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Text mining has recently attracted a great deal of attention with the accumulation of text documents in
all fields. In this article, we focus on the use of textual information to explain continuous variables in the
framework of linear regressions. To handle the unstructured texts, one common practice is to structuralize
the text documents via vector space models. However, using words or phrases as the basic analysis terms
in vector space models is in high debate. In addition, vector space models often lead to an extremely
large term set and suffer from the curse of dimensionality, which makes term selection important and
necessary. Toward this end, we propose a novel term screening method for vector space models under a
linear regression setup. We first split the entire term space into different subspaces according to the length
of terms and then conduct term screening in a sequential manner. We prove the screening consistency of
the method and assess the empirical performance of the proposed method with simulations based on a
dataset of online consumer reviews for cellphones. Then, we analyze the associated real data. The results
show that the sequential term selection technique can effectively detect the relevant terms by a few steps.

KEY WORDS: Screening consistency; Term selection; Text mining; Vector space models.

1. INTRODUCTION

Text mining, also known as text data mining, refers to
extracting high-quality information from unstructured text doc-
uments (Tan 1999). Text mining has wide applications and
has become increasingly important with the increasing accu-
mulation of text documents in all fields. For example, text-
based analysis of consumer reviews has attracted considerable
attention in both academic research and managerial practice
(Berger, Sorensen, and Rasmussen 2010; Lee and Bradlow
2011; Ludwig et al. 2013; Zhao et al. 2013). Researchers
use text mining techniques to uncover the hidden reasons for
consumer preference. Other applications include information
retrieval, spam detection, sentiment analysis, and so on (Kumar
and Bhatia 2013).

In this article, we confine our interests in using text docu-
ments to explain a continuous response. Specifically, each text
document is paired with a univariate and continuous response
variable. For example, the text document could be an online
product description and its corresponding continuous response
variable could be the click-through-rate (CTR). For another
example, the text document could be a consumer review, and
the continuous response variable is the corresponding rating
score. The goal is to exploit the dependent relationship between
text document and the response. Taking cellphone reviews as an
example, practitioners might care about why the rating score
of a certain type of cellphones is low/high. Do the battery,

the after-sales service, or other extraordinary functions have an
impact on the rating score after controlling for the effects of
all the other factors? To answer these questions, a regression
model, studying the relationship between cellphone reviews
and the rating scores, is needed.

Given that textual data are highly unstructured, the first step
in analyzing the text documents is to make them structured. A
popular paradigm of structuralizing text documents is vector
space models (Salton, Wong, and Yang 1975; Salton 1989;
Belew and Rijsbergen 2000). Specifically, we refer to the basic
analysis unit in documents as terms, which can correspond to
words or phrases. All unique terms, typically with nonignor-
able frequencies, construct a term dictionary T with size p.
Vector space models have been used in various domains of
text mining, such as information retrieval, relevancy rankings,
document clustering and classification. For example, in infor-
mation retrieval, both queries and documents are represented
by vector space models, and the relevance of a document
to a query is given by the similarity of their term vectors
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(Salton and Buckley 1988; Hofmann 1999; Manning, Ragha-
van, and Schütze 2008). In applications of document clustering
or classification, the unsupervised (clustering) or supervised
(classification) machine learning methods are applied directly
on the document-term vectors (Yang and Pedersen 1997; Li and
Zha 2006; Gomez and Moens 2012; Jia et al. 2014). A more
detailed discussion for vector space models can be found in
Turney and Pantel (2010).

To better understand vector space models, we clarify two
important concepts, “word” and “phrase,” as the terms in vector
space models could be either words or phrases. In linguistics, a
word is the smallest element that can express semantic mean-
ing, while a phrase is a sequence of words, often conveying
an idiomatic meaning. A phrase is allowed to contain only one
word. For example, “shipping” is a word, and it is also a single-
word phrase, while “free shipping” is a phrase consisting of two
words. When taking words as terms in vector space models and
only focusing on those with relatively high frequencies, the size
of the dictionary T is relatively small. However, when taking
phrases as terms, even if only those with high frequencies are
considered, the resulting cardinality of the dictionary could be
much larger.

However, it is still preferred to use phrases as terms because
a basic assumption of vector space models is exchangeability,
which means the model always stands when we change the
order of terms arbitrarily (Aldous 1985; Blei, Ng, and Jordan
2003; Batra, Bawa, and Punjab 2010). Under this assumption,
when we take words as terms, the order of words is inevitably
ignored by vector space models. However, word order is critical
since it influences the meaning of the documents dramatically.
For instance, the two sentences “free shipping but no free
returns” and “free returns but no free shipping” are composed
of the same words but represent completely different shipping
policies. If “word” is the basic analysis unit in vector space
models, the two sentences would result in the same word
vectors, and the model could be misleading. Hence, a number of
researchers have chosen phrases, which retain word order inher-
ently, as terms in vector space models (Caropreso, Matwin,
and Sebastiani 2000; Wu, Li, and Xu 2006; Ifrim, Bakir, and
Weikum 2008; Jia et al. 2014). Therefore, due to the high
dimensionality of a phrase dictionary and the sparse assumption
that most phrases are redundant, noisy and irrelevant to the
response, phrase selection is of fundamental importance.

Traditional term selection methods include information gain,
mutual information, chi-square (CHI), relevancy score, corre-
lation coefficients, etc. (Ng, Goh, and Low 1997; Yang and
Pedersen 1997; Sebastiani 2002). These methods assess each
term by calculating certain types of its “association” with
response, and then select those with relatively high correlations
(Ng, Goh, and Low 1997; Yang and Pedersen 1997; Liu et al.
2003; Yu and Liu 2003). These bivariate marginal methods have
been widely used in text-mining related fields (Zhang, Wu,
and Srihari 2004). However, they may miss other potentially
important terms that jointly contribute to the response.

To address this issue, a variety of model-based methods
have been developed (Kudo and Matsumoto 2004; Ifrim, Bakir,
and Weikum 2008; Gomez and Moens 2012; Taddy 2013;
Jia et al. 2014), as powerful complements to those traditional

methods. Most model-based methods are mainly proposed
and built for document classification. For instance, the reg-
ularized inverse regression (Taddy 2013) used the inverse
conditional distribution for text given the response to obtain
low-dimensional document scores, and applied the sparsity-
inducing independent Laplace priors for simplifying the predic-
tor sets. Another notable piece of work is concise comparative
summarization (CCS) proposed by Jia et al. (2014). The authors
apply sparse classification methods, LASSO (Tibshirani 1996)
and L1-penalized logistic regression (e.g., Genkin, Lewis, and
Madigan 2007; Ifrim, Bakir, and Weikum 2008), to select
phrases as concise summaries of classes. However, when con-
tinuous responses are of interest, such as CTR or rating score,
the aforementioned methods have to base on a reasonably cho-
sen cutoff before implementation. In addition to the challenge
of determining cutoffs, the process of categorizing responses
might lose considerable amounts of information.

In this article, we propose a novel term screening method for
vector space models under a regression setup with continuous
response. We allow for both words and phrases as terms
in vector space models. In this regard, an important work
is sure independence screening (SIS) proposed by Fan and
Lv (2008). The basic idea of SIS is to first select variables
that are marginally correlated with the response using a fast
but crude method and then apply standard feature selection
methods (e.g., LASSO) to further select variables relevant to
the response. Since then, feature screening has attracted a great
deal of attention in the statistical literature. For example, Wang
(2009) applied a forward regression algorithm to select features
and demonstrated its screening consistency property under an
ultrahigh-dimensional setup. Fan and Song (2010) extended
the method of SIS in generalized linear models by ranking
the maximum marginal likelihood estimates. Li, Zhong, and
Zhu (2012) proposed a model-free feature screening method
based on the distance correlation, which can be directly applied
to grouped predictors and multivariate responses. Liu, Li, and
Wu (2014) developed a feature screening method for varying
coefficient models based on conditional correlation coefficient.
See Liu, Zhong, and Li (2015) for an overview.

Motivated by these works, we propose a sequential term
selection method to identify significant terms in vector space
models. Under a dictionary T with p unique terms, let τj(1 ≤
j ≤ p) denote the length of term j, that is, the number of words
in this term. Assume 1 ≤ τj ≤ q, where q is the predefined
maximum length. We split the entire term space (i.e., the
dictionary T ) into different subspaces according to the length of
the terms, that is, T = ⋃

1≤l≤q T (l), where T (l) is the collection

of terms with length l. We then select terms in T (1), . . . , T (q) in
a sequential manner. We then collect all of the selected terms
in this solution path, resulting in a screened term subspace. The
screening consistency is developed to guarantee the validity of
screened model for further regularization methods.

The rest of this article is organized as follows. Section 2
presents a sequential term selection method for vector space
models. The screening consistency is carefully explored sub-
sequently. Section 3 presents a number of numerical studies
to demonstrate the finite sample performance of the method.
Section 4 applies sequential term selection method to a cus-



84 Journal of Business & Economic Statistics, January 2021

tomer review dataset of cellphone online sales. Through this
dataset, we find the sequential term selection method and
bivariate marginal methods can complement each other very
well. Section 5 concludes the article with a brief discussion.

2. A SEQUENTIAL TERM SELECTION METHOD

2.1. Model and Notations

Let W = {w∗
1, w∗

2, . . . , w∗
d} be a set (or dictionary) of d

distinct words, where d ≥ 1 and w∗
k(1 ≤ k ≤ d) represents

one particular word. For example, one can define W = {w∗
1 =

Tom, w∗
2 = loves, w∗

3 = Jerry}, and hence, d = 3. We let S
be a term, which can be represented by a sequence of words as
S = 〈w1w2 . . . wm〉. Here, wh(1 ≤ h ≤ m) is one particular
word, which might be included (or excluded) by W . We define
an operator τ(S) = m as the length of the term. τ(S) = 1 if S
represents an individual word. For completeness, we allow S to
be an empty term with τ(S) = 0 and write S = 〈∅〉. If wh ∈ W
for any 1 ≤ h ≤ m, we then say S is generated by W and write
S ∈ W . If S = 〈∅〉, then S /∈ W .

Considering the previous example, we define w1 =
w∗

1 = Tom, w2 = w∗
2 = loves and w3 = w∗

3 = Jerry;
then, we have S = 〈Tom loves Jerry〉 and S ∈ W . If
S = 〈Tom and Jerry〉, then S /∈ W because “and” is excluded
by W . Let S1 = 〈wi1 wi2 . . . wil〉 and S2 = 〈wj1 wj2 . . . wjl〉 be
two arbitrary terms. We define S1 ∪S2 = 〈wi1 . . . wil wj1 . . . wjl〉
as a new term. For example, if S1 = 〈Tom loves Jerry〉
and S2 = 〈Jerry loves Tom〉, then S3 = S1 ∪ S2 =
〈Tom loves Jerry Jerry loves Tom〉. Additionally, if two terms
Sa and Sb exist, such that S2 = Sa ∪ S1 ∪ Sb, we then say
S1 is included in S2 and write S1 ⊂ S2. It is remarkable
that we allow Sa and/or Sb to be empty terms. For example,
if S1 = 〈loves Jerry〉 and S2 = 〈Tom loves Jerry〉, then
S1 ⊂ S2 = Sa ∪ S1 ∪ Sb, where Sa = 〈Tom〉 and Sb = 〈∅〉.

Assume that we have a total of n documents generated by a
word dictionary W . A document is also a sequence of words
and hence can be regarded as a term. Let C = {S1,S2, . . . ,Sn}
denote the collection of documents. Each document Si is paired
with a univariate and continuous response variable Yi ∈ R

1.
The goal is to study the association between Si and Yi.

We first extract structured information from a highly
unstructured Si. One popular method to structuralize text
documents is the vector space models (Salton 1989; Belew
and Rijsbergen 2000). In a traditional vector space model, each
document Si can be represented by a d-dimensional vector,
where the kth element (1 ≤ k ≤ d) represents whether word
w∗

k ∈ W appears in Si or not. By doing so, the linear regression
model can be specified as

Yi = β̃0 +
∑

1≤k≤d

β̃kI(w∗
k ∈ Si) + εi, (1)

where β̃k is the corresponding regression coefficient of word
w∗

k , I(·) is an indicator function representing whether the word
w∗

k is in Si, and ε is the random noise with mean 0.
The above model maintains word exchangeability, that is,

it only involves frequencies of words but not the order. How-
ever, word orders can be quite crucial. For example, the two
sentences “Tom loves Jerry” and “Jerry loves Tom” result in

the same word vectors, but they have a different word order
and therefore express different meanings, which Equation (1)
cannot discover. Therefore, when we use “word” as the basic
unit in vector space model, we inevitably ignore the order of
words, and the underlying model in Equation (1) becomes much
less informative.

Thus, to retain the original word order in Si, it is preferred to
use terms and the sequence of words to represent the document.
We assume q is the predefined maximum length of terms. Let
Tq = {S∗

1 , . . . ,S∗
p } be a dictionary of p distinct terms, where

S∗
j ∈ W and 1 ≤ τ(S∗

j ) ≤ q for any 1 ≤ j ≤ p. It is remarkable
that p is typically much larger than d since p ∝ dq, where “∝”
stands for “proportional to.” In this context, each document Si

can be represented by a p-dimensional vector, where the jth
element (1 ≤ j ≤ p) represents whether term S∗

j ∈ Tq appears
in Si or not. Thus, the model becomes

Yi = β0 +
∑

1≤j≤p

βjI(S∗
j ⊂ Si) + εi. (2)

Model (2) takes the word order into consideration by using
terms, rather than words. Thus, it is the true structural model.
For real analysis, the cardinality of Tq can be quite large and
typically larger than the sample size n, even with reduced
word dictionary W . This motivates us to investigate an efficient
method to select relevant terms to the response.

2.2. A Sequential Text-Term Selection Method

Let Y = (Y1, . . . , Yn)

 ∈ R

n be the response vector. We
define Xij = I(S∗

j ⊂ Si) for any 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Let Xi = (1, Xi1, . . . , Xip)

 ∈ R

p+1, X = (X1, . . . , Xn)

 =

(1,X(1), . . . ,X(p)) ∈ R
n×(p+1), β = (β0, β1, . . . , βp)


 ∈ R
p+1,

and ε = (ε1, . . . , εn)

 ∈ R

n. Then, we can rewrite model (2) as

Y = Xβ + ε. (3)

We define the full model as F = {1, . . . , p}, the true model as
F1 = {j : βj �= 0}, and its complement as F0 = {j : βj = 0}.
We first split the entire term space Tq into subspaces of different
term lengths. Specifically, we let L(m) = {j : τ(S∗

j ) = m}
denote the indices of all terms with length m in Tq. Then, we
use Tq(L(m)) = {S∗

j : j ∈ L(m)} to denote the set of terms

corresponding to L(m). By doing so, the entire term space Tq

can be split into q subspaces, that is, Tq = ⋃
1≤m≤q Tq(L(m)).

Additionally, F = ⋃
1≤m≤q L(m). The terms in each subspace

Tq(L(m)) would be examined consecutively.

Let F (m)
c collect the indices of all terms under consideration

in the mth step, F (m)
r collect the indices of relevant terms

selected in the mth step, and F (m) denote the resulting model
in the mth step. Then, the detailed algorithm is given below.

Step 1 (Initialization). Set F (0)
c = F (0)

r = L(1) and F (0) = ∅ .
Step 2 (Sequential selection). After the (m − 1)th step (1 ≤

m ≤ q), we obtain F (m−1)
c , F (m−1)

r and F (m−1). We
then proceed to the next step as follows.

(2.1) (Consideration set). In the mth step, we first
construct F (m)

c as follows. We define an operator
“⊗” acting on two sets of relevant terms F (g)

r and
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F (h)
r . We let F (g)

r ⊗F (h)
r = {j : S∗

j = S∗
j1
∪S∗

j2
, j1 ∈

F (g)
r , j2 ∈ F (h)

r } be the indices of terms that right
join the term in F (g)

r by the term in F (h)
r . Then,

the consideration set F (m)
c is given by

F (m)
c =

⎧⎪⎨
⎪⎩
F (0)

r if m = 1

F (1)
r ⊗ F (1)

r if m = 2

{F (m−1)
r ⊗ F (1)

r } ∪ {F (1)
r ⊗ F (m−1)

r } if 3 ≤ m ≤ q

(2.2) (Term selection). For each j in F (m)
c , compute

ω̂j = (X(j) − X(j))

(Y − Y)√

(X(j) − X(j))
(X(j) − X(j))(Y − Y)
(Y − Y)

, (4)

where X(j) and Y are the sample means of X(j) and
Y, respectively. Then, define the screened index
set F (m)

r = {j : |ω̂j| ranks among the top d(m)}.
Update F (m) = F (m−1)

⋃
F (m)

r .

Step 3 (Solution path). Iterate Step (2) for q times, which
results in a total of q candidate models, F (1), . . . ,F (q).
We then collect these models by a solution path F =
{F (m), 1 ≤ m ≤ q}, with F (m) = ⋃

1≤i≤m F (m)
r .

It is remarkable that in the mth step, we do not consider all
terms in L(m) but construct a consideration set F (m)

c . Given
that the size of L(m) could still be large, we only consider
those terms “most likely” to be relevant with the response in
the mth step. Intuitively, if a new term is constructed from
two relevant terms, then this new term is also likely to be
relevant and thus needs consideration. Therefore, we use the
relevant terms already selected in previous steps to construct
the consideration set in Step (2.1). Furthermore, as to the choice
of d(m) in each iteration, we might follow some hard threshold
rules, such as d(m) = [n/ log(n)], according to Fan and Lv
(2008), or d(m) = [(n − 1)/q] for a more conservative size.

Another thing worthy to mention is that F (m) is not the final
model that we use to analyze and make statistical inferences
in real applications. We often need to apply a further variable
selection method, such as the backward elimination, to refine
the screened model F (m). Model F (m) mainly serves as a
“quick-and-dirty” way to roughly rule out the unimportant
terms. Its purpose is to reduce the model size to a moderate
scale, typically less than the sample size n, so that the traditional
statistical tools can be applied. Therefore, we are safe as long
as all of the “truly important information” is still in F (m) and
the final sparse model is recovered by the variable selection
technique.

To gain the theoretical insights about the algorithm, we
impose the following regularity conditions.

(A1) Let ωj be the correlation between the jth term indicator
I(S∗

j ⊂ S) and the response; then, for some c1 > 0,
κ > 0, minj∈F1 |ωj| ≥ 2c1n−κ .

(A2) The random error ε follows subexponential tail probabil-
ity condition: for some s0 > 0 and all s ∈ [0, s0), we have
E{exp(sε2)} < ∞.

Both of the conditions are typically and frequently used in
screening-related literature. Based on these conditions, we
explore the screening consistency of the proposed algorithm.
Note that it is unrealistic to expect F1 ∈ F, which means that
the true model is selected accurately by the solution path F.
However, it is possible to have F1 ⊂ F (m) for some 1 ≤ m ≤
q, which means all of the relevant terms are selected by the
solution path. Therefore, we define the solution path F to be
screening consistent if

Pr
(
F1 ⊂ F (m) ∈ F, for some 1 ≤ m ≤ q

)
→ 1. (5)

Theorem 1. Under conditions (A1) and (A2), the proposed
algorithm possesses the screening consistency defined by (5)
for p = O(exp(na)) and |F1| = o(n) for some a > 0 and
b > 0, where |F1| is the cardinality of F1.

Theorem 1 guarantees that under some mild conditions, the
proposed algorithm would not miss any truly important terms
with an overwhelming probability. This builds up a solid basis
for further term selection based on the screened model. The
screening consistency is empirically verified by the following
simulation studies.

3. SIMULATION STUDY

3.1. Simulation Design

The simulation studies are based upon a real textual
dataset—consumer reviews for cellphones, collected from
Jingdong, one of the largest B2C online retailers in China. The
detailed description of the data can be seen in Section 4. Since
the consumer reviews are feedback about consumer experiences
with products and services, their content can help to understand
consumer preference.

In the simulation studies, we extract four high-frequency
words—w1 = battery, w2 = logistics, w3 = durable and w4 =
fast. Consumer reviews containing at least one of the four words
are selected as the collection of documents C, which results
in a total of 22,487 documents. After data preprocessing steps
(details shown in Section 4), the remaining words construct a
dictionary W with size d = 15,325. The term dictionary Tq

is generated from W with the size p = d + d2 + · · · + dq.
Here, we set q = 3, and hence, p is approximately 1012.
Without a loss of generality, we let the first six terms in Tq be
s1 = 〈battery〉, s2 = 〈logistics〉, s3 = 〈durable〉, s4 = 〈fast〉,
s5 = 〈battery durable〉 and s6 = 〈logistics fast〉. Then, we
consider the following three simulation settings to evaluate the
performance of the sequential term selection method.

Setting 1. Yi = −1.5 + I(s1 ⊂ Si) + I(s2 ⊂ Si) + εi

(6)

Setting 2. Yi = −2 + 1.5I(s5 ⊂ Si) + 1.5I(s6 ⊂ Si) + εi

(7)

Setting 3. Yi = −1 + 0.5I(s1 ⊂ Si) + 0.5I(s3 ⊂ Si)

+ I(s5 ⊂ Si) + εi (8)

Simulation Setting 1 contains only two terms of length one.
Setting 2 is more complicated by involving longer terms; and
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the relevant terms s5 and s6 could be highly correlated with
irrelevant ones (i.e., s1–s4). In Setting 3, terms of different
lengths are considered. Since s1 and s3 are subterms of s5, there
exists high correlations between s5 and the other two terms.

In the three simulation settings, Si is the ith consumer
review, Yi is a continuous variable associated with Si, and
εi ∼ N(0, σ 2). σ 2 is chosen to achieve different signal-to-
noise ratios represented by the theoretical R2—30%, 50%, and
70%. For each simulation setting, we create T = 200 simulated
datasets from C. For the tth (1 ≤ t ≤ T) dataset, we first sample
n = 100, 300, 500 consumer reviews from C, and calculate
Yi(t)(1 ≤ i ≤ n).

We conduct the sequential term selection method on each
simulated dataset with q = 3. For the choice of d(m), we try
d(m) = κ ∗ [n/ log(n)] for various positive integers κ , and the
results are quite similar. Thus, we only report on κ = 1 to save
space. After obtaining the solution path, we can further conduct
the backward regression to recover the final sparse model. In
this article, the model is further selected by using a backward
regression with extended BIC criterion (Chen and Chen 2008),

BIC(M) = log{σ̂ 2
(M)} + n−1|M|(log n + 2 log |M|), (9)

where M represents a model and |M| is its cardinality.

3.2. Evaluation Criteria

Let β̂(t) = (β̂0(t), β̂1(t), . . . , β̂p(t))

 ∈ R

p+1 be the estimated
coefficients obtained from the tth simulation run. The selected
model is denoted by F̂(t) = {j : |β̂j(t)| > 0} with size |F̂(t)|. To
evaluate the screening consistency, we define

Coverage probability = T−1
T∑

t=1

I(F1 ⊂ F̂(t)). (10)

Furthermore, the model selection consistency, meaning that
the selected model perfectly recovers the true model, is also
evaluated by

Percentage of correctly fit = T−1
T∑

t=1

I(F1 = F̂(t)). (11)

The correct and incorrect zero rates are also computed.

Percentage of correct zeros = (12)

1

T(p − p1)

T∑
t=1

p∑
j=1

{
I(β̂j(t) = 0) × I(βj = 0)

}
,

Percentage of incorrect zeros = (13)

1

Tp1

T∑
t=1

p∑
j=1

{
I(β̂j(t) = 0) × I(βj �= 0)

}
,

where p1 is the number of relevant terms in the true model.

Figure 1. The average model sizes obtained by different methods
for “Model+NONE” under Setting 1 and R2 = 50%.

3.3. Simulation Results

We compare the following methods: the newly proposed
sequential term selection method (ST for short), information
gain (IG; Kent 1983), mutual information (MI; Hutter 2001),
CHI (Sebastiani 2002), LASSO (Tibshirani 1996), SIS (Fan
and Lv 2008), screening based on the distance correlation (DC-
SIS; Li, Zhong, and Zhu 2012), and forward regression (FR;
Wang 2009). For a given screening method, we use “NONE”
to represent the model without using further variable selection
and “BACK” to represent the model further selected by the
backward elimination. The cardinality of selected models by
IG, MI, CHI, SIS, and DC-SIS is fixed to be [n/ log(n)]. The
tuning parameter λ in LASSO is selected by using 10-fold
cross-validation. The extended BIC criterion is applied in FR
for model selection from the solution path (Wang 2009).

The detailed simulation results under Setting 1 are shown
in Appendix B to save space. For illustration purpose, we take
the theoretical R2 = 50% for instance, and compare four
key evaluation criteria in Figures 1 and 4. Figure 1 presents
the average model sizes achieved by different methods under
“Model+NONE.” As the sample size n increases, the numbers
of terms selected by all methods also increase. For traditional
feature selection methods (IG, MI, CHI) and SIS-based selec-
tion methods (SIS and DC-SIS), the average model sizes are
bounded by [n/ log(n)]. LASSO+NONE obtains similar model
sizes as the aforementioned methods. As for FR+NONE, since
it utilizes the extended BIC as the stopping rule (Wang 2009),
the resulted average model size is much smaller than others.
Finally, ST+NONE has the largest average model size, since it
keeps [n/ log(n)] terms at each term length.

Figure 2 shows the average model sizes under “Model+
BACK.” As shown in Figure 2, after using the backward
elimination, the average model sizes of all methods, except for
FR, dramatically decrease. In addition, our proposed method,
ST+BACK, is closest to the true model size (the black line
in Figure 2). It is also notable that, the average model sizes
obtained by FR+BACK are similar with those of FR+NONE.
This is because FR+NONE has already obtained a relatively
concise term set, and further selection would not help much.
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Figure 2. The average model sizes obtained by different methods
for “Model+BACK” under Setting 1 and R2 = 50%. The black line
indicates the true model size, which is equal to 2.

Figure 3 compares the coverage probabilities among differ-
ent methods for “Model+BACK.” Although the average model
sizes under “Model+BACK” have dramatically dropped, the
coverage probabilities of all methods are not dropped much.
As the sample size increases, the coverage probabilities of all
methods, especially IG, MI, CHI, LASSO, and ST, approach
one, implying the screening consistency. These results
guarantee valid candidate model sets for further backward
selection.

The detailed simulation results about the average model
sizes and coverage probabilities under Setting 2 and Setting
3 are provided in Appendix B. The main results generally
replicate those obtained from Setting 1.

Figure 4 shows the percentages of correctly fit obtained by
different “Model+BACK” methods. As discussed, Setting 1 is a
toy setting, containing only two length-one terms. Therefore, all
methods can achieve relatively high correct-fit rates, indicating

Figure 4. The percentages of correctly fit obtained by different
methods for “Model+BACK” under Setting 1 and R2 = 50%.

the model selection consistency. Even though, ST+BACK is
still the winner among all methods.

Settings 2 and 3, the correct-fit rates of which depicted by
Figure 5, are designed more complicated by involving terms
with longer lengths. Thus the model selection consistency is
challenging, and the correct-fit rates are quite different among
methods. Only FR+BACK and ST+BACK achieve nonzero
correct-fit rates, and ST outperforms FR significantly.

In summary, the screening consistency of the proposed
sequential term selection method, along with the model selec-
tion consistency of the backward regression based on the
screened model, is verified empirically in the three simulation
settings.

4. REAL DATA ANALYSIS

We demonstrate the proposed method on the following real
dataset. We collected 188,107 consumer reviews for 297 cell-

Figure 3. The coverage probabilities obtained by different methods for “Model+BACK” under Setting 1 and R2 = 50%.
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Figure 5. The percentages of correctly fit for “Model+BACK” under Setting 2 and Setting 3 for R2 = 50%.

Figure 6. The histogram of review length (a) and the boxplot of review length (in logarithm) under different rating scores (b).

phones on the Jingdong website (www.JD.com), which is one of
the largest B2C online retailers in China. Each consumer review
contained the posting time, the rating score (on a 5-point scale
from 1 = awful to 5 = excellent), the rated cellphone, and the full
textual content. The user-generated reviews describe the true
feelings of consumers concerning the products and services.
Therefore, the objective of this study is to discover factors that
are correlated with consumers’ evaluations on cellphones.

Following common practice in text mining, we first prepro-
cessed the consumer reviews by removing numbers and punc-
tuation. Since the raw text is mainly written in Chinese, we then
performed word segmentation by using an open source package
Jieba. Finally, we remove stop words, which are commonly
used but have little semantic meaning on most occasions, such
as “the” and “is.” After preprocessing, there are 17,088 unique
words appearing in all consumer reviews.

We first provide some descriptive analysis concerning the
review corpus. The histogram of the review length (i.e., the
number of words in each review) is displayed in Figure 6(a).

The distribution of review length is highly right-skewed, and
the length of most reviews is smaller than 10. Figure 6(b)
illustrates distributions of review length under different rating
scores. It is clear that the lower the rating score, the longer the
reviews. A possible explanation is that consumers who are not
satisfied with the products are more willing to describe their
shopping experience in detail. It offers insights for discovering
crucial factors that are correlated with customers’ evaluations
from review contents.

To explore the relationship between textual reviews and
customer preference, consider the average rating scores of
each cellphone as dependent variable, ranging from 1.000 to
5.000 with mean 4.178 and standard deviation 0.668. All terms
with length 1, 2, and 3 are included as independent variables.
To detect terms that are highly correlated with rating scores,
a direct way is to apply the bivariate marginal method by
evaluating each term’s correlation with the response. Then,
we pick up terms whose absolute correlation coefficients are
higher than 0.5. This leads to a total of 26 terms, shown in

www.JD.com
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Table 1. Term selection results by using the bivariate method

Category Number Selected terms

Sentiment terms 6
〈bad〉, 〈disappointed〉, 〈rubbish〉, 〈good〉,
〈not good〉, 〈too bad〉,

Product-related
terms

9
〈broken〉, 〈signal〉, 〈stuck〉, 〈display〉,
〈system-crash〉, 〈starting-up〉, 〈bad quality〉,
〈bad signal〉, 〈open system crash〉

Service-related
terms

11

〈refund〉, 〈after-sale service〉, 〈customer-service〉,
〈return〉, 〈apply〉, 〈change〉, 〈shopping experience〉,
〈rubbish customer-service〉, 〈rubbish after-sales〉,
〈bad shopping experience〉, 〈satisfied buy again〉

Table 1. We find that the selection results consist of three types
of terms: (1) sentiment terms that clearly indicate preferences
of customers, such as “bad,” “disappointed,” and “good”; (2)
product-related terms, such as “signal,” “display,” and “system-
crash”; (3) service-related terms, including “refund” and “after-
sale service.” These empirical results can reflect customers’ real
concerns.

Then we apply our proposed sequential term selection
method on this dataset, and try q = 1, 2, 3. For each q, we
set the number of terms selected in each step no larger than
100. The results are shown in Table 2. We see clearly that,
after using the backward elimination, the number of selected
terms are largely reduced. By comparing with the selection
results shown in Table 1, we find some common terms, such as
“return,” “broken,” “stuck,” and “system-crash.” However, the
sequential term selection method detect other terms, which are
also worthwhile considering. For example, “fake” is a factor
that can definitely disappoint customers, and “fast logistics” is
a good factor that makes customers satisfied. These findings
suggest that the bivariate marginal method and our proposed
method can serve as meaningful complements to each other.

Lastly, to further investigate the influence of selected terms,
we establish a regression model using the terms selected
under q = 3. The standardized regression coefficients are
present in Table 3. All terms are at 1% level of significance.
Furthermore, the exact values of standardized coefficients
could help us understand the direction and degree of customer
preference. For example, all product-related factors, that
is, 〈mainboard〉, 〈battery change〉, 〈screen scratch change〉,

Table 3. Standardized regression results for using selected terms under
q = 3

Terms Coefficient SE p-value

〈rubbish〉 −0.30 0.04 <0.01
〈return〉 −0.22 0.03 <0.01
〈broken〉 −0.20 0.03 <0.01
〈good〉 0.15 0.03 <0.01
〈mainboard〉 −0.07 0.03 <0.01
〈fake〉 −0.13 0.03 <0.01
〈deceive〉 −0.22 0.02 <0.01
〈battery change〉 −0.12 0.03 <0.01
〈screen scratch change〉 −0.10 0.02 <0.01
〈logistics fast satisfactory〉 0.13 0.02 <0.01

are negatively related to the rating scores, which need
the most urgent improvement. Among the service-related
factors, 〈logistics fast satisfactory〉 has positive estimated
coefficient, suggesting consumers are quite satisfied with the
current logistics. However, the negative estimated coefficient
associated with 〈return〉 suggests the service of product return
needs improvement. In summary, these findings indicate
directions for cellphone manufacturers to modify their products
or for online retailers to improve their service.

5. CONCLUDING REMARKS

In this article, we explore the association between text
documents and some continuous response variables. Given that
text documents are highly unstructured, vector space models
are commonly used to structuralize the textual data. However,
these models often lead to a large dictionary, especially when
using phrases as the basic analysis unit, and thus is a high-
dimensional problem. We therefore investigate a sequential
text-term selection method. We first split the whole term space
into different subspaces according to the length of terms and
then conduct term screening in a sequential manner. That is,
in each subspace, only terms that are selected from previous
steps will be taken into consideration in the current step. The
screening consistency is proven. The empirical performances
are illustrated via simulations as well as real data analysis, both

Table 2. Term selection results by using sequential term selection method

Model size
Terms selected by using backward regression

NONE BACK

q = 1 100 9
〈rubbish〉, 〈bad〉, 〈return〉, 〈broken〉, 〈system-crash〉,
〈good〉, 〈fake〉, 〈deceive〉, 〈clear〉

q = 2 171 12
〈rubbish〉, 〈bad〉, 〈repair〉, 〈apply〉, 〈good〉, 〈fake〉,
〈stuck〉, 〈clear〉, 〈workmanship〉, 〈test broken〉,
〈fast logistics〉, 〈certified-goods〉

q = 3 240 10
〈rubbish〉, 〈bad〉, 〈broken〉, 〈good〉, 〈mainboard〉, 〈fake〉,
〈deceive〉, 〈battery change〉, 〈screen scratch change〉,
〈logistics fast satisfactory〉

NOTE: Terms only selected by this method are in bold.
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based on a dataset of online consumer reviews for cellphones.
The results show that the sequential term selection method can
select the relevant terms by a few steps. Additionally, by using
the backward strategy for further term selection, it can largely
reduce the number of screened terms and capture the true ones.
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APPENDIX A: PROOF OF THEOREM 1

Before the proof of Theorem 1, let us introduce some useful
lemmas that technically facilitate the proof.
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Lemma 1 (Hoeffding’s inequality). Suppose that an independent
random sample {Xi, i = 1, . . . , n} satisfies P(Xi ∈ [ai, bi]) = 1 for
some ai and bi, for all i = 1, . . . , n. Then, for any ε > 0, we have

P(|X − E(X)| ≥ ε) ≤ 2 exp

(
− 2ε2n2∑n

i=1(bi − ai)
2

)
, (A.1)

where X = (X1 + · · · + Xn)/n.

Lemma 2. For a random variable X with Eea|X| < ∞ for some
a > 0, there exist b > 0 and c > 0 such that for any positive number
M, let P(|X| ≥ M) ≤ be−cM .

Lemma 3. Let Â and B̂ be estimates of a, b ∈ (−∞, ∞), respec-
tively, based on a sample with size n. Suppose that for any ε ∈ (0, 1)

and some ξ > 0,

P(|Â − a| ≥ ε) ≤ CA exp(−εnξ ), P(|B̂ − b| ≥ ε) ≤ CB exp(−εnξ )

for some positive constant CA and CB. Let z be ab, a2, a − b, a/b, and√
b, respectively, and Ẑ be its corresponding estimates, ÂB̂, Â2, Â − B̂,

Â/B̂, or
√

B̂. Then, if z is well defined, we have

P
(
|Ẑ − z| ≥ ε

)
≤ CZ exp

(
−εnξ

CZ

)

for some CZ > 0.

Proof of Theorem 1. We divide the proof into the following two
steps.

(1) Prove the concentration inequality of ω̂j.
Recall that ω̂j defined in (4) can be written as

ω̂j = XjY − XjY√(
X

2
j − X

2
j

) (
Y2 − Y

2
) , (A.2)

where

XjY = 1

n

n∑
i=1

XijYi, X
2
j = 1

n

n∑
i=1

X2
ij, and Y2 = 1

n

n∑
i=1

Y2
i .

First, obtain the concentration inequality of XjY. For any δ > 0
and any M > 0,

Pr(|XjY − E(XjY)| > δ) = I1 + I2,

where I1 = Pr(|XjY − E(XjY)| > δ, max1≤i≤n |XijYi| ≤ M),
and I2 = Pr(|XjY − E(XjY)| > δ, max1≤i≤n |XijYi| > M). By

Hoeffding’s inequality in Lemma 1, I1 ≤ 2 exp{−δ2n/(2M2)}.
Moreover, since Xij = I(S∗

j ⊂ Si) ∈ {0, 1},
I2 ≤ Pr( max

1≤i≤n
|XijYi| > M) ≤ Pr( max

1≤i≤n
|Xij| · max

1≤i≤n
|Yi| > M)

≤ Pr( max
1≤i≤n

|Yi| > M) = Pr(|Yi| > M for some i = 1, . . . , n)

≤ n Pr(|Yi| > M) ≤ nb2 exp(−c2M).

The last inequality is due to condition (A2) and Lemma 2. There-
fore,

Pr(|XjY − E(XjY)| > δ) ≤ 2 exp{−δ2n/(2M2)}
+ b2 exp{−(c2M − log n)} ≤ 2 exp

{
−δ · δn

2M2

}

+ b2 exp

{
−δ · c2M − log n

δ

}
.

Take M = O(nγ ), where 0 < γ < 1/2; then, for all j = 1, . . . , p,

Pr(|XjY − E(XjY)| > δ) ≤ 2 exp
{
−δn1−2γ

}
+ b2 exp

{−δnγ
} = O(exp{−δnξ }),

where ξ = min(γ , 1 − 2γ ). Therefore,

max
j=1,...,p

Pr(|XjY − E(XjY)| > δ) ≤ O(exp{−δnξ }).

In the same fashion, we can derive the concentration inequalities

for Xj, X2
j , Y, and Y2. By Lemma 3 and (A.2), for some c > 0, we

have

max
j=1,...,p

Pr(|ω̂j − ωj| > δ) ≤ O(exp{−δnξ /c}). (A.3)

(2) Prove the screening consistency.

We decompose the true model F1 by F1 = ⋃
1≤m≤q F

(m)
1 ,

where F (m)
1 = {j : j ∈ F1, τ(S∗

j ) = m} = F1 ∩ L(m) denotes
the true term index set with term length m. Then, the coverage
probability

Pr
(
F1 ⊂ F (m) ∈ F, for some 1 ≤ m ≤ q

)
= Pr

(
F (m)

1 ⊂ F (m)
r , for all m = 1, . . . , q

)
.

By the law of total probability,

Pr
(
F (m)

1 ⊂ F (m)
r , m = 1, . . . , q

)
= Pr

(
F (1)

1 ⊂ F (1)
r

)
· Pr

(
F (2)

1 ⊂ F (2)
r

∣∣F (1)
1 ⊂ F (1)

r

)
(A.4)

· Pr
(
F (3)

1 ⊂ F (3)
r

∣∣F (1)
1 ⊂ F (1)

r ,F (2)
1 ⊂ F (2)

r

)
· · · ·

· Pr
(
F (q)

1 ⊂ F (q)
r

∣∣F (m)
1 ⊂ F (m)

r , m = 1, . . . , q − 1
)

.

First, consider Pr
(
F (1)

1 ⊂ F (1)
r

)
. To facilitate the proof, we rede-

fine the screening criterion as {j : |ω̂j| > αn}, for some αn = c1n−κ

and κ < ξ . Then,

Pr
(
F (1)

1 ⊂ F (1)
r

)
= Pr( min

j∈F (1)
1

|ω̂j| > αn) (A.5)

= Pr( min
j∈F (1)

1

|ωj|− min
j∈F (1)

1

|ω̂j| < min
j∈F (1)

1

|ωj|−αn)

≥ Pr( max
j∈F (1)

1

|ω̂j − ωj| < c1n−κ ).

The inequality is due to the definition of αn and condition (A1).

By the concentration inequality (A.3), (A.5) is bounded below by

Pr
(
F (1)

1 ⊂ F (1)
r

)
= 1 − Pr( max

j∈F (1)
1

|ω̂j − ωj| > c1n−κ )

≥ 1 − |F (1)
1 | max

j=1,...,p
Pr(|ω̂j − ωj| > c1n−κ )

≥ 1 − |F1| · O(exp{−c2nξ−κ })
≥ 1 − O(exp(−c2nξ−κ )), (A.6)

where c2 = c1/c, and the last inequality holds as |F1| = o(n).
Remember that κ < ξ ; hence, the right-hand side of (A.6) converges
to 1 as n → ∞.

Since the algorithm is conducted using marginal information, each
conditional probability in (A.4) can be proven in the same fashion.
Thus, for a fixed q,

Pr
(
F (m)

1 ⊂ F (m)
r , m = 1, . . . , q

)
≥ [1 − O{exp(−c2nξ−κ )}]q → 1.
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APPENDIX B: THE DETAILED SIMULATION RESULTS

Table B1. Simulation results for “Model+NONE” under Setting 1

n
Model Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor-

(+NONE) size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit

Theoretical R2 = 30% Theoretical R2 = 50% Theoretical R2 = 70%

100

IG 22.0 69.5 99.9 10.3 0.0 22.0 95.0 99.9 2.5 0.0 22.0 96.5 99.9 1.8 0.0
MI 22.0 69.5 99.9 10.3 0.0 22.0 95.0 99.9 2.5 0.0 22.0 96.5 99.9 1.8 0.0
CHI 22.0 34.5 99.9 33.5 0.0 22.0 60.5 99.9 19.8 0.0 22.0 70.0 99.9 15.0 0.0

LASSO 60.4 72.0 99.8 14.0 0.0 60.9 72.1 99.8 13.9 0.0 81.8 81.1 99.8 9.5 0.0
SIS 22.0 18.0 99.9 48.8 0.0 22.0 43.5 99.9 31.3 0.0 22.0 57.0 99.9 23.5 0.0

DC-SIS 22.0 18.5 99.9 50.3 0.0 22.0 44.0 99.9 32.8 0.0 22.0 64.5 99.9 20.8 0.0
FR 1.6 42.0 100.0 57.0 38.5 2.2 57.5 100.0 42.5 47.5 2.8 58.0 100.0 42.0 48.0
ST 44.9 30.0 99.8 38.8 0.0 46.2 52.5 99.8 26.3 0.0 47.2 60.5 99.8 22.0 0.0

300

IG 53.0 97.0 100.0 1.5 0.0 53.0 99.5 100.0 0.3 0.0 53.0 100.0 100.0 0.0 0.0
MI 53.0 97.0 100.0 1.5 0.0 53.0 99.5 100.0 0.3 0.0 53.0 100.0 100.0 0.0 0.0
CHI 53.0 90.5 100.0 4.8 0.0 53.0 97.5 100.0 1.3 0.0 53.0 99.0 100.0 0.5 0.0

LASSO 69.8 100.0 100.0 0.0 0.0 73.2 100.0 100.0 0.0 0.0 81.5 100.0 100.0 0.0 0.0
SIS 53.0 66.0 100.0 17.8 0.0 53.0 73.5 100.0 13.8 0.0 53.0 73.5 100.0 13.3 0.0

DC-SIS 53.0 92.0 100.0 4.3 0.0 53.0 98.5 100.0 0.8 0.0 53.0 99.5 100.0 0.3 0.0
FR 2.3 69.5 100.0 30.5 58.5 2.5 80.0 100.0 20.0 65.5 2.9 89.5 100.0 10.5 71.0
ST 105.8 91.5 100.0 4.3 0.0 116.5 96.0 100.0 2.0 0.0 124.4 98.5 100.0 0.8 0.0

500

IG 80.0 98.5 100.0 0.8 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
MI 80.0 98.5 100.0 0.8 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
CHI 80.0 96.0 100.0 2.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0

LASSO 73.3 100.0 100.0 0.0 0.0 78.5 100.0 100.0 0.0 0.0 91.3 100.0 100.0 0.0 0.0
SIS 80.0 80.5 100.0 10.5 0.0 80.0 83.0 100.0 9.0 0.0 80.0 84.5 100.0 8.0 0.0

DC-SIS 80.0 99.5 100.0 0.3 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
FR 2.4 82.5 100.0 17.5 71.5 2.5 94.0 100.0 6.0 77.0 2.4 95.5 100.0 4.3 83.5
ST 194.3 99.0 100.0 0.5 0.0 217.5 100.0 100.0 0.0 0.0 235.8 100.0 100.0 0.0 0.0

NOTE: The average model size, coverage probability (Cov-Prob), percentage of correct zeros (Cor-Zeros), incorrect zeros (Incor-Zeros), and correctly fit (Cor-Fit) are shown. All of the
percentages are reported omitting.
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Table B2. Simulation results for “Model+BACK” under Setting 1

n
Model Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor-

(+BACK) size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit

Theoretical R2 = 30% Theoretical R2 = 50% Theoretical R2 = 70%

100

IG 1.7 60.5 100.0 28.3 59.0 2.4 91.5 100.0 5.3 71.5 2.2 96.5 100.0 1.8 80.0
MI 1.7 60.5 100.0 28.3 59.0 2.4 91.5 100.0 5.3 71.5 2.2 96.5 100.0 1.8 80.0
CHI 1.7 24.5 100.0 68.5 21.0 2.6 55.5 100.0 41.0 44.5 2.4 53.0 100.0 43.5 44.5

LASSO 3.0 43.5 100.0 49.5 23.0 3.1 77.0 100.0 21.5 41.5 3.1 92.5 100.0 7.0 41.0
SIS 1.5 17.0 100.0 66.5 16.5 2.0 41.5 100.0 42.5 41.0 2.1 56.5 100.0 29.0 56.0

DC-SIS 1.5 19.0 100.0 65.0 19.0 1.9 40.0 100.0 45.0 40.0 2.1 58.0 100.0 25.0 56.0
FR 1.7 42.0 100.0 57.0 39.5 2.1 57.5 100.0 42.5 52.5 2.6 58.0 100.0 42.0 55.0
ST 1.6 30.0 100.0 38.8 22.0 1.9 52.5 100.0 26.3 44.0 1.9 60.5 100.0 22.0 56.5

300

IG 2.0 93.0 100.0 6.0 81.0 2.2 100.0 100.0 0.0 82.0 2.2 98.0 100.0 1.8 89.0
MI 2.0 92.5 100.0 6.5 81.0 2.2 100.0 100.0 0.0 82.0 2.2 97.5 100.0 2.3 88.5
CHI 2.2 75.0 100.0 22.5 58.5 2.6 95.5 100.0 4.3 64.5 2.4 88.5 100.0 10.3 65.0

LASSO 3.1 100.0 100.0 0.0 43.5 3.0 100.0 100.0 0.0 44.0 3.0 100.0 100.0 0.0 41.0
SIS 2.2 66.0 100.0 22.3 62.5 2.3 73.5 100.0 15.0 71.5 2.3 73.5 100.0 13.3 72.5

DC-SIS 2.1 70.0 100.0 20.0 65.0 2.3 75.0 100.0 12.0 72.0 2.5 75.0 100.0 12.0 72.5
FR 2.1 69.5 100.0 30.5 66.0 2.2 80.0 100.0 20.0 77.0 2.4 89.5 100.0 10.5 85.5
ST 2.0 91.5 100.0 4.3 85.0 2.0 96.0 100.0 2.0 91.5 2.1 98.5 100.0 0.8 94.0

500

IG 2.1 96.5 100.0 2.5 86.0 2.0 100.0 100.0 0.0 86.5 2.0 100.0 100.0 0.0 91.5
MI 2.1 96.5 100.0 2.5 86.0 2.0 100.0 100.0 0.0 86.5 2.0 100.0 100.0 0.0 91.5
CHI 2.2 93.0 100.0 5.3 77.0 2.6 100.0 100.0 0.0 63.0 2.3 99.0 100.0 1.0 70.0

LASSO 3.1 98.5 100.0 1.5 42.5 3.3 100.0 100.0 0.0 43.5 3.0 100.0 100.0 0.0 52.5
SIS 2.1 80.5 100.0 11.8 78.5 2.2 83.0 100.0 9.0 82.5 2.2 84.5 100.0 8.0 84.0

DC-SIS 2.0 85.0 100.0 7.5 82.0 2.2 85.0 100.0 8.0 83.0 2.2 87.0 100.0 6.0 85.0
FR 2.1 82.5 100.0 17.5 81.0 2.1 94.0 100.0 6.0 92.5 2.2 95.5 100.0 4.3 94.0
ST 2.0 99.0 100.0 0.5 95.5 2.0 100.0 100.0 0.0 96.0 2.0 100.0 100.0 0.0 97.0

NOTE: The average model size, coverage probability (Cov-Prob), percentage of correct zeros (Cor-Zeros), incorrect zeros (Incor-Zeros), and correctly fit (Cor-Fit) are shown. All of the
percentages are reported omitting.
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Table B3. Simulation results for “Model+NONE” under Setting 2

n
Model Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor-

(+NONE) size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit

Theoretical R2 = 30% Theoretical R2 = 50% Theoretical R2 = 70%

100

IG 22.0 98.5 99.9 0.8 0.0 22.0 100.0 99.9 0.0 0.0 22.0 98.5 99.9 0.8 0.0
MI 22.0 98.5 99.9 0.8 0.0 22.0 100.0 99.9 0.0 0.0 22.0 98.5 99.9 0.8 0.0
CHI 22.0 88.0 99.9 6.0 0.0 22.0 99.5 99.9 0.3 0.0 22.0 100.0 99.9 0.0 0.0

LASSO 39.9 90.5 99.9 5.0 2.5 41.6 99.5 99.9 0.3 0.0 45.5 100.0 99.9 0.0 0.5
SIS 22.0 85.5 99.9 8.5 0.0 22.0 98.0 99.9 1.3 0.0 22.0 100.0 99.9 0.0 0.0

DC-SIS 22.0 84.5 99.9 9.3 0.0 22.0 98.0 99.9 1.0 0.0 22.0 99.5 99.9 0.3 0.0
FR 1.6 4.8 100.0 68.5 4.5 2.1 27.5 100.0 35.0 23.5 2.2 97.0 100.0 1.5 33.0
ST 42.4 4.0 99.8 68.8 0.0 54.0 23.0 99.8 43.3 0.0 62.0 49.0 99.8 25.8 0.0

300

IG 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0
MI 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0
CHI 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0

LASSO 41.4 96.0 100.0 2.0 0.0 43.8 98.0 100.0 1.0 0.5 47.7 100.0 100.0 0.0 0.0
SIS 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0

DC-SIS 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0
FR 2.3 52.0 100.0 24.0 49.0 2.4 98.0 100.0 1.0 65.5 2.1 83.0 100.0 8.3 75.0
ST 125.3 59.0 100.0 20.8 0.0 151.5 86.0 100.0 7.0 0.0 158.3 97.0 100.0 1.5 0.0

500

IG 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
MI 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
CHI 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0

LASSO 43.6 95.0 100.0 2.5 0.0 49.0 98.5 100.0 0.8 0.5 55.4 99.5 100.0 0.3 0.0
SIS 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0

DC-SIS 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
FR 2.2 68.0 100.0 12.0 65.0 2.8 98.0 100.0 1.0 82.5 2.2 96.0 100.0 3.0 91.5
ST 225.5 82.0 100.0 9.0 0.0 240.9 98.0 100.0 1.0 0.0 240.0 100.0 100.0 0.0 0.0

NOTE: The average model size, coverage probability (Cov-Prob), percentage of correct zeros (Cor-Zeros), incorrect zeros (Incor-Zeros), and correctly fit (Cor-Fit) are shown. All of the
percentages are reported omitting.
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Table B4. Simulation results for “Model+BACK” under Setting 2

n
Model Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor-

(+BACK) size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit

Theoretical R2 = 30% Theoretical R2 = 50% Theoretical R2 = 70%

100

IG 1.7 0.0 100.0 100.0 0.0 2.0 0.0 100.0 100.0 0.0 2.2 0.0 100.0 100.0 0.0
MI 1.7 0.0 100.0 100.0 0.0 2.0 0.0 100.0 100.0 0.0 2.2 0.0 100.0 100.0 0.0
CHI 1.8 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0 2.4 0.0 100.0 100.0 0.0

LASSO 3.1 0.0 100.0 100.0 0.0 3.3 0.0 100.0 100.0 0.0 3.5 0.0 100.0 100.0 0.0
SIS 1.9 85.5 100.0 8.0 0.0 2.1 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0

DC-SIS 2.0 87.0 100.0 5.0 0.0 2.1 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0
FR 1.6 4.8 100.0 68.5 4.5 2.1 27.5 100.0 35.0 23.5 2.2 97.0 100.0 1.5 33.0
ST 1.4 4.0 100.0 68.8 4.0 2.0 23.0 100.0 43.3 20.5 2.3 49.0 100.0 25.8 47.0

300

IG 2.1 0.0 100.0 100.0 0.0 2.2 0.0 100.0 100.0 0.0 3.4 0.0 100.0 100.0 0.0
MI 2.1 0.0 100.0 100.0 0.0 2.2 0.0 100.0 100.0 0.0 3.4 0.0 100.0 100.0 0.0
CHI 2.1 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0 3.0 0.0 100.0 100.0 0.0

LASSO 3.2 0.0 100.0 100.0 0.0 3.5 0.0 100.0 100.0 0.0 3.8 0.0 100.0 100.0 0.0
SIS 2.1 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0

DC-SIS 2.0 0.0 100.0 100.0 0.0 2.2 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0
FR 2.0 52.0 100.0 24.0 51.0 2.4 98.0 100.0 1.0 65.5 2.1 83.0 100.0 8.3 75.0
ST 2.1 59.0 100.0 20.8 52.0 2.2 86.0 100.0 7.0 79.5 2.1 97.0 100.0 1.5 94.0

500

IG 2.1 0.0 100.0 100.0 0.0 2.3 0.0 100.0 100.0 0.0 5.2 0.0 100.0 100.0 0.0
MI 2.1 0.0 100.0 100.0 0.0 2.3 0.0 100.0 100.0 0.0 5.2 0.0 100.0 100.0 0.0
CHI 2.2 0.0 100.0 100.0 0.0 2.2 0.0 100.0 100.0 0.0 5.4 0.0 100.0 100.0 0.0

LASSO 3.4 0.0 100.0 100.0 0.0 3.8 0.0 100.0 100.0 0.0 4.3 0.0 100.0 100.0 0.0
SIS 2.1 0.0 100.0 100.0 0.0 2.0 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0

DC-SIS 2.3 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0 2.1 0.0 100.0 100.0 0.0
FR 2.2 68.0 100.0 12.0 65.0 2.8 98.0 100.0 1.0 82.5 2.2 96.0 100.0 3.0 91.5
ST 2.1 82.0 100.0 9.0 77.5 2.1 98.0 100.0 1.0 94.5 2.0 100.0 100.0 0.0 97.5

NOTE: The average model size, coverage probability (Cov-Prob), percentage of correct zeros (Cor-Zeros), incorrect zeros (Incor-Zeros), and correctly fit (Cor-Fit) are shown. All of the
percentages are reported omitting.
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Table B5. Simulation results for “Model+NONE” under Setting 3

n
Model Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor-

(+NONE) size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit

Theoretical R2 = 30% Theoretical R2 = 50% Theoretical R2 = 70%

100

IG 22.0 82.0 99.9 6.3 0.0 22.0 99.0 99.9 0.3 0.0 22.0 98.0 99.9 0.7 0.0
MI 22.0 82.0 99.9 6.3 0.0 22.0 99.0 99.9 0.3 0.0 22.0 98.0 99.9 0.7 0.0
CHI 22.0 81.5 99.9 6.3 0.0 22.0 100.0 99.9 0.0 0.0 22.0 100.0 99.9 0.0 0.0

LASSO 37.3 38.0 99.9 28.2 0.0 44.0 70.5 99.9 11.0 0.5 52.2 96.0 99.9 1.3 0.5
SIS 22.0 65.0 99.9 13.5 0.0 22.0 96.0 99.9 1.3 0.0 22.0 99.5 99.9 0.2 0.0

DC-SIS 22.0 74.5 99.9 9.3 0.0 22.0 100.0 99.9 0.0 0.0 22.0 100.0 99.9 0.0 0.0
FR 1.2 0.0 100.0 67.5 0.0 1.5 3.5 100.0 58.3 3.0 2.8 47.5 100.0 29.2 33.5
ST 44.5 55.5 99.8 30.8 0.0 48.1 89.0 99.8 7.3 0.0 51.4 98.5 99.8 1.0 0.0

300

IG 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0
MI 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0
CHI 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0

LASSO 41.0 74.0 100.0 9.8 0.0 48.5 96.0 100.0 1.3 0.0 58.4 100.0 100.0 0.0 0.0
SIS 53.0 99.5 100.0 0.2 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0

DC-SIS 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0 53.0 100.0 100.0 0.0 0.0
FR 1.6 6.5 100.0 59.2 6.5 2.7 47.5 100.0 28.2 38.5 3.8 89.5 100.0 3.5 52.5
ST 102.5 99.5 100.0 0.3 0.0 118.1 100.0 100.0 0.0 0.0 133.4 100.0 100.0 0.0 0.0

500

IG 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
MI 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
CHI 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0

LASSO 43.7 90.5 100.0 3.2 0.5 50.6 98.5 100.0 0.5 0.0 64.7 99.5 100.0 0.2 0.0
SIS 53.0 99.5 100.0 0.2 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0

DC-SIS 53.0 99.5 100.0 0.2 0.0 80.0 100.0 100.0 0.0 0.0 80.0 100.0 100.0 0.0 0.0
FR 2.0 18.0 100.0 46.7 15.0 3.3 79.5 100.0 8.8 56.0 4.1 90.0 100.0 3.3 83.0
ST 188.3 100.0 100.0 0.0 0.0 216.7 100.0 100.0 0.0 0.0 240.0 100.0 100.0 0.0 0.0

NOTE: The average model size, coverage probability (Cov-Prob), percentage of correct zeros (Cor-Zeros), incorrect zeros (Incor-Zeros), and correctly fit (Cor-Fit) are shown. All of the
percentages are reported omitting.
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Table B6. Simulation results for “Model+BACK” under Setting 3

n
Model Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor- Model Cov- Cor- Incor- Cor-

(+BACK) size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit size Prob Zeros Zeros Fit

Theoretical R2 = 30% Theoretical R2 = 50% Theoretical R2 = 70%

100

IG 1.3 0.0 100.0 79.2 0.0 1.6 0.0 100.0 77.0 0.0 2.5 0.0 100.0 60.7 0.0
MI 1.3 0.0 100.0 79.2 0.0 1.6 0.0 100.0 77.0 0.0 2.5 0.0 100.0 60.7 0.0
CHI 1.6 0.0 100.0 81.2 0.0 2.1 0.0 100.0 76.7 0.0 3.1 0.0 100.0 57.3 0.0

LASSO 3.3 0.0 100.0 84.3 0.0 4.1 0.0 100.0 68.8 0.0 5.3 0.0 100.0 42.7 0.0
SIS 1.5 0.0 100.0 85.7 0.0 1.9 0.0 100.0 76.0 0.0 2.9 0.0 100.0 44.3 0.0

DC-SIS 1.6 0.0 100.0 82.0 0.0 1.9 0.0 100.0 70.0 0.0 2.9 0.0 100.0 41.2 0.0
FR 1.2 0.0 100.0 67.5 0.0 1.5 3.5 100.0 58.3 3.0 2.8 47.5 100.0 29.2 33.5
ST 1.4 4.0 100.0 68.3 1.5 1.7 8.0 100.0 54.0 6.0 2.7 63.0 100.0 15.5 56.5

300

IG 1.8 0.0 100.0 80.0 0.0 2.8 0.0 100.0 61.7 0.0 4.3 0.0 100.0 36.0 0.0
MI 1.8 0.0 100.0 80.0 0.0 2.8 0.0 100.0 61.7 0.0 4.3 0.0 100.0 36.0 0.0
CHI 1.9 0.0 100.0 83.0 0.0 3.2 0.0 100.0 64.5 0.0 4.8 0.0 100.0 36.7 0.0

LASSO 3.7 0.0 100.0 62.8 0.0 4.9 0.0 100.0 39.2 0.0 5.5 0.0 100.0 33.3 0.0
SIS 1.9 0.0 100.0 74.5 0.0 3.0 0.0 100.0 42.8 0.0 3.6 0.0 100.0 33.3 0.0

DC-SIS 1.9 0.0 100.0 71.0 0.0 2.9 0.0 100.0 41.0 0.0 3.4 0.0 100.0 30.0 0.0
FR 1.6 6.0 100.0 59.2 6.0 2.7 47.5 100.0 28.2 38.5 3.8 89.5 100.0 3.5 52.5
ST 1.6 4.5 100.0 51.8 4.5 2.6 60.5 100.0 16.0 54.5 3.0 100.0 100.0 0.0 96.0

500

IG 2.2 0.0 100.0 76.3 0.0 3.6 0.0 100.0 44.7 0.0 5.2 0.0 100.0 33.3 0.0
MI 2.2 0.0 100.0 76.3 0.0 3.6 0.0 100.0 44.7 0.0 5.2 0.0 100.0 33.3 0.0
CHI 2.3 0.0 100.0 75.5 0.0 3.9 0.0 100.0 43.3 0.0 5.1 0.0 100.0 33.7 0.0

LASSO 4.6 0.0 100.0 44.3 0.0 5.4 0.0 100.0 33.5 0.0 5.9 0.0 100.0 33.3 0.0
SIS 2.4 0.0 100.0 93.5 0.0 3.3 0.0 100.0 33.8 0.0 3.8 0.0 100.0 33.3 0.0

DC-SIS 2.3 0.0 100.0 91.0 0.0 3.1 0.0 100.0 31.0 0.0 3.8 0.0 100.0 29.0 0.0
FR 2.0 18.0 100.0 46.7 15.0 3.3 79.5 100.0 8.8 56.0 4.1 90.0 100.0 3.3 83.0
ST 2.1 26.0 100.0 33.7 23.5 3.0 92.5 100.0 2.5 88.5 3.0 99.5 100.0 0.2 97.0

NOTE: The average model size, coverage probability (Cov-Prob), percentage of correct zeros (Cor-Zeros), incorrect zeros (Incor-Zeros), and correctly fit (Cor-Fit) are shown. All of the
percentages are reported omitting.
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