

k )
dH(θ )

⎫⎬
⎭, (D.12)

where each term in {} corresponds to the equilibrium payoff of agent j. We differentiate TW (v) and use (D.11) and
Theorem 1 to obtain

∂TW (v)

∂vi
=1−H(θ∗

i )+φ

(
L(C∗

m,A∗
k−1)+e(C∗

m)

|C∗
m|

)
H ′(θ∗

i )

after some simple algebra.57

Note that the computed formulae for ∂TA(v)
∂vi

and ∂TW (v)
∂vi

are valid as long as v is in the budget K(v,B) for the
selected B. Now we consider the A-planner’s problem. Note that the marginal effect of increasing vi on TA(v) is given
by ∂TA(v)

∂vi
=H ′(θ∗

i ). Since the budget set is a simplex, the A-planner must never allocate positive budget to j that does not
maximize H ′(θ∗

i ); hence, the statement for the A-planner in the Proposition is proven. The solution for a W-planner is
similar.

Remark 8 is easy to show. Note that for any i,j in the same coordination set, their equilibrium cutoffs must be the
same, i.e., θ∗

i =θ∗
j . Therefore, we have ∂TA(v)

∂vi
=H ′(θ∗

i )=H ′(θ∗
j )= ∂TA(v)

∂vj
, and by the same logic, ∂TW (v)

∂vi
= ∂TW (v)

∂vi
, which

implies Remark 8. �

Proof of Proposition 6 First, consider part (i) of Proposition 6. Given C∗+ij =C∗, C∗
m is unchanged upon inclusion of

link (i,j). Moreover, if θ∗
i >θ∗

j , then this ordering must be maintained upon inclusion of (i,j); otherwise, it contradicts
C∗+ij =C∗. For i∈C∗

m ⊆A∗
k from SAND, we can define A∗

0 ≡∅ and write:

−θ∗
i = v(C∗

m)+φ(e(C∗
m)+L(C∗

m,A∗
k−1))

|C∗
m| ,

56. One caveat is that for generic v, A∗
k\A∗

k−1 is a coordination set by itself, and the partition C∗ =
{A∗

1,A
∗
2\A∗

1,...,A
∗
K\A∗

K−1} (see Observation C.5 in Appendix C).
57. The middle steps are tedious; hence, they are omitted.
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Figure E.1

A tree network

−θ∗
i,+ij = v(C∗

m)+φ(e(C∗
m)+L(C∗

m,A∗
k−1)+1)

|C∗
m| ,

θ∗
j,+ij = θ∗

j if θ∗
i >θ∗

j ,

where the second equality holds whether j /∈C∗
m with θ∗

i >θ∗
j (for (i1)) or j∈C∗

m (for (i2)). Taking differences gives the
result. The proof of part (ii) of Proposition 6 is straightforward and just omitted. �

E. EXAMPLES: REMOVING A NODE (KEY PLAYER) VERSUS ADDING A LINK

E.1. Key players

Consider the network displayed in Figure E.1. Assume that all agents have the same vi =v=1 and φ=0.4 (the same
parameter values will be used to study the key player in Ballester et al., 2006) and that H(·) follows a uniform distribution
on the support �= [−2,0]. Since the network is a tree, there is only one coordination set by Proposition 2(2) with
t∗[1] = F(N)

|N | = vN+φe(N)
N =1+0.4 4

5 =1.32, so that the common cutoff for all i is given by θ∗
i =−1.32. Assume that H(·)

follows a uniform distribution on the support �= [−2,0], so the probability of adopting for each agent i is equal to
1−H(θ∗

i )=−θ∗
i /2=0.66. The total expected adoption is then equal to 0.66×5=3.3.

Let us determine the key players. Let us start with players a2, b3, and b2 (peripheral agents), so that when one of
these players is removed, there is still a connected tree left and thus one coordination set. The removal of players a2, b3,
or b2 leads to a common cutoff equal to −(

1+0.4 3
4

)=−1.30. The probability of committing crime is now equal to 0.65,
i.e., all agents now have a 65% chance of committing crime, which implies that the total expected crime is 0.65×4=2.64.
Thus, after the removal of player a2, b3, or b1, the total expected crime has been reduced by 20%.

Now consider the removal the removal of b1. There will be one network ga consisting of agents a1, a2, and b3, and
one isolated agent b2. The common cutoff for ga is θ∗

a =−1.27, so that the probability of committing a crime is 0.635.
The isolated agent will have a probability of 0.5 of committing a crime. Thus, following the removal of player b1, the
total expected crime is given by 3×0.635+1×0.5=2.4. Consequently, after the removal of player b1, the total expected
crime has been reduced by 27.27%. Performing a similar analysis for the removal of player a1 leads to a reduction of the
total expected crime by 33.33%. In summary, the ranking of key players in terms of reduction of total expected crime is:
(1) a1; (2) b1; (3) a2, a3, b2.

Let us now calculate the key-player ranking in Ballester et al. (2006) using the key-player centralities or
intercentralities. It is easily verified that the ranking of key players is very similar to the one above, that is: (1) a1;
(2) b1; (3) a2, a3, (4) b2.58 Indeed, in Ballester et al. (2006), the key players are the ones that generate the most spillover
effects, so high degree and high Katz–Bonacich centrality agents are good predictors of key players. In our article,
degree, which is related to “interconnectedness,” matters, but connections to “higher” coordination sets, as captured by
“embeddedness,” also matter. This is precisely because when we remove a player, we change the network density, which
affects both aspects, and therefore the cutoffs of all agents in the network. Thus, it is possible that the ranking of key players
in Ballester et al. (2006) and in our model differ, because the concepts of intercentrality and of social connectedness (i.e.
interconnectedness and embeddedness) are different, albeit related.

58. Assume a standard utility function for player i, i.e., ui =vixi − 1
2 x2

i +φxi
∑

j∈Ni
xj . Assume that vi =1 for

all i and φ=0.4, which guarantees that there is a unique interior equilibrium. The intercentrality for each agent i is
defined as ci =b2

i /mii, where bi is the Katz–Bonacich centrality of player i (see Ballester et al., 2006). We easily obtain:(
ca1 , ca2 , cb3, cb1 , cb2

)=(12.43, 6.85, 6.85, 10.00, 5.46).
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Figure E.2

Coordination and bridging.

TABLE A1
Coordination sets C∗ and cutoffs t∗[k] for different link additions in the network in Figure E.2.

(1,2) C∗ t∗

(0,0) (2;1.5;0)
(0,1) {S1,S2,S3} (2;1.5;1)
(1,0) (2;1.5;1)

(1,1) (2;1.6)
(0,2) {S1,S2 ∪S3} (2;1.6)
(1,2) (2;1.8)

(2,0) {S1 ∪S3,S2} (2;1.5)
(2,1) (2;1.75)

(2,2) {N} (2)

E.2. Adding a link

Let us illustrate the results in Section 5.2.2 with an example using the network in Figure E.2:
Assume homogeneous values vi =v=0 for each i∈N and φ=1. Denote S1 ={1,2,3,4,5}, S2 ={7,8,9,10} and

S3 ={6}, with S1 ∪S2 ∪S3 =N . Agents in S1 as well as agents in S2 form cliques with agent 6 bridging the two cliques
with varying connectivity to each clique. We denote 1 as the number of links that 6 has with agents in S1, and 2 as the
number of links that 6 has with agents in S2. Table A1 summarizes the equilibrium coordination sets and provides the t∗[k]
in Step k defined in equation (5) for various values of (1,2). Observe that θ∗

i =−t∗[k] if agent i is born in Step k. Denote

t∗ =
(

t∗[1]; t∗[2]; ··· ;t∗[K]
)

.

When agent 6 has either no link or one link, she always adopts last. This is because she has both low interconnectedness
and low embeddedness. When agent 6 has two links, then it depends on to whom she is linked. If her two links are not
with agents in S1, agent 6 stays in the second coordination set with S2. If these two links are with agents in S1, then she
is in the coordination with S1. Eventually, when agent 6 forms two links with each of the two cliques, all of the agents
coordinate together on a common cutoff. While the total number of links that agent 6 carries with each clique is below
the number of links that members of each respective clique have with other members, agent 6 functions as a coordination
bridge, synchronizing adoption strategies through the economy. When the number of links to either clique drops below
two, agent 6 either coordinates with one of the two cliques or coordinates with neither when holding only one link. This
illustrates the importance of interconnectedness and embeddedness of each node defined in Section 3.4 with regard to
who adopts earliest and why. In particular, while agent 6 is less interconnected than clique members, she is well embedded
in the network once she has at least two links.

Let us now illustrate the results in Proposition 6. First, consider part (i) of this proposition when C∗+ij =C∗, that is, the
addition of a link does not change the network partition in terms of coordination sets. Start with agent 6 having no link,
i.e., (1,2)= (0,0), so that there are three coordination sets: C∗

1 =S1, C∗
2 =S2 and C∗

3 =S3 ={6}. Then, when we increase
1 by one or 2 by one, we see that agents in the lower coordination sets C∗

1 and C∗
2 are not affected and still have a cutoff

of 2 and 1.5, respectively. However, agent 6 now increases her cutoff from 0 to 1. Indeed, as part (i) of Proposition 6
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shows, the difference in cutoffs for agent 6 is equal to θ∗
6 −θ∗

6,+1 =φ/|C∗
3 |=1. Likewise, if agent 6 holds two links with

clique S1 and no link to S2, i.e., (1,2)= (2,0), there are two coordination sets: C∗
1 =S1 ∪S3 and C∗

2 =S2. Now, if we add
a link between agent 6 and S2, the cutoff of individuals in C∗

1 is not affected and is still equal to 2. However, for i∈S2,
we see a decrease in θ∗

i of 0.25=φ/|S2|, specifically from −1.5 to −1.75, as predicted by part (i) of Proposition 6.
Now, consider part (ii) of Proposition 6 when C∗+ij �=C∗, that is, the addition of a link changes the network partition

in terms of coordination sets. For example, when agent 6 holds 0 links to S1 and 1 link to S2, i.e., (1,2)= (0,1), there
are three coordination sets: C∗

1 =S1, C∗
2 =S2, and C∗

3 =S3. Then, when we add a link between agent 6 and S1, so that
(1,2)= (1,1), the partition changes to contain only two coordination sets: C∗

1 =S1 and C∗
2 =S2 ∪S3. As predicted by part

(ii) of Proposition 6, agents in C∗
1 =S1 have the same cutoff 2 and are unaffected by this additional link. Now, however,

agents in C∗
2 =S2 ∪S3 have a cutoff of 1.6; this means that any agent k in S2 sees a decrease in θ∗

k of 0.1 while agent 6
(S3) sees a decrease in θ∗

6 of 0.6.

F. NEW PREDICTIONS ON ADOPTION: TECHNICAL DETAILS

F.1. Price, aggregate demand, and comparative statics in Ballester et al. (2006) (BCZ)

Let us introduce price in the model of BCZ. Each agent i chooses effort ai to maximize the following payoff:

ui(a)=viai − 1

2
a2

i +φ
∑
j∈N

gijaiaj, (F.13)

where vi =r−p for each i, where p is the (common) price and r >0 is the marginal private returns of exerting ai. Observe
that, contrary to our model (LZZ), effort ai is continuous, i.e., ai ∈R+. BCZ show that, when φλmax(G)<1, there exists
a unique Nash equilibrium given by:

a∗(p)= (a∗
1(p),...,a∗

n(p))′ =
{

[I−φG]−1(r−p)1 if p≤r;
0 if p>r,

This equilibrium determines the individual demand for each player i for a given price p. Thus, the aggregate demand is
equal to:

DBCZ (p)=
∑
i∈N

a∗
i (p)=

{
b(G,φ)(r−p) if p≤r;
0 if p>r,

(F.14)

where b(G,φ)=1′[I−φG]−11 is the (unweighted) aggregate Katz-Bonacich centrality of G with parameter φ.

F.2. Price, aggregate demand, and comparative statics in Sákovics and Steiner (2012) (SS)

Let us now introduce price in Sákovics and Steiner (2012). The utility function of agent i is given by:

ui(a,θ,p)=
{

φi +vi −p if a≥1−θ

vi −p if a<1−θ
,

where a=∫ m
0 wiaidi, vi <0, φi +vi −p>0 for all p, and wi >0. As in our model, effort ai can only take two values: either

adopt (ai =1) or not adopt (ai =0), and θ is the state. Each group g of players has measure mg,
∑

g mg =m,
∑

g wgmg =1 (a
normalization), and each vi =vj , φi =φj and wi =wj for i,j∈g. Players are endowed with signals si =θ +νεi, ν ∈ (0,1] and
εi follows cdf F(·) with support [−1,1]. Each player i’s group membership is private information with Pr(gi =g)=mg/m.

Sákovics and Steiner (2012) show that, for each ν ∈ (0,1], there is a unique Bayes–Nash equilibrium and each player
follows the following threshold strategy:

ai(si,g)=
{

1 if si ≥s∗
g

0 if si <s∗
g
.

Moreover, as ν →0, all thresholds s∗
g converge to a common limit θ∗, where:

θ∗ =
∑

g

mg
wg

φg
(p−vg).

For a given realization of θ , as ν →0, the above maps to a p∗ such that p≤p∗ implies ai =1 and p>p∗ implies ai =0
for all i, with

p∗ =
θ +∑

g
mgwgvg

φg∑
g

mgwg
φg
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Under the assumption that, for all g, φg =φ, p∗ becomes:

p∗ =θφ+
∑

g

mgwgvg. (F.15)

When all players adopt, aggregate demand DSS(p) is equal to m, otherwise demand is 0. That is, for a given realization
of the state θ , as ν →0,

DSS(p)=
∑
i∈N

a∗
i (p)=

{
m if p≤p∗;
0 if p>p∗. (F.16)

F.3. Price, aggregate demand, and comparative statics in our model (LZZ)

Let us introduce price p in our model. We consider the following payoff function (see (1)):

ui(a,θ )= (vi +θ +φ
∑
j∈N

gijaj)ai,

where ai is either 0 or 1 and θ is the state. Assume vi =r−p for each i, where p is the price and r >0 is a constant. We can
use the SAND Algorithm in Theorem 1 to characterize the limiting cutoffs for players for a given p and a given realization
of θ . Let t∗[i] be the outcome computed in the SAND algorithm in Theorem 1 under vk =0,φ=1. Define p∗[i] =θ +r+φt∗[i]
for each coordination set A∗

i . The aggregate demand function in this framework is given by:

DLZZ (p)=
∑
i∈N

a∗
j (p)=

∑
i∈N

1{θ+r−p+φq∗
j ≥0}, (F.17)

Here, q∗ = (q∗
1,...,q∗

n) is defined such that q∗
k = t∗[i] if k is in A∗

i . In other words, an agent k in coordination set A∗
i will

adopt if and only if p≤p∗[i].
As stated in the main text, we use the real-world network in rural India studied in Banerjee et al. (2013)59 to plot the

aggregate demand DLZZ (p) in Figure 6.
This network of 20 agents is displayed in Figure 5, where different colours indicate different coordination sets. Using

the SAND algorithm, we can divide the network into 5 coordination sets. Let A∗
1 be the set of black nodes who share a

common q∗
k value of t∗[1] =3, A∗

2 the set of dark blue and red nodes with the same cutoff t∗[2] =2.5, A∗
3 the set of the single

node of light blue colour with t∗[3] =2, A∗
4 the set of the green nodes with t∗[4] =4/3, and, finally, A∗

5 the set of the yellow
nodes with t∗[5] =1. Thus, there are 5 coordination sets.
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