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Two-Way Fixed Effects Estimators with  
Heterogeneous Treatment Effects†

By Clément de Chaisemartin and Xavier D’Haultfœuille*

Linear regressions with period and group fixed effects are widely 
used to estimate treatment effects. We show that they estimate 
weighted sums of the average treatment effects (ATE ) in each group 
and period, with weights that may be negative. Due to the negative 
weights, the linear regression coefficient may for instance be nega-
tive while all the ATEs are positive. We propose another estimator 
that solves this issue. In the two applications we revisit, it is signifi-
cantly different from the linear regression estimator. (JEL C21, C23, 
D72, J31, J51, L82)

A popular method to estimate the effect of a treatment on an outcome is to com-
pare over time groups experiencing different evolutions of their exposure to treat-
ment. In practice, this idea is implemented by estimating regressions that control for 
group and time fixed effects. Hereafter, we refer to those as  two-way fixed effects 
(FE) regressions. We conducted a survey, and found that 19 percent of all empiri-
cal articles published by the American Economic Review (AER) between 2010 and 
2012 have used a  two-way FE regression to estimate the effect of a treatment on an 
outcome. When the treatment effect is constant across groups and over time, such 
regressions estimate that effect under the standard “common trends” assumption. 
However, it is often implausible that the treatment effect is constant. For instance, 
the minimum wage’s effect on employment may vary across US counties, and may 
change over time. This paper examines the properties of  two-way FE regressions 
when the constant effect assumption is violated.

We start by assuming that all observations in the same  (g, t)  cell have the same 
treatment and that the treatment is binary, as is for instance the case when the treat-
ment is a  county-level law. We consider the regression of   Y i,g,t    , the outcome of unit  i  
in group  g  at period  t  on group fixed effects, period fixed effects, and   D g,t   , the treat-
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ment in group  g  at period  t . Let    β ˆ   fe    denote the coefficient of   D g,t    , and let   β fe    denote 
its expectation. Under the common trends assumption, we show that   β fe    is equal to 
a weighted sum of the treatment effect in each treated  (g, t)  cell:

(1)   β fe   = E 
(

  ∑ 
 (g,t) : D g,t  =1

  
 
    W g,t    Δ g,t  

)
  ,

where   Δ g,t    is the average treatment effect (ATE) in group  g  and period  t  and the 
weights   W g,t    sum to 1 but may be negative. Negative weights arise because    β ˆ   fe    is 
a weighted sum of several  difference-in-differences (DID), which compare the 
evolution of the outcome between consecutive time periods across pairs of groups. 
However, the “control group” in some of those comparisons may be treated at both 
periods. Then, its treatment effect at the second period gets differenced out by the 
DID, hence the negative weights.

The negative weights are an issue when the ATEs are heterogeneous across 
groups or periods. Then, one could have that   β fe    is negative while all the ATEs are 
positive. For instance,  1.5 × 1 − 0.5 × 4 , a weighted sum of  1  and  4 , is strictly 
negative. Using the dataset of Gentzkow, Shapiro, and Sinkinson (2011), we find 
that 40 percent of the weights attached to   β fe    are negative, so   β fe    is not robust to 
heterogeneous effects.1

Researchers may want to know how serious that issue is in the application they 
consider. We show that conditional on all treatments, the absolute value of the expec-
tation of    β ˆ   fe    divided by the standard deviation of the weights is equal to the minimal 
value of the standard deviation of the ATEs across the treated  (g, t)  cells under which 
the average treatment on the treated (ATT) may actually have the opposite sign than 
that coefficient. One can estimate that ratio to assess the robustness of the  two-way 
FE coefficient. If that ratio is close to 0, that coefficient and the ATT can be of oppo-
site signs even under a small and plausible amount of treatment effect heterogeneity. 
In that case, treatment effect heterogeneity would be a serious concern for the valid-
ity of that coefficient. On the contrary, if that ratio is very large, that coefficient and 
the ATT can only be of opposite signs under a very large and implausible amount of 
treatment effect heterogeneity.

Finally, we propose a new estimator,   DID M   , that is valid even if the treatment 
effect is heterogeneous over time or across groups. It estimates the average treat-
ment effect across all the  (g, t)  cells whose treatment changes from  t − 1  to  t . It 
relies on common trends assumptions on both potential outcomes. Those conditions 
are partly testable, and we propose a test that amounts to looking at  pretrends. This 
test differs from the standard event study  pretrends test (see Autor 2003), which has 
been shown to be invalid when treatment effects are heterogeneous (see Abraham 
and Sun 2018). We show that our estimator is asymptotically normal. We compute it 
in the datasets of Gentzkow, Shapiro, and Sinkinson (2011) and Vella and Verbeek 
(1998), and in both cases we find that it is significantly different from    β ˆ   fe   .2 Our esti-
mator can be used in applications where, for each pair of consecutive dates, there are 

1 Gentzkow, Shapiro, and Sinkinson (2011) does not estimate   β fe   , but   β fd   , the treatment coefficient in the 
 first-difference regression defined below. Forty-six percent of the weights attached to   β fd    are strictly negative.

2 In both cases, our estimator is also significantly different from    β ˆ   fd   .



2966 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2020

groups whose treatment does not change. We estimate that this condition is satisfied 
for around 80 percent of the papers using  two-way fixed effects regressions found 
in our survey of the AER.

Overall, our paper has implications for applied researchers estimating  two-way 
fixed effects regressions. First, we recommend that they compute the weights 
attached to their regression and the ratio of  |  β ˆ   fe  |  divided by the standard deviation 
of the weights. To do so, they can use the twowayfeweights Stata package that is 
available from the SSC repository. If many weights are negative, and if the ratio is 
not very large, we recommend that they compute our new estimator, using the fuzzy-
did and did_multiplegt Stata packages, also available from the SSC repository (see 
de Chaisemartin, D’Haultfœuille, and Guyonvarch 2019, for explanations on how to 
use the former package).

We extend our results in several important directions. First, another  commonly 
used regression is the  first-difference regression of   Y g,t   −  Y g,t−1   , the change in 
the mean outcome in group  g , on period fixed effects and on   D g,t   −  D g,t−1   , the 
change in the treatment. We let   β fd    denote the expectation of the coefficient 
of   D g,t   −  D g,t−1   . We show that under common trends,   β fd    also identifies a weighted 
sum of treatment effects, with potentially some negative weights. Second, in our 
online Appendix we show that our results extend to fuzzy designs, where the treat-
ment varies within  (g, t)  cells, and to  two-way fixed effects regressions with a 
 nonbinary treatment and with covariates.

Our paper is related to the DID literature. Our main result generalizes Theorem 1 
in de  Chaisemartin and D’Haultfœuille (2018). When the data have two groups 
and two periods, the  Wald-DID estimand considered therein is equal to   β fe    and   β fd   . 
Our results on   β fe    and   β fd    are thus extensions of that theorem to the case with mul-
tiple periods and groups.3 Moreover, our   DID M    estimator is related to the  Wald-TC  
estimator with many groups and periods proposed in de  Chaisemartin and 
D’Haultfœuille (2018), and to the  multiperiod DID estimator proposed by Imai 
and Kim (2018). In Section  III, we explain the differences between those three 
estimators.

More recently, Borusyak and Jaravel (2017), Abraham and Sun (2018), Athey 
and Imbens (2018), Callaway and Sant’Anna (2018), and  Goodman-Bacon (2018) 
study the special case of staggered adoption designs, where the treatment of a group 
is weakly increasing over time. Those papers derive some important results specific 
to that design that we do not consider here. Still, some of the results in those papers 
are related to ours, and we describe precisely those connections later in the paper. 
The most important dimension on which our paper differs from those is that our 
results apply to any  two-way fixed effects regressions, not only to those with stag-
gered adoption. In our survey of the AER papers estimating  two-way fixed effects 
regressions, less than 10 percent have a staggered adoption design. This suggests 
that while staggered adoptions are an important research design, they may account 
for a relatively small minority of the applications where  two-way fixed effects 
regressions have been used.

3 In fact, a preliminary version of our main result appeared in a working paper version of de Chaisemartin and 
D’Haultfœuille (2018): see Theorems S1 and S2 in de Chaisemartin and D’Haultfœuille (2015).
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The paper is organized as follows. Section  I introduces the  setup. Section  II 
presents our decomposition results. Section  III introduces our alternative esti-
mator. Section  IV briefly describes some of the extensions covered in our online 
Appendix. Section V presents our survey of the articles published in the AER, and 
our two empirical applications. The data and codes are given in de Chaisemartin and 
D’Haultfœuille (2020b).

I. Setup

One considers observations that can be divided into  G  groups and  T  periods. For 
every  (g, t) ∈ {1, …, G} ×  {1, … , T }  , let   N g,t    denote the number of observations 
in group  g  at period  t , and let  N =  ∑ g,t        N g,t    be the total number of observations. 
The data may be an  individual-level panel or repeated  cross-section dataset where 
groups are, say, individuals’ county of birth. The data could also be a  cross sec-
tion where cohort of birth plays the role of time. For instance, Duflo (2001) com-
pares the schooling of different cohorts in Indonesia, some of which were exposed 
to a school construction program. It is also possible that for all  (g, t) ,   N g,t   = 1 , 
e.g., a group is one individual or firm. All of the above are special cases of the data 
structure we consider.

One is interested in measuring the effect of a treatment on some out-
come. Throughout the paper we assume that treatment is binary, but our results 
apply to any ordered treatment, as we show in online Appendix Section  3.2. 
Then, for every  (i, g, t) ∈ {1, …,  N g,t  } × {1, …, G} × {1, …, T } , let   D i,g,t    
and  ( Y i,g,t  (0),  Y i,g,t  (1))  respectively denote the treatment status and the potential out-
comes without and with treatment of observation  i  in group  g  at period  t .

The outcome of observation  i  in group  g  and period  t  is   Y i,g,t   =  Y i,g,t  ( D i,g,t  ) . For 
all  (g, t) , let

   D g,t   =   1 _  N g,t  
     ∑ 
i=1

  
 N g,t  

     D i,g,t  ,   Y g,t   (0)  =   1 _  N g,t  
     ∑ 
i=1

  
 N g,t  

     Y i,g,t   (0) ,

  Y g,t   (1)  =   1 _  N g,t  
     ∑ 
i=1

  
 N g,t  

     Y i,g,t   (1) , and  Y g,t   =   1 _  N g,t  
     ∑ 
i=1

  
 N g,t  

     Y i,g,t   .

Here,   D g,t    denotes the average treatment in group  g  at period  t , while   Y g,t  (0) , 
  Y g,t  (1) , and   Y g,t    respectively denote the average potential outcomes without and with 
treatment and the average observed outcome in group  g  at period  t .

Throughout the paper, we maintain the following assumptions.

ASSUMPTION 1 (Balanced Panel of Groups): For all  (g, t) ∈ {1, …, G}  
× {1, …, T } ,   N g,t   > 0 .

Assumption  1 requires that no group appears or disappears over time. This 
assumption is often satisfied. Without it, our results still hold but the notation 
becomes more complicated as the denominators of some of the fractions below may 
then be equal to zero.
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ASSUMPTION 2 (Sharp Design): For all  (g, t) ∈ {1, …, G } × {1, …, T }  and  
i ∈ {1, …,  N g,t  } ,   D i,g,t   =  D g,t    .

Assumption 2 requires that units’ treatments do not vary within each  (g, t)  cell, 
a situation we refer to as a sharp design. This is for instance satisfied when the 
treatment is a  group-level variable, for instance a county  or a  state law. This is also 
mechanically satisfied when   N g,t   = 1 . In our survey in Section IIA, we find that 
almost 80 percent of the papers using  two-way fixed effects regressions and pub-
lished in the AER between 2010 and 2012 consider sharp designs. We focus on sharp 
designs because of their prevalence, but in online Appendix Section 2, we show that 
all the results in Sections  II and III can be extended to fuzzy designs.

ASSUMPTION 3 (Independent Groups): The vectors   ( Y g,t  (0),  Y g,t  (1),  D g,t  ) 1≤t≤T    are 
mutually independent.

We consider   D g,t   ,   Y g,t  (0) ,   Y g,t  (1)  as random variables. For instance, aggregate ran-
dom shocks may affect the average potential outcomes of group  g  at period  t . The 
treatment status of group  g  at period  t  may also be random. The expectations below 
are taken with respect to the distribution of those random variables. Assumption 3 
allows for the possibility that the treatments and potential outcomes of a group may 
be correlated over time, but it requires that the potential outcomes and treatments of 
different groups be independent.

ASSUMPTION 4 (Strong Exogeneity): For all  (g, t) ∈ {1, …, G } × {2, …, T } , 
 E( Y g,t  (0) −  Y g,t−1  (0) |  D g,1  , …,  D g,T  ) = E( Y g,t  (0) −  Y g,t−1  (0)) .

Assumption 4 requires that the shocks affecting a group’s   Y g,t  (0)  be mean inde-
pendent of that group’s treatment sequence. This rules out the possibility that a group 
gets treated because it experiences negative shocks, the  so-called Ashenfelter’s dip 
(see Ashenfelter 1978). Assumption 4 is related to the strong exogeneity condition 
in panel data models, which, as is  well known, is necessary to obtain the consistency 
of the fixed effects estimator (see, e.g., Wooldridge 2002).

We now define the FE regression described in the introduction.4

REGRESSION 1 ( Fixed Effects Regression): Let    β ˆ   fe    denote the coefficient of   D g,t    
in an OLS regression of   Y i,g,t    on group fixed effects, period fixed effects, and   D g,t   . 
Let   β fe   = E[   β ˆ   fe  ] .5

For all  g  and  t , let   N g,.   =  ∑ t=1  T     N g,t    and   N .,t   =  ∑ g=1  G     N g,t    respectively denote 
the total number of observations in group  g  and in period  t . For any vari-
able   X g,t    defined in each  (g, t)  cell, let   X g,.   =  ∑ t=1  T    ( N g,t  / N g,.  )  X g,t    denote the average  
value of   X g,t    in group  g , let   X .,t   =  ∑ g=1  G   ( N g,t  / N .,t  )  X g,t    denote the average value of   X g,t    

4  Throughout the paper, we assume that   D g,t    in Regression  1 and   D g,t   −  D g,t−1    in Regression  2 are  
not collinear with the other independent variables in those regressions, so    β ˆ   fe    and    β ˆ   fd    are  well defined.

5 As the independent variables in Regression 1 are constant within each  (g, t)  cell, Regression 1 is equivalent to 
a  (g, t) -level regression of   Y g,t    on group and period fixed effects and   D g,t   , weighted by   N g,t   .
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in period  t , and let   X .,.   =  ∑ g,t      ( N g,t  /N )  X g,t    denote the average value of   X g,t   . For 
instance,   D 3,.    and   D .,2    respectively denote the average treatment in group 3 across 
time and in period 2 across groups, whereas   Y .,.    denotes the average value of the 
outcome across groups and time. Finally, for any variable   X g,t   , we let  X  denote the 
vector   ( X g,t  ) (g,t)∈{1,…,G}×{1,…,T }    collecting the values of that variable in each  (g, t)  
cell. For instance,  D  is the vector   ( D g,t  ) (g,t)∈{1,…,G}×{1,…,T }    collecting the treatments 
of all the  (g, t)  cells.

II. Two-Way Fixed Effects Regressions

A. A Decomposition Result

We study the FE regression under the following common trends assumption.

ASSUMPTION 5 (Common Trends): For  t ≥ 2 ,  E( Y g,t  (0) −  Y g,t−1  (0))  does not 
vary across  g .

Assumption  5 requires that the expectation of the outcome without treatment 
follow the same evolution over time in every group. When  t  represents birth cohorts, 
Assumption 5 requires that the outcome difference between consecutive cohorts be 
the same across groups.

Let   N 1   =  ∑ i,g,t        D i,g,t    denote the number of treated units, let

   Δ   TR  =   1 _  N 1  
     ∑ 
 (i,g,t) : D g,t  =1

  
 
    [ Y i,g,t   (1)  −  Y i,g,t   (0) ]  

denote the average treatment effect across all treated units, and let   δ   TR  = E[ Δ   TR  ]  
denote the expectation of that parameter, hereafter referred to as the ATT. For any  
(g, t) ∈ {1, …, G} × {1, …, T } , let

   Δ g,t   =   1 _  N g,t  
     ∑ 
i=1

  
 N g,t  

     [ Y i,g,t   (1)  −  Y i,g,t   (0) ]  

denote the ATE in cell  (g, t) . Note that   δ   TR   is equal to the expectation of a weighted 
average of the treated cells’   Δ g,t   ,

(2)   δ   TR  = E [  ∑ 
g,t: D g,t  =1

  
 
      

 N g,t   _  N 1  
    Δ g,t  ]  .

Under the common trends assumption, we show that   β fe    is also equal to the expec-
tation of a weighted sum of the   Δ g,t     terms, with potentially some negative weights.

Let   ε g,t    denote the residual of observations in cell  (g, t)  in the regression of   D g,t    on 
group and period fixed effects,6

   D g,t   = α +  γ g   +  λ t   +  ε g,t    .

6   ε g,t    arises from a  unit-level regression, where the dependent and independent variables only vary at the  (g, t)  
level. Therefore, all the units in the same  (g, t)  cell have the same value of   ε g,t    .
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One can show that if the regressors in Regression 1 are not collinear, the average 
value of   ε g,t    across all treated  (g, t)  cells differs from 0:   ∑ (g,t): D g,t  =1  

    ( N g,t  / N 1  )  ε g,t   
≠ 0 . Then we let   w g,t    denote   ε g,t    divided by that average:

   w g,t   =   
 ε g,t   _____________  

 ∑  (g,t) : D g,t  =1         
 N g,t   _  N 1  

    ε g,t  
    .

THEOREM 1: Suppose that Assumptions 1–5 hold. Then,7

   β fe   = E 
[

  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w g,t    Δ g,t  ]

  .

This result implies that in general,   β fe   ≠  δ   TR  , so    β ˆ   fe    is a biased estimator of the ATT. 
To illustrate this, we consider a simple example of a staggered adoption design with 
two groups and three periods, and where the treatments are  nonstochastic: group 1 
is untreated at periods 1 and 2 and treated at period 3, while group 2 is untreated at 
period 1 and treated both at periods 2 and 3.8 We also assume that   N g,t  / N g,t−1    does 
not vary across  g : all groups experience the same growth of their number of obser-
vations from  t − 1  to  t , a requirement that is for instance satisfied when the data is 
a balanced panel. Then, one can show that

   ε g,t   =  D g,t   −  D g,.   −  D .,t   +  D .,.    ,

thus implying that

   ε 1,3   = 1 − 1 / 3 − 1 + 1 / 2 = 1 / 6 ,

   ε 2,2   = 1 − 2 / 3 − 1 / 2 + 1 / 2 = 1 / 3 ,

   ε 2,3   = 1 − 2 / 3 − 1 + 1 / 2 = − 1 / 6 .

The residual is negative in group 2 and period 3, because the regression predicts 
a treatment probability larger than one in that cell, a classic extrapolation problem 
with linear regressions. Then, under the common trends assumption, it follows from 
Theorem 1 and the fact that the treatments are  nonstochastic that

   β fe   = 1 / 2E [ Δ 1,3  ]  + E [ Δ 2,2  ]  − 1 / 2E [ Δ 2,3  ]  .

Here,   β fe    is equal to a weighted sum of the ATEs in group 1 at period 3, group 2 at 
period 2, and group 2 at period 3, the three treated  (g, t)  cells. However, the weight 
assigned to each ATE differs from  1/3 , the proportion that each cell accounts for 

7 In the proof, we show the following, stronger result:

  E [  β ˆ   fe   |  D]  =   ∑ 
 (g,t) : D g,t  =1

  
 
       N g,t   _  N 1      w g,t   E [ Δ g,t   | D]  .

8 A similar example appears in Borusyak and Jaravel (2017).
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in the population of treated observations. Therefore,   β fe    is not equal to   δ   TR  . Perhaps 
more worryingly, not all the weights are positive: the weight assigned to the ATE in 
group 2, period 3 is strictly negative. Consequently,   β fe    may be a very misleading 
measure of the treatment effect. Assume for instance that  E[ Δ 1,3  ] = E[ Δ 2,2  ] = 1  
and  E[ Δ 2,3  ] = 4 . At the period when they start receiving the treatment, both groups 
experience a modest positive ATE. But this effect builds over time and in period 3, 
one period after it has started receiving the treatment, group 2 now experiences a 
large ATE. Then,

   β fe   = 1 / 2 × 1 + 1 − 1 / 2 × 4 = − 1 / 2 .

Therefore,   β fe    is strictly negative, while  E[ Δ 1,3  ] ,  E[ Δ 2,2  ] , and  E[ Δ 2,3  ]  are all posi-
tive. More generally, the negative weights are an issue if the  E[ Δ g,t  ]  terms are het-
erogeneous, across groups or over time.9 If  E[ Δ 1,3  ] = E [Δ 2,2  ] = E[ Δ 2,3  ] = 1 , 
then   β fe   = 1 =  δ   TR  .

Here is some intuition as to why one weight is negative in this example. It 
follows from equation  (A4) in the proof of Theorem  1 (see also Theorem  1 in 
 Goodman-Bacon 2018) that in this simple example,   β fe   = ( DID 1   +  DID 2  )/2 , with

   DID 1   = E ( Y 2,2  )  − E ( Y 2,1  )  −  (E ( Y 1,2  )  − E ( Y 1,1  ) )  ,

   DID 2   = E ( Y 1,3  )  − E ( Y 1,2  )  −  (E ( Y 2,3  )  − E ( Y 2,2  ) )  .

The first DID compares the evolution of the mean outcome from period 1 to 2 in 
group 2 and in group 1. The second one compares the evolution of the mean out-
come from period 2 to 3 in group 1 and in group 2. The control group in the second 
DID, group 2, is treated both in the pre- and in the post-period. Therefore, under 
the common trends assumption, it follows from Lemma 1 in Appendix A (a sim-
ilar result appears in Lemma 1 of de Chaisemartin 2011 and in equation (13) of 
 Goodman-Bacon 2018) that   DID 1   = E[ Δ 2,2  ] , but

   DID 2   = E [ Δ 1,3  ]  −  (E [ Δ 2,3  ]  − E [ Δ 2,2  ] )  .

Note that,   DID 2    is equal to the ATE in group  1, period  3, minus the change in 
group 2’s ATE between periods 2 and 3. Intuitively, the mean outcome of groups 1 
and 2 may follow different trends from period 2 to 3 either because group 1 becomes 
treated, or because group 2’s ATE changes. The intuition that negative weights arise 
because    β ˆ   fe    uses treated observations as controls also appears in Borusyak and 
Jaravel (2017).

We now generalize the previous illustration by characterizing the  (g, t)  cells 
whose ATEs are weighted negatively by   β fe    .

PROPOSITION 1: Suppose that Assumption  1 holds and for all  t ≥ 2 , 
  N g,t   /  N g,t−1    does not vary across  g . Then, for all  (g, t, t′ )  such that   D g,t   =  D g,t′   

9 On the other hand,   β fe    does not rule out heterogeneous treatment effects within  (g, t)  cells, as it is identified by 
variations across  (g, t)  cells, and does not leverage any  within-cell variation.
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= 1 ,   D .,t   >  D .,t′    implies   w g,t   <  w g,t′    . Similarly, for all  (g, g′, t)  such 
that   D g,t   =  D g′,t   = 1 ,   D g,.   >  D g′,.    implies   w g,t   <  w g′,t    .

Proposition 1 shows that   β fe    is more likely to assign a negative weight to periods 
where a large fraction of groups are treated, and to groups treated for many periods. 
Then, negative weights are a concern when treatment effects differ between periods 
with many versus few treated groups, or between groups treated for many versus 
few periods.

Proposition 1 has interesting implications in staggered adoption designs, a spe-
cial case of sharp designs defined as follows.

ASSUMPTION 6 (Staggered Adoption Designs): For all  g ,   D g,t   ≥  D g,t−1    for all  
t ≥ 2 .

Assumption 6 is satisfied in applications where groups adopt a treatment at het-
erogeneous dates (see, e.g., Athey and Stern 2002). In that design, Borusyak and 
Jaravel (2017) shows that   β fe    is more likely to assign a negative weight to treatment 
effects at the last periods of the panel. This result is a special case of Proposition 1: 
in staggered adoption designs,   D .,t    is increasing in  t , so Proposition 1 implies that   w g,t    
is decreasing in  t .10 Proposition 1 also implies that in that design, groups that adopt 
the treatment earlier are more likely to receive some negative weights.

Finally, in staggered adoption designs, Athey and Imbens (2018) derives a 
decomposition of   β fe    that resembles, but differs from, that in Theorem  1. They 
derive their decomposition under the assumption that the dates at which each group 
starts receiving the treatment are randomly assigned, while we derive ours under a 
common trends assumption.

B. Robustness to Heterogeneous Treatment Effects

Theorem 1 shows that in sharp designs with many groups and periods,    β ˆ   fe    may 
be a misleading measure of the treatment effect under the standard common trends 
assumption, if the treatment effect is heterogeneous across groups and time periods. 
In the corollary below, we propose two robustness measures that can be used to 
assess how serious that concern is.

Those robustness measures are defined conditional on D, the vec-
tor stacking together the treatments of all the  (g, t)  cells. Specifically, for 
all  (g, t) ∈ {1, …, G } × {1, …, T } , let    Δ ̃   g,t   = E( Δ g,t   |  D)  denote the ATE in 
cell  (g, t)  conditional on D,11 let    Δ ̃     TR  = E( Δ   TR  |  D)  denote the ATT conditional on 
D, and let    β ̃   fe   = E(   β ˆ   fe   |  D) . The first measure we consider is the minimal value of 
the standard deviation of the    Δ ̃   g,t     terms under which one could have that    β ̃   fe    is of a 
different sign than    Δ ̃     TR  . Therefore, this summary measure applies to    β ̃   fe    and    Δ ̃     TR  , 

10 Borusyak and Jaravel (2017) assumes that the treatment effect of cell  (g, t)  only depends on the number of 
periods since group  g  has started receiving the treatment, whereas Proposition 1 does not rely on that assumption.

11    Δ ̃   g,t    may differ from  E( Δ g,t  ) . To see this, let us consider a simple example where 
 T = 2 . Then, under Assumption  3, one has    Δ ̃   g,t   = E( Δ g,t   |    D g,1  ,  D g,2  ) . One may for instance have 
 E( Δ g,1   |    D g,1   = 0,  D g,2   = 0) < E( Δ g,1   |    D g,1   = 1,  D g,2   = 1) , if a group is more likely to be treated if her treat-
ment effect is initially high.
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rather than   β fe    and   δ   TR  , the unconditional expectations of    β ˆ   fe    and   Δ   TR   on which we 
have focused so far. However, one can show that when  G , the number of groups, goes 
to infinity,    β ̃   fe   −  β fe    and    Δ ̃     TR  −  δ   TR   both converge to 0. So if the number of groups is 
large,    β ̃   fe    and    Δ ̃     TR   should not differ much from   β fe    and   δ   TR  , and our robustness mea-
sure “almost” applies to   β fe    and   δ   TR  .

Let

  σ ( Δ ̃  )  =   
(

  ∑ 
(g,t): D g,t  =1

  
 
      

 N g,t   _  N 1  
     (  Δ ̃   g,t   −   Δ ̃     TR )    

2
 
)

    
1/2

  ,

  σ (w)  =   
(

  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
     ( w g,t   − 1)    2 )    

1/2

  ,

where  σ( Δ ̃  )  is the standard deviation of the conditional ATEs, and  σ(w)  is the stan-
dard deviation of the  w -weights,12 across the treated  (g, t)  cells. Let  n = #{(g, t) :  D g,t   
= 1}  denote the number of treated cells. For every  i ∈ {1, …, n} , let   w (i)    denote the  
i th largest of the weights of the treated cells:   w (1)   ≥  w (2)   ≥ ⋯ ≥  w (n)   , and let   N (i)    
and    Δ ̃   (i)    be the number of observations and the conditional ATE of the corresponding 
cell. Then, for any  k ∈ {1, …, n} , let   P k   =  ∑ i≥k        N (i)  / N 1   ,   S k   =  ∑ i≥k       ( N (i)  / N 1  )  w (i)  ,  
and   T k   =  ∑ i≥k       ( N (i)  / N 1  )  w  (i)  2   .

COROLLARY 1: Suppose that Assumptions 1–5 hold.

 (i ) If  σ(w) > 0 , the minimal value of  σ( Δ ̃  )  compatible with    β ̃   fe    and    Δ ̃     TR  = 0  is

    σ _   fe   =   
|  β ̃   fe  | ____ 
σ (w)     .

 (ii ) If    β ̃   fe   ≠ 0  and at least one of the   w g,t    weights is strictly negative, the minimal 
value of  σ( Δ ̃  )  compatible with    β ̃   fe    and with    Δ ̃   g,t    of a different sign than    β ̃   fe    
for all  (g, t)  is

    σ ‗   fe   =   
|  β ̃   fe  |  ________________  

  [ T s   +  S  s  2 / (1 −  P s  ) ]    
1/2

 
    ,

where  s = min{i ∈ {1, …, n} :  w (i)   < −  S (i)  /(1 −  P (i)  )}. 

Note that    σ _   fe    and    σ ‗   fe    can be estimated simply by replacing    β ̃   fe    by    β ˆ   fe   . An  
estimator of    σ _   fe    can be used to assess the robustness of    β ˆ   fe    to treatment effect 
heterogeneity across groups and periods. If    σ _   fe    is close to 0,    β ̃   fe    and    Δ ̃     TR   can be 
of opposite signs even under a small and plausible amount of treatment effect het-
erogeneity. In that case, treatment effect heterogeneity would be a serious concern 
for the validity of    β ˆ   fe   . On the contrary, if    σ _   fe    is very large,    β ̃   fe    and    Δ ̃     TR   can only be 
of opposite signs under a very large and implausible amount of treatment effect 
heterogeneity. Then, treatment effect heterogeneity is less of a concern.

12 One can show that   ∑ (g,t): D g,t  =1  
     ( N g,t  / N 1  )  w g,t   = 1 .
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Similarly, if    σ ‗   fe    is close to 0, one may have, say,    β ̃   fe   > 0 , while    Δ ̃   g,t   ≤ 0  for 
all  (g, t) , even if the dispersion of the    Δ ̃   g,t     terms is relatively small. Notice that    σ ‗   fe    
is only defined if at least one of the weights is strictly negative: if all the weights are 
positive, then one cannot have that    β ̃   fe    is of a different sign than all the    Δ ̃   g,t     terms.

When some of the weights   w g,t    are negative,    β ˆ   fe    may still be robust to heteroge-
neous treatment effects across groups and periods, provided the assumption below 
is satisfied.

ASSUMPTION  7 ( w  Uncorrelated with   Δ ̃   ):  E [  ∑  (g,t) : D g,t  =1      ( N g,t  / N 1  )( w g,t   − 1) 
× (  Δ ̃   g,t   −   Δ ̃     TR  )] = 0 .

COROLLARY 2: If Assumptions 1–5 and 7 hold, then   β fe   =  δ   TR  .

Assumption  7 requires that the weights attached to the fixed effects estima-
tor be uncorrelated with the conditional ATEs in the treated  (g, t)  cells. This is 
often implausible. For instance, groups treated the most are also those with the 
lowest value of   w g,t    , as shown in Proposition  1. But those groups could also be 
those with the largest treatment effect. This would then induce a negative cor-
relation between  w  and   Δ ̃   . The plausibility of Assumption  7 can be assessed, 
by looking at whether  w  is correlated with a predictor of the treatment effect 
in each  (g, t)  cell. In the two applications we revisit in Section  V, this test is  
rejected.

C. Extension to the First-Difference Regression

Instead of Regression 1, many articles have estimated the  first-difference regres-
sion defined below.

REGRESSION 2 (First-Difference Regression): Let    β ˆ   fd    denote the coefficient 
of   D g,t   −  D g,t−1    in an OLS regression of   Y g,t   −  Y g,t−1    on period fixed effects 
and   D g,t   −  D g,t−1   , among observations for which  t ≥ 2 . Let   β fd   = E[   β ˆ   fd  ] .

When  T = 2  and   N g,2  / N g,1    does not vary across  g , meaning that all groups expe-
rience the same growth of their number of units from period 1 to 2, one can show 
that    β ˆ   fe   =   β ˆ   fd   . But,    β ˆ   fe    differs from    β ˆ   fd    if  T > 2  or   N g,2  / N g,1    varies across  g .

We start by showing that a result similar to Theorem  1 also applies to    β ˆ   fd   . 
For any  (g, t) ∈ {1, …, G } × {2, …, T } , let   ε fd,g,t    denote the residual of obser-
vations in group  g  and at period  t  in the regression of   D g,t   −  D g,t−1    on period 
fixed effects, among observations for which  t ≥ 2 . For any  g ∈ {1, …, G } , 
let   ε fd,g,1   =  ε fd,g,T+1   = 0 . One can show that if the regressors in Regression 2 are 
not perfectly collinear,

    ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
   ( ε fd,g,t   −   

 N g,t+1   _  N g,t  
    ε fd,g,t+1  )  ≠ 0 .
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Then we define

   w fd,g,t   =   
 ε fd,g,t   −   

 N g,t+1   _  N g,t  
    ε fd,g,t+1  
   __________________________    

 ∑  (g,t) : D g,t  =1         
 N g,t   _  N 1  

    ( ε fd,g,t   −   
 N g,t+1   _  N g,t  

    ε fd,g,t+1  ) 
    .

THEOREM 2: Suppose that Assumptions  1–5 hold. Then,

   β fd   = E 
[

  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w fd,g,t    Δ g,t  ]

  .

Theorem 2 shows that under Assumption 5,   β fd    is equal to a weighted sum of 
the ATEs in each treated  (g, t)  cell with potentially some strictly negative weights, 
just as   β fe   . We now characterize the  (g, t)  cells whose ATEs are weighted negatively 
by   β fd   . To do so, we focus on staggered adoption designs, as outside of this case it is 
more difficult to characterize those cells. Our characterization relies on the fact that 
for every  t ∈ {2, …, T } ,   ε fd,g,t   =  D g,t   −  D g,t−1   − ( D .,t   −  D .,t−1  ) . Here,   ε fd,g,t    is the 
difference between the change of the treatment in group  g  between  t − 1  and  t , and 
the average change of the treatment across all groups.

PROPOSITION 2: Suppose that Assumptions 1–2 and 6 hold and for all  g ,  
  N g,t    does not depend on  t . Then, for all  (g, t)  such that   D g,t   = 1 ,   w fd,g,t   < 0  if 
and only if   D g,t−1   = 1  and   D .,t   −  D .,t−1   >  D .,t+1   −  D .,t    (with the convention 
that   D .,T+1   =  D .,T   ).

Proposition 2 shows that for all  t ∈ {2, …, T − 1}  such that the increase in the 
proportion of treated units is larger from  t − 1  to  t  than from  t  to  t + 1 , the period- t  
ATE of groups already treated in  t − 1  receives a negative weight. Moreover, if, 
at period  T , at least one group becomes treated, the ATE of groups already treated 
in  T − 1  also receives a negative weight. Therefore, the treatment effect arising 
at the date when a group starts receiving the treatment does not receive a negative 
weight, only  long-run treatment effects do. Then, negative weights are a concern 
when instantaneous and  long-run treatment effects may differ. Proposition 2 also 
shows that the prevalence of negative weights depends on how the number of groups 
that start receiving the treatment at date  t  evolves with  t . Assume for instance that 
this number decreases with  t : many groups start receiving the treatment at date 1, a 
bit less start at date 2, etc., a case hereafter referred to as the “more early adopters” 
case. Then, if   N g,t    is constant across  (g, t) ,   D .,t   −  D .,t−1    is decreasing in  t , and all the 
 long-run treatment effects receive negative weights, except maybe those of period  T  
if   D .,T   =  D .,T−1   . Conversely, assume that the number of groups that start receiving 
the treatment at date  t  increases with  t : few groups start receiving the treatment at 
date 1, a bit more start at date 2, etc., a case hereafter referred to as the “more late 
adopters” case. Then, if   N g,t    is constant across  (g, t) ,   D .,t   −  D .,t−1    is increasing in  t , 
and only the period- T   long-run treatment effects receive negative weights. Overall, 
negative weights are much more prevalent in the “more early adopters” than in the 
“more late adopters” case.
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We now come back to general sharp designs where the treatment may not follow 
a staggered adoption. Let    β ̃   fd   = E(   β ˆ   fd    |  D)  denote the expectation of    β ˆ   fd    conditional 
on the vector of treatment assignments  D . Just as for    β ̃   fe   , one can show that the min-
imal value of  σ( Δ ̃  )  compatible with    β ̃   fd    and    Δ ̃     TR  = 0  is    σ _   fd   = |  β ̃   fd  |/σ( w fd  ),  where

  σ ( w fd  )  =   
(

  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
     ( w fd,g,t   − 1)    2 )    

1/2

  

is the standard deviation of the   w fd   -weights. One can also show that    σ ‗   fd   , the min-
imal value of  σ( Δ ̃  )  compatible with    β ̃   fd    and    Δ ̃   g,t    of a different sign than    β ̃   fd    for 
all  (g, t) , has the same expression as    σ ‗   fe   , except that one needs to replace the 
weights   w g,t    by the weights   w fd,g,t    in its definition. Estimators of    σ _   fe    and    σ _   fd    (or    σ ‗   fe    
and    σ ‗   fd   ) can then be used to determine which of    β ˆ   fe    or    β ˆ   fd    is more robust to het-
erogeneous treatment effects.

Finally, and similarly to the result shown in Corollary 2 for   β fe   ,   β fd    is equal to   δ   TR   
under common trends and the following assumption.

ASSUMPTION 8 (  w fd    Uncorrelated with   Δ ̃   ):  E[  ∑ (g,t): D g,t  =1       ( N g,t  / N 1  )( w fd,g,t   − 1) 
× ( Δ g,t   −  Δ   TR  )] = 0 .

Note that under the common trends assumption, one can jointly test Assumption 8 
and Assumption 7, the assumption that the weights attached to   β fe    are uncorrelated 
with the   Δ g,t     terms: if    β ˆ   fe    and    β ˆ   fd    are significantly different, at least one of these two 
assumptions must fail. In the two applications we revisit in Section V,    β ˆ   fe    and    β ˆ   fd    are 
significantly different.

III. An Alternative Estimator

In this section, we show that it is possible to estimate a  well-defined causal effect 
even if treatment effects are heterogeneous across groups or over time. Let

   δ   S  = E 
[
  1 _  N S  

     ∑ 
 (i,g,t) :t≥2, D g,t  ≠ D g,t−1  

  
 
    [ Y i,g,t   (1)  −  Y i,g,t   (0) ] ]

  ,

with   N S   =  ∑ (g,t):t≥2, D g,t  ≠ D g,t−1           N g,t   . The term   δ   S   is the ATE of all switching cells. In 
staggered adoption designs,   δ   S   is the average of the treatment effect at the time when 
a group starts receiving the treatment, across all groups that become treated at some 
point.

We now show that   δ   S   can be unbiasedly estimated by a weighted average of DID 
estimators. This result holds under the following supplementary assumptions.

ASSUMPTION 9 (Strong Exogeneity for  Y(1) ): For all  (g, t) ∈ {1, …, G } 
× {2, …, T } ,  E( Y g,t  (1) −  Y g,t−1  (1) |  D g,1  , …,  D g,T  ) = E( Y g,t  (1) −  Y g,t−1  (1)) .

Assumption 9 is the equivalent of Assumption 4, for the potential outcome with 
treatment. It requires that the shocks affecting a group’s   Y g,t  (1)  be mean independent 
of that group’s treatment sequence.
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ASSUMPTION 10 (Common Trends for  Y(1) ): For  t ≥ 2 ,  E( Y g,t  (1) −  Y g,t−1  (1))  
does not vary across  g .

Again, Assumption 10 is the equivalent of Assumption 5, for the potential out-
come with treatment. It requires that between each pair of consecutive periods, the 
expectation of the outcome with treatment follow the same evolution over time in 
every group. Assumptions 9 and 10 ensure that one can reconstruct the potential out-
come that groups leaving the treatment between  t − 1  and  t  would have experienced 
if they had remained treated. In staggered adoption designs, Assumptions 9 and 10 
are not necessary for identification, because no group leaves the treatment. Together, 
Assumptions 5 and 10 imply that the ATE follows the same evolution over time 
in every group:  E( Δ g,t  ) =  η t   +  θ g   .13 This still allows for heterogeneous treatment 
effects across groups and over time.14

ASSUMPTION 11 (Existence of “Stable” Groups): For all  t ∈ {2, …, T } :

 (i ) If there is at least one  g ∈ {1, …, G }  such that   D g,t−1   = 0 ,   D g,t   = 1 , 
then there exists at least one  g′ ≠ g, g′ ∈ {1, …, G }  such that   D g′,t−1   
=  D g′,t   = 0 .

 (ii ) If there is at least one  g ∈ {1, …, G }  such that   D g,t−1   = 1,  D g,t   = 0 , then 
there exists at least one  g′ ≠ g, g′ ∈ {1, …, G }  such that   D g′,t−1   =  D g′,t   = 1 .

The first point of the stable groups assumption requires that between each pair of 
consecutive time periods, if there is a “joiner” (i.e., a group switching from being 
untreated to treated), then there should be another group that is untreated at both 
dates. The second point requires that between each pair of consecutive time periods, 
if there is a “leaver” (i.e., a group switching from being treated to untreated), then 
there should be another group that is treated at both dates.

Notice that under Assumption  11, groups’ treatments are not indepen-
dent, so Assumption  3 cannot hold. Accordingly, we replace Assumption  3 by 
Assumption 12. Assumption 12 requires that conditional on its own treatments, a 
group’s outcomes be mean independent of the other groups’ treatments. It is weaker 
than Assumption 3. Assumption 11 is necessary to show that our estimator is unbi-
ased, but it is not necessary to show that it is consistent. Accordingly, in Section 5 of 
the online Appendix, we show that our estimator is consistent under Assumption 3. 
For every  g ∈ {1, …, G } , let   D g   = ( D 1,g  , …,  D T,g  ) .

ASSUMPTION 12 (Mean Independence between a Group’s Outcome and 
Other Groups Treatments): For all  g  and  t ,  E( Y g,t  (0) | D) = E( Y g,t  (0) |  D g  )  and  
E( Y g,t  (1) | D) = E( Y g,t  (1) |  D g  ) .

13 It should be possible to weaken Assumptions 9–10, in particular to account for dynamic effects where   Δ g,t    
may depend on   (D g,1  , …,  D g,t−1  ) . This introduces complications that are beyond the scope of this paper, but that we 
address in de Chaisemartin and D'Haultfœuille (2020a).

14 Imposing Assumptions 9 and 10 does not change the decompositions obtained in Theorems 1 and 2;   Y g,t  (1)  is 
observed for all the treated  (g, t)  cells entering these decompositions, so those assumptions do not bring identifying 
information for those cells.
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We can now define our estimator. For all  t ∈ {2, …, T }  and for all  (d, d′ ) 
∈  {0, 1}   2  , let

(3)   N d,d′,t   =   ∑ 
g: D g,t  =d, D g,t−1  =d′

  
 
     N g,t   

denote the number of observations with treatment  d′  at period  t − 1  and  d  at period  t .  
Let

   DID +,t   =   ∑ 
g: D g,t  =1, D g,t−1  =0

  
 
      

 N g,t   _  N 1,0,t  
    ( Y g,t   −  Y g,t−1  )  −   ∑ 

g: D g,t  = D g,t−1  =0
  

 
      

 N g,t   _  N 0,0,t  
    ( Y g,t   −  Y g,t−1  )  ,

   DID −,t   =   ∑ 
g: D g,t  = D g,t−1  =1

  
 
      

 N g,t   _  N 1,1,t  
    ( Y g,t   −  Y g,t−1  )  −   ∑ 

g: D g,t  =0, D g,t−1  =1
  

 
      

 N g,t   _  N 0,1,t  
    ( Y g,t   −  Y g,t−1  )  .

Note that   DID +,t    is not defined when there is no group such that   D g,t   = 1, 
 D g,t−1   = 0 , or no group such that   D g,t   = 0,  D g,t−1   = 0 . In such instances, 
we let   DID +,t   = 0 . Similarly, let   DID −,t   = 0  when there is no group such 
that   D g,t   = 1,  D g,t−1   = 1  or no group such that   D g,t   = 0,  D g,t−1   = 1 . Finally, let

   DID M   =   ∑ 
t=2

  
T

     (  
 N 1,0,t   _  N S  

    DID +,t   +   
 N 0,1,t   _  N S  

    DID −,t  )  .

THEOREM 3: If Assumptions 1, 2, 4, 5, and  9–12 hold,  E[ DID M  ] =  δ   S  .

In online Appendix Section 5, we also show that when  G  goes to infinity,   DID M    
is a consistent and asymptotically normal estimator of   δ   S  . The   DID M    estimator is 
computed by the fuzzydid and did_multiplegt Stata packages.

Here is the intuition underlying Theorem 3. The estimator   DID +,t    compares the 
evolution of the mean outcome between  t − 1  and  t  in two sets of groups: the join-
ers, and those remaining untreated. Under Assumptions 4 and 5,   DID +,t    estimates 
the joiners’ treatment effect. Similarly,   DID −,t    compares the evolution of the out-
come between  t − 1  and  t  in two sets of groups: those remaining treated, and the 
leavers. Under Assumptions  9 and  10, it estimates the leavers’ treatment effect. 
Finally,   DID M    is a weighted average of those DID estimators. Note that in stag-
gered designs, there are no groups whose treatment decreases over time, so   DID M    is 
only a weighted average of the   DID +,t    estimators. Note also that one can separately 
estimate the joiners’ and the leavers’ treatment effect, by computing separately 
weighted averages of the   DID +,t    and   DID −,t    estimators. The former estimator only 
relies on Assumptions 4 and 5, while the latter only relies on Assumptions 9 and 10.

Note that,   DID M    is related to two other estimators. First, it is related to the  Wald-TC 
estimator in point 2 of Theorem S1 in the online Appendix of de Chaisemartin and 
D’Haultfœuille (2018), but the weighting of   DID +,t    and   DID −,t    therein differs. As 
a result,   DID M    estimates   Δ   S   under weaker assumptions. Second,   DID M    is related to 
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the  multiperiod DID estimator in Imai and Kim (2018). However, the  multiperiod 
DID estimator is a weighted average of the   DID +,t   , so it does not estimate the leav-
ers’ treatment effect, and applies to a smaller population. Besides, Imai and Kim 
(2018) do not establish the properties of their estimator. Finally, they do not gen-
eralize it to  nonbinary treatments, something we do in online Appendix Section 4.

There may be a  bias-variance  trade-off between   DID M    and the  two-way fixed 
effects regression estimators. For instance, assume that Regression 1 is correctly 
specified:

   Y g,t   (0)  =  α g   +  λ t   +  ε g,t    ,

   Y g,t   (1)  −  Y g,t   (0)  = δ ,

  E ( ε g,t   | D)  = 0 .

Then, if the errors   ε g,t    are homoskedastic and uncorrelated, it follows from the 
 Gauss-Markov theorem that    β ˆ   fe    is the linear estimator of  δ , the constant treatment 
effect parameter, with the lowest variance. As   DID M    is also an unbiased linear esti-
mator of  δ , the variance of    β ˆ   fe    must be lower than that of   DID M   . With heteroske-
dastic or correlated errors, one can construct examples where the variance of    β ˆ   fe    is 
higher than that of   DID M   , but this still suggests that   DID M    may often have a larger 
variance than that of    β ˆ   fe   , as we find in our applications in Section V.

Note that,   DID M    uses groups whose treatment is stable to infer the trends that 
would have affected switchers if their treatment had not changed. This strategy 
could fail, if switchers experience different trends than groups whose treatment is 
stable. To assess if this is a serious concern, we propose to use the following placebo 
estimator, that essentially compares the outcome’s evolution from  t − 2  to  t − 1 , in 
groups that switch and do not switch treatment between  t − 1  and  t . This placebo 
estimator is defined under a modified version of Assumption 11.

ASSUMPTION 13 (Existence of “Stable” Groups for the Placebo Test): For all 
 t ∈ {3, …, T } :

 (i ) If there is at least one  g ∈ {1, …, G }  such that   D g,t−2   =  D g,t−1   = 0 
and   D g,t   = 1 , then there exists at least one  g′ ≠ g, g′ ∈ {1, …, G }  such 
that   D g′,t−2   =  D g′,t−1   =  D g′,t   = 0 .

 (ii ) If there is at least one  g ∈ {1, …, G }  such that   D g,t−2   
=  D g,t−1   = 1,  D g,t   = 0 , then there exists at least one  g′ ≠ g, g′ 
∈ {1, …, G }  such that   D g′,t−2   =  D g′,t−1   =  D g′,t   = 1 .

For all  t ∈ {2, …, T }  and for all  (d, d′, d″ ) ∈  {0, 1}   3  , let

   N d,d′,d″,t   =   ∑ 
g: D g,t  =d, D g,t−1  =d′, D g,t−2  =d″

  
 
    N g,t   
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denote the number of observations with treatment status  d″  at period  t − 2 ,  d′  at 
period  t − 1 , and  d  at period  t . Let

   N  S  
pl  =   ∑ 

 (g,t) :t≥3, D g,t  ≠ D g,t−1  = D g,t−2  
  

 
    N g,t    ,

   DID  +,t  pl   =   ∑ 
g: D g,t  =1, D g,t−1  = D g,t−2  =0

  
 
      

 N g,t   _  N 1,0,0,t  
    ( Y g,t−1   −  Y g,t−2  ) 

 −   ∑ 
g: D g,t  = D g,t−1  = D g,t−2  =0

  
 
      

 N g,t   _  N 0,0,0,t  
    ( Y g,t−1   −  Y g,t−2  )  ,

   DID  −,t  pl   =   ∑ 
g: D g,t  = D g,t−1  = D g,t−2  =1

  
 
      

 N g,t   _  N 1,1,1,t  
    ( Y g,t−1   −  Y g,t−2  ) 

 −   ∑ 
g: D g,t  =0, D g,t−1  = D g,t−2  =1

  
 
      

 N g,t   _  N 0,1,1,t  
    ( Y g,t−1   −  Y g,t−2  )  .

When there is no group such that   D g,t   = 1,  D g,t−1   =  D g,t−2   = 0  or no group such 
that   D g,t   =  D g,t−1   =  D g,t−2   = 0 , we let   DID  +,t  pl   = 0 , and we adopt the same con-
vention for   DID  −,t  pl   = 0 . Let

   DID  M  pl   =   ∑ 
t=3

  
T

     
(

  
 N 1,0,0,t   _ 
 N  S  

pl 
    DID  +,t  pl   +   

 N 0,1,1,t   _ 
 N  S  

pl 
    DID  −,t  pl  

)
  .

THEOREM 4: If Assumptions 1, 2, 4, 5, 9, 10, 12, and 13 hold, then  E [ DID  M  pl  ]  = 0 .

The   DID  +,t  pl    estimator compares the evolution of the mean outcome from  t − 2  
to  t − 1  in two sets of groups: those untreated at  t − 2  and  t − 1  but treated 
at  t , and those untreated at  t − 2 ,  t − 1 , and  t . If Assumptions  4 and  5 hold, 
then  E[ DID  +,t  pl   ] = 0 . Similarly, if Assumptions  9 and  10 hold,  E[ DID  −,t  pl   ] = 0 . 
Then,  E[ DID  M  pl   ] = 0  is a testable implication of Assumptions 4, 5, 9, and 10, so 
finding   DID  M  pl    significantly different from 0 would imply that those assumptions are 
violated: groups that switch treatment experience different trends before that switch 
than the groups used to reconstruct their counterfactual trends when they switch.15 
Note that   DID  M  pl    compares the trends of switching and stable groups one period 
before the switch. One can define other placebo estimators comparing those trends, 
say, two or three periods before the switch. The   DID  M  pl    estimator and all those other 
placebo estimators are computed by the did_multiplegt Stata package.

15 See also Callaway and Sant’Anna (2018), which proposes another placebo test in staggered adoption designs.
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IV. Extensions

In this section, we briefly review some of the extensions in our online Appendix. 
First, we show that the decomposition of   β fe    in Theorem 1 can be extended to fuzzy 
designs where the treatment varies within  (g, t)  cells and to applications with a non-
binary treatment.16 In fuzzy designs or with a  nonbinary treatment, the weights in 
Theorem 1 remain essentially unchanged.

We also consider  two-way fixed effects regressions with covariates. Specifically, 
we study the coefficient of   D g,t    in a regression of   Y i,g,t    on group and period fixed 
effects,   D g,t   , and a vector of covariates   X g,t   . We show that a result very similar to 
Theorem 1 applies to that coefficient, up to two differences. First, including covari-
ates allows for different trends across groups, provided those differential trends are 
fully accounted for by a linear model in   X g,t   −  X g,t−1   , the change in a group’s covari-
ates. Specifically, instead of Assumptions 4 and 5, one needs to assume that

  E ( Y g,t   (0)  |   D g  ,  X g  )  − E ( Y g,t−1   (0)  |   D g  ,  X g  )  =  ( X g,t   −  X g,t−1  ) ′ γ +  λ t    ,

for some vector  γ  and constant   λ t   , and where   X g   = ( X g,1  , …,  X g,T  ) . Importantly, 
when the covariates are  group-specific linear trends, the equation above is equiva-
lent to

  E ( Y g,t   (0)  |   D g  ,  X g  )  − E ( Y g,t−1   (0)  |   D g  ,  X g  )  =  γ g   +  λ t    ,

meaning that from  t − 1  to  t , the evolution of  Y(0)  in group  g  should deviate from 
its  group-specific linear trend   γ g    by an amount   λ t    common to all groups. Second, the 
residual   ε g,t    in the weights in Theorem 1 has to be replaced by   ε  g,t  X   , the residual of 
observations in cell  (g, t)  in the regression of   D g,t    on group and period fixed effects 
and   X g,t   . Some of the corresponding weights may still be negative, as in Theorem 1. 
Overall,  two-way fixed effects regressions with covariates may rely on a more 
plausible common trends assumptions than those without covariates, but they still 
require that the treatment effect be homogeneous, across time and between groups.

Third, we show that under the common trends assumption and the assumption 
that the ATE of a  (g, t)  cell does not change over time,   β fe    and   β fd    identify weighted 
sums of the ATEs of the  (g, t)  cells whose treatment changes between  t − 1  and  t . 
In sharp designs, the weights attached to   β fd    are all positive, while for   β fe   , the same 
only holds in staggered adoption designs.

Fourth, we show that our   DID M    estimator can easily be extended to  nonbinary, 
discrete treatments. Then, we define it as a weighted average of DID terms com-
paring the evolution of the outcome in groups whose treatment went from  d  to  d′  
between  t − 1  and  t  and in groups with a treatment of  d  at both dates, across all 
possible values of  d ,  d′ , and  t .

Finally, our twowayfeweights, fuzzydid, and did_multiplegt Stata packages can 
handle all of those extensions.

16 The decomposition of   β fd    in Theorem 2 can also be extended to all of those cases.
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V. Applicability, and Applications

A. Applicability

We conducted a review of all papers published in the American Economic Review 
(AER) between 2010 and 2012 to assess the importance of  two-way fixed effects 
regressions in economics. Over these three years, the AER published 337 papers. Out 
of these 337 papers, 33 or 9.8 percent of them estimate the FE or FD Regression, or 
other regressions resembling closely those regressions. When one withdraws from 
the denominator theory papers and lab experiments, the proportion of papers using 
these regressions raises to 19.1 percent.

Table 2 shows descriptive statistics about the 33  2010–2012 AER papers estimat-
ing  two-way fixed effects regressions. Panel A shows that 13 use the FE regression; 
6 use the FD regression; 6 use the FE or FD regression with several treatment vari-
ables; 3 use the FE or FD 2SLS regression discussed in online Appendix Section 3.4; 
5 use other regressions that we deemed sufficiently close to the FE or FD regression 
to include them in our count.17 Panel B shows that more than  three-fourths of those 

17 For instance, two papers use regressions with  three-way  fixed effects instead of  two-way fixed effects.

Table 1—Papers Using Two-Way Fixed Effects Regressions Published in the AER

2010 2011 2012 Total

Papers using  two-way fixed effects regressions 5 14 14 33
Percent of published papers 5.2 12.2 11.2 9.8
Percent of empirical papers, excluding lab experiments 12.8 23.0 19.2 19.1

Note: This table reports the number of papers using  two-way fixed effects regressions pub-
lished in the AER from 2010 to 2012.

Table 2—Descriptive Statistics on Two-Way Fixed Effects Papers

Number 
of papers

Panel A. Estimation method
 Fixed effects OLS regression 13
 First-difference OLS regression 6
 Fixed effects or  first-difference OLS regression, with several treatment variables 6
 Fixed effects or  first-difference 2LS regression 3
Other regression 5

Panel B. Research design
Sharp design 26
Fuzzy design 7

Panel C. Are there stable groups?
Yes 12
Presumably yes 14
Presumably no 5
No 2

Note: This table reports the estimation method and the research design used in the 33 papers 
using  two-way fixed effects regressions published in the AER from 2010 to 2012, and whether 
those papers have stable groups.
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papers consider sharp designs, while less than one-fourth consider fuzzy designs. 
Finally, panel  C assesses whether, in those applications, there are groups whose 
exposure to the treatment remains stable between each pair of consecutive time peri-
ods, the condition that has to be met to be able to compute the   DID M    estimator. For 
about one-half of the papers, reading the paper was not enough to assess this with 
certainty. We then assessed whether they presumably have stable groups. Overall, 
12 papers have stable groups, 14 presumably have stable groups, 5 presumably do 
not have stable groups, and 2 do not have stable groups.

In online Appendix Section 6, we review each of the 33 papers. We explain where 
 two-way fixed effects regressions are used in the paper, and we detail our assess-
ment of whether the design is a sharp or a fuzzy design, and of whether the stable 
groups assumption holds.

B. Application to Gentzkow, Shapiro, and Sinkinson (2011)

Gentzkow, Shapiro, and Sinkinson (2011) studies the effect of newspapers on vot-
ers’ turnout in US presidential elections between 1868 and 1928. They regress the 
 first-difference of the turnout rate in county  g  between election years  t − 1  and  t  on 
 state-year fixed effects and on the first difference of the number of newspapers avail-
able in that county. This corresponds to Regression 2, with  state-year fixed effects 
as controls. As reproduced in Table 3, Gentzkow, Shapiro, and Sinkinson (2011) 
finds that    β ˆ   fd   = 0.0026  (standard error =  9 ×  10   −4   ). According to this regres-
sion, one more newspaper increased voters’ turnout by 0.26 percentage points. On  
the other hand,    β ˆ   fe   = − 0.0011  (standard error =  0.0011 ). Here,    β ˆ   fe    and    β ˆ   fd    are 
significantly different ( t-statistic = 2.86).

We use the twowayfeweights Stata package, downloadable with its help file from 
the SSC repository, to estimate the weights attached to    β ˆ   fe   . We find that 60 percent 
are strictly positive, 40 percent are strictly negative. The negative weights sum to 
−0.53. We find     σ _  ˆ    fe   = 3 ×  10   −4  , meaning that   β fe    and the ATT may be of opposite 
signs if the standard deviation of the ATEs across all the treated  (g, t)  cells is equal 
to  0.0003 .18 Further,     σ ‗  ˆ    fe   = 7 ×  10   −4  , meaning that   β fe    may be of a different sign 
than the ATEs of all the treated  (g, t)  cells if the standard deviation of those ATEs is 
equal to  0.0007 . We also estimate the weights attached to    β ˆ   fd   . Here, 54 percent are 
strictly positive, and 46 percent are strictly negative. The negative weights sum to 
−1.43. We find     σ _  ˆ    fd   = 4 ×  10   −4  , and     σ ‗  ˆ    fd   = 6 ×  10   −4  .

Therefore,   β fe    and   β fd    can only receive a causal interpretation if the weights 
attached to them are uncorrelated with the intensity of the treatment effect in each 
county × election-year cell (Assumptions 7 and 8, respectively). This is not war-
ranted. First, as    β ˆ   fe    and    β ˆ   fd    significantly differ, Assumptions 7 and 8 cannot jointly 
hold. Moreover, the weights attached to    β ˆ   fe    and    β ˆ   fd    are correlated with variables 
that are likely to be themselves associated with the intensity of the treatment effect 
in each cell. For instance, the correlation between the weights attached to    β ˆ   fd    and  t , 
the year variable, is equal to  − 0.06  ( t-statistic = −3.28). The effect of newspapers 
may be different in the last than in the first years of the panel. For instance, new 

18 The number of newspapers is not binary, so strictly speaking, in this application the parameter of interest is 
the average causal response parameter introduced in online Appendix Section 3.2, rather than the ATT.



2984 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2020

means of communication, like the radio, appear in the end of the period under con-
sideration, and may diminish the effect of newspapers.19 This would lead to a vio-
lation of Assumption 8.

The stable groups assumption holds: between each pair of consecutive elections, 
there are counties where the number of newspapers does not change. We use the 
fuzzydid Stata package, downloadable with its help file from the SSC repository, to 
estimate a modified version of our   DID M    estimator, that accounts for the fact that 
the number of newspapers is not binary (see online Appendix Section 3.2, where 
we define this modified estimator). We include  state-year fixed effects as controls 
in our estimation. We find that   DID M   = 0.0043 , with a standard error of  0.0014 . 
Therefore,   DID M    is 66 percent larger than    β ˆ   fd   , and the two estimators are signifi-
cantly different at the 10 percent level ( t-statistic = 1.77);   DID M    is also of a differ-
ent sign than    β ˆ   fe   .

Our   DID M    estimator only relies on a common trends assumption. To assess its 
plausibility, we compute   DID  M  pl   , the placebo estimator introduced in Section III.20 
As shown in Table 3, our placebo estimator is small and not significantly differ-
ent from 0, meaning that counties where the number of newspapers increased or 
decreased between  t − 1  and  t  did not experience significantly different trends 
in turnout from  t − 2  to  t − 1  than counties where that number was stable. Our 
placebo estimator is estimated on a subset of the data: for each pair of consecu-
tive time periods  t − 1  and  t , we only keep counties where the number of news-
papers did not change between  t − 2  and  t − 1 . Still, almost 80  percent of the 
county ×  election-year observations are used in the computation of the placebo 
estimator. Moreover, when reestimated on this subsample, the   DID M    estimator is 
very close to the   DID M    estimator in the full sample.

C. The Effect of Union Membership on Wages

A number of articles have estimated the effect of union membership on wages 
using panel data and controlling for workers’ fixed effects. For instance, Jakubson 

19 In fact, Gentzkow, Shapiro, and Sinkinson (2011) analyzes the 1868 to 1928 period separately from later 
periods, because the growth of the radio may have changed newspapers’ effects.

20 Again, we need to slightly modify   DID  M  pl    to account for the fact that the number of newspapers is not binary.

Table 3—Estimates of the Effect of One Additional Newspaper on Turnout

Estimate Standard error Observations

   β ˆ   fd   0.0026 0.0009 15,627

   β ˆ   fe   −0.0011 0.0011 16,872

  DID M   0.0043 0.0014 16,872

  DID  M  pl   −0.0009 0.0016 13,221

  DID M    , on placebo subsample 0.0045 0.0019 13,221

Notes: This table reports estimates of the effect of one additional newspaper on turnout, as 
well as a placebo estimate of the common trends assumption underlying   DID M   . Estimators are 
computed using the data of Gentzkow, Shapiro, and Sinkinson (2011), with  state-year fixed 
effects as controls. Standard errors are clustered by county. To compute the   DID M    estimators, 
the number of newspapers is grouped into 4 categories: 0, 1, 2, and more than 3.
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(1991) has found a 8.3 percent union membership premium using that strategy, in 
a sample of American males from the PSID followed from 1976 to 1980. Vella and 
Verbeek (1998) estimates a similar regression and find similar results, in a sample of 
young American males from the NLSY followed from 1980 to 1987.21

We use the data in Vella and Verbeek (1998) to compute various estima-
tors of the union wage premium. As union status is often measured with 
error (see, e.g., Freeman 1984; Card 1996), we discard changes in union sta-
tus happening twice in three consecutive years. Specifically, for individuals 
with   D i,t−1   = 0 ,   D i,t   = 1 , and   D i,t+1   = 0 , we replace   D i,t    by 0. Similarly, for indi-
viduals with   D i,t−1   = 1 ,   D i,t   = 0 , and   D i,t+1   = 1 , we replace   D i,t    by 1. Doing so, 
we discard half of the union status changes in the initial data.22

We start by estimating a  two-way fixed effects regression of wages on union 
membership with worker and year fixed effects. Table 4 shows that    β ˆ   fe   = 0.107  
(standard error =  0.030 ), a result close to that of the worker fixed effects regres-
sions in Jakubson (1991) and Vella and Verbeek (1998).

Then, we estimate the weights attached to    β ˆ   fe   . Here, 820 are strictly positive, 196 
are strictly negative, but the negative weights only sum to −0.01. Still,     σ ˆ   _   fe   = 0.097 , 
meaning that   β fe    and the ATT may be of opposite signs if the standard deviation 
of the treatment effect across the unionized worker × year observations is equal 
to 0.097, a substantial but still possible amount of heterogeneity. The weights are 
negatively correlated with workers’ years of schooling (correlation = − 0.12, 
 t-statistic = − 1.88). The union premium may be lower for more educated work-
ers (see Freeman and Medoff 1984), as they may be less substitutable than less 
educated ones. Then,    β ˆ   fe    may overestimate   δ   TR  , the average union premium across 
all unionized worker × year observations. We also find that    β ˆ   fd   = 0.060  (standard 
error = 0.032) and that    β ˆ   fe    and    β ˆ   fd    significantly differ ( t-statistic = 1.91),23 thus 
casting further doubt on Assumptions 7 and 8.

21 The fixed effects regression is not the main specification in Vella and Verbeek (1998). The authors favor 
instead a dynamic selection model.

22 Keeping the original data does not change much the results presented below, except that the placebo estima-
tor   DID  M  pl,2   becomes significant.

23 The standard error of    β ˆ   fe   −   β ˆ   fd    is computed with a  worker-level clustered bootstrap.

Table 4—Estimates of the Union Premium

Estimate Standard error Observations

   β ˆ   fe   0.107 0.030 4,360

   β ˆ   fd   0.060 0.032 3,815

  DID M   0.041 0.034 3,815

  DID  M  pl   0.094 0.038 3,101

  DID  M  pl,2  −0.041 0.030 2,458

  DID  M  pl,3  −0.004 0.033 1,881

Notes: This table reports estimates of the effect of the union premium, as well as placebo esti-
mators of the common trends assumption. Estimators are computed using the data of Vella and 
Verbeek (1998). Standard errors are clustered at the worker level.
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The stable groups assumption holds: between each pair of consecutive years, there 
are workers whose union membership status does not change. We therefore compute 
our   DID M    estimator. Table 4 shows that it is equal to  0.041  (standard error = 0.034). 
In this case   DID M    is significantly different from    β ˆ   fe    ( t-statistic = 2.60) and    β ˆ   fd    
( t-statistic = 2.36).24 As discussed in Section III, we can also estimate separately 
the union premium for workers joining and leaving a union, something that was pre-
viously done by Freeman (1984). The joiners’ effect estimate is equal to  0.059  (stan-
dard error = 0.053), the leavers’ effect is equal to  0.021  (standard error = 0.044), 
and the two estimates do not significantly differ ( t-statistic  = 0.55).

The estimator   DID M    relies on a common trends assumption. To assess its plau-
sibility, we compute   DID  M  pl   , the placebo estimator introduced in Section III;   DID  M  pl    
compares the wage growth of workers changing and not changing their union 
status one period before that change. We also compute   DID  M  pl,2   and   DID  M  pl,3  , two 
other placebo estimators performing the same comparison two and three periods 
before the change. As shown in Table 4,   DID  M  pl    is large, positive, and significant 
( t-statistic = 2.49). On the other hand   DID  M  pl,2   and   DID  M  pl,3   are smaller and insig-
nificant. Workers that become unionized start experiencing a differential positive 
 pretrend one year before becoming unionized. This differential  pretrend mostly 
comes from union joiners: for them, the placebo estimator is equal to  0.119  (stan-
dard error = 0.051), while for union leavers the placebo is smaller ( 0.061 ) and 
insignificant (standard error = 0.057). Therefore, the placebos suggest that even 
the already small and insignificant   DID M    estimator may overestimate the union pre-
mium, due to a positive  pretrend. In fact, the estimate of leavers’ effect, for which 
there is no evidence of a  pretrend, is very close to 0. Overall, our results indicate that 
there may not be a significant union wage premium.

VI. Conclusion

Almost 20  percent of empirical articles published in the AER between 2010 
and 2012 use regressions with groups and period fixed effects to estimate treat-
ment effects. In this paper, we show that under a common trends assumption, those 
regressions estimate weighted sums of the treatment effect in each group and period. 
The weights may be negative: in one application, we find that more than 40 percent 
of the weights are negative. The negative weights are an issue when the treatment 
effect is heterogeneous, between groups or over time. Then, one could have that the 
treatment’s coefficient in those regressions is negative while the treatment effect is 
positive in every group and time period. We therefore propose a new estimator to 
address this problem. This estimator estimates the treatment effect in the groups that 
switch treatment, at the time when they switch. It does not rely on any treatment 
effect homogeneity condition. It is computed by the fuzzydid and did_multiplegt 
Stata packages. In the two applications we revisit, this estimator is significantly and 
economically different from the  two-way fixed effects estimators.

24 The standard errors of    β ˆ   fe   −  DID M    and    β ˆ   fd   −  DID M    are computed with a  worker-level clustered bootstrap.
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Appendix A. Proofs

One Useful Lemma

Our results rely on the following lemma.

LEMMA 1: If Assumptions  1–5 hold, for all  (g, g′, t, t′ ) ∈  {1, …, G }   2  
×  {1, …, T }   2  ,

 E ( Y g,t    |   D)  − E ( Y g,t′    |   D)  −  (E ( Y g′,t    |   D)  − E ( Y g′,t′    |   D) )  

  =  D g,t   E ( Δ g,t    |   D)  −  D g,t′   E ( Δ g,t′    |   D)  −  ( D g′,t   E ( Δ g′,t    |   D)  −  D g′,t′   E ( Δ g′,t′    |   D) )  .

PROOF OF LEMMA 1:
For all  (g, t) ∈ {1, …, G} × {1, …, T } ,

  E ( Y g,t    |   D)  = E (  1 _  N g,t  
     ∑ 
i=1

  
 N g,t  

     Y i,g,t   | D)  

  = E (  1 _  N g,t  
     ∑ 
i=1

  
 N g,t  

     ( Y i,g,t   (0)  +  D i,g,t   ( Y i,g,t   (1)  −  Y i,g,t   (0) ) )  | D)  

  = E ( Y g,t   (0)   |   D)  +  D g,t   E ( Δ g,t    |   D)  

  = E ( Y g,t   (0)   |    D g  )  +  D g,t   E ( Δ g,t    |   D)  ,

where the third equality follows from Assumption  2, and the fourth from 
Assumption 3. Therefore,

 E ( Y g,t    |   D)  − E ( Y g,t′    |   D)  −  (E ( Y g′,t    |   D)  − E ( Y g′,t′    |   D) )  

  = E ( Y g,t   (0)  −  Y g,t′   (0)   |    D g  )  − E ( Y g′,t   (0)  −  Y g′,t′   (0)   |    D g′  )  

  +  D g,t   E ( Δ g,t    |   D)  −  D g,t′   E ( Δ g,t′    |   D)  −  ( D g′,t   E ( Δ g′,t    |   D)  −  D g′,t′   E ( Δ g′,t′    |   D) )  

  = E ( Y g,t   (0)  −  Y g,t′   (0) )  − E ( Y g′,t   (0)  −  Y g′,t′   (0) )  

  +  D g,t   E ( Δ g,t    |   D)  −  D g,t′   E ( Δ g,t′    |   D)  −  ( D g′,t   E ( Δ g′,t    |   D)  −  D g′,t′   E ( Δ g′,t′    |   D) )  

  =  D g,t   E ( Δ g,t    |   D)  −  D g,t′   E ( Δ g,t′    |   D)  −  ( D g′,t   E ( Δ g′,t    |   D)  −  D g′,t′   E ( Δ g′,t′    |   D) )  ,

where the second equality follows from Assumption  4, and the third from 
Assumption 5. ∎
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PROOF OF THEOREM 1:
It follows from the  Frisch-Waugh theorem and the definition of   ε g,t    that

(A1)  E (  β ˆ   fe    |   D)  =   
 ∑ g,t        N g,t    ε g,t   E ( Y g,t    |   D)   _______________  

 ∑ g,t        N g,t    ε g,t    D g,t  
   .

Now, by definition of   ε g,t    again,

(A2)    ∑ 
t=1

  
T

     N g,t    ε g,t   = 0 for all g ∈  {1, …, G}  ,

(A3)    ∑ 
g=1

  
G

     N g,t    ε g,t   = 0 for all t ∈  {1, …, T}  .

Then,

   ∑ 
g,t

  
 
     N g,t    ε g,t   E ( Y g,t    |   D)  

(A4)  =  ∑ 
g,t

  
 
     N g,t    ε g,t   (E ( Y g,t    |   D)  − E ( Y g,1    |   D)  − E ( Y 1,t    |   D)  + E ( Y 1,1    |   D) )  

  =  ∑ 
g,t

  
 
     N g,t    ε g,t   ( D g,t   E ( Δ g,t    |   D)  −  D g,1   E ( Δ g,1    |   D) 

 −  D 1,t   E ( Δ 1,t    |   D)  +  D 1,1   E ( Δ 1,1    |   D) )  

  =  ∑ 
g,t

  
 
     N g,t    ε g,t    D g,t   E ( Δ g,t    |   D)  

(A5)  =   ∑ 
 (g,t) : D g,t  =1

  
 
     N g,t    ε g,t   E ( Δ g,t    |   D)  .

The first and third equalities follow from equations  (A2) and  (A3). The second 
equality follows from Lemma 1. The fourth equality follows from Assumption 2. 
Finally, Assumption 2 implies that

(A6)   ∑ 
g,t

  
 
     N g,t    ε g,t    D g,t   =   ∑ 

 (g,t) : D g,t  =1
  

 
    N g,t    ε g,t    .

Combining (A1), (A5), (A6) yields

(A7)  E (  β ˆ   fe    |   D)  =   ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w g,t   E ( Δ g,t    |   D)  .

Then, the result follows from the law of iterated expectations. ∎

PROOF OF PROPOSITION 1:
If for all  t ≥ 2 ,   N g,t  / N g,t−1    does not depend on  t , then it follows from the 

first order conditions attached to Regression  1 and a few lines of alge-
bra that   ε g,t   =  D g,t   −  D g,.   −  D .,t   +  D .,.   . Therefore,   w g,t    is proportional 
to   D g,t   −  D g,.   −  D .,t   +  D .,.   . Then, for all  (g, t, t′ )  such that   D g,t   =  D g,t′   
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= 1 ,    D .,t   >  D .,t′    implies   w g,t   <  w g,t′    . Similarly, for all  (g, g′, t)  such that 
  D g,t   =  D g′,t   = 1 ,   D g,.   >  D g′,.    implies   w g,t   <  w g′,t    . ∎

PROOF OF COROLLARY 1:

Proof of the First Point.—If the assumptions of the corollary hold and 
   Δ ̃     TR  = 0 , then

   

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
  β ̃   fe   =  ∑  (g,t) : D g,t  =1         

 N g,t   ___  N 1  
    w g,t     Δ ̃   g,t   ,

    
0 =  ∑  (g,t) : D g,t  =1         

 N g,t   ___  N 1  
     Δ ̃   g,t   ,

    

where the first equality follows from (A7). These two conditions and the 
 Cauchy-Schwarz inequality imply

  |  β ̃   fe  | =  |  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    ( w g,t   − 1)  (  Δ ̃   g,t   −   Δ ̃     TR ) |  ≤ σ (W) σ ( Δ ̃  )  .

Hence,  σ( Δ ̃  ) ≥   σ _   fe   .
Now, we prove that we can rationalize this lower bound. Let us define

    Δ ̃    g,t  TR  =   
  β ̃   fe   ( w g,t   − 1) 

  _________ 
 σ   2  (W) 

   .

Then,

    Δ ̃     TR  =   ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
     
  β ̃   fe   ( w g,t   − 1) 

  _________ 
 σ   2  (W) 

   =   
  β ̃   fe   _____ 

 σ   2  (W) 
    
(

  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w g,t   − 1

)
  = 0 ,

as it follows from the definition of   w g,t    that   ∑ (g,t): D g,t  =1  
     ( N g,t  / N 1  ) w g,t   = 1 .

Similarly,

    ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w g,t     

  β ̃   fe   ( w g,t   − 1) 
  _________ 

 σ   2  (W) 
   =   

  β ̃   fe   _____ 
 σ   2  (W) 

     ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w g,t   ( w g,t   − 1)  

  =   
  β ̃   fe   _____ 

 σ   2  (W) 
     ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
     ( w g,t   − 1)    2  

  =   β ̃   fe    ,

where the second equality follows again from the fact that   ∑ (g,t): D g,t  =1  
      

 N g,t   ___  N 1  
    w g,t   = 1 .

Proof of the Second Point.—We first suppose that    β ̃   fe   > 0 . We seek to solve

    min  
  Δ ̃    (1)   ,…,  Δ ̃    (n)   

  
 
      ∑ 

i=1
  

n

      
 N  (i)    _  N 1  

     (  Δ ̃    (i)    −   Δ ̃     TR )    
2
  ,
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subject to

    β ̃   fe   =   ∑ 
i=1

  
n

      
 N  (i)    _  N 1  

     w  (i)      Δ ̃    (i)    ,     Δ ̃    (i)    ≤ 0 for all i ∈  {1, …, n}  .

This is a quadratic programming problem, with a matrix that is symmetric pos-
itive but not definite. Hence, by Frank and Wolfe (1956) and the fact that the 
linear term in the quadratic problem is 0, the solution exists if and only if the 
set of constraints is not empty. If   w (n)   ≥ 0 , the set of constraints is empty 
because   ∑ i=1  n    ( N (i)  / N 1  )  w (i)     Δ ̃   (i)   ≤ 0 <   β ̃   fe   . On the other hand, if   w (n)   < 0 , this 
set is  non-empty since it includes  (0, …, 0,   β ̃   fe  /( P (n)    w (n)  )) .

We now derive the corresponding bound. For that purpose, remark that

    ∑ 
i=1

  
n

      
 N  (i)    _  N 1  

    (  Δ ̃    (i)    −   ∑ 
i=1

  
n

      
 N  (i)    _  N 1  

     Δ ̃    (i)   )    
2

  =   ∑ 
i=1

  
n

      
 N  (i)    _  N 1  

     Δ ̃    (i)  
2
   −   (  ∑ 

i=1
  

n

      
 N  (i)    _  N 1  

     Δ ̃    (i)   )    
2

  .

The Karush-Kuhn-Tucker necessary conditions for optimality are that for all  i :

    Δ ̃    (i)    =   Δ ̃     TR  + λ  w  (i)    −  γ  (i)    ,

    ∑ 
i=1

  
n

      
 N  (i)    _  N 1  

    w  (i)      Δ ̃    (i)    =   β ̃   fe    ,

   γ  (i)    ≥ 0 ,

   γ  (i)      Δ ̃    (i)    = 0 ,

where    Δ ̃     TR  =  ∑ i=1  n    ( N  (i)   / N 1  )   Δ ̃   (i)   ,  2λ  is the Lagrange multiplier of the con-

straint   ∑ i=1  n    ( N (i)  / N 1  )  w (i)     Δ ̃   (i)   =   β ̃   fe    and  2 ( N (i)  / N 1  )  γ (i)    is the Lagrange multiplier 

of the constraint    Δ ̃   (i)   ≤ 0 .

These constraints imply that    Δ ̃   (i)   = 0  if and only if    Δ ̃     TR  + λ w (i)   ≥ 0 . Therefore, 

if    Δ ̃     TR  + λ  w (i)   < 0 ,    Δ ̃   (i)   ≠ 0  so   γ (i)   = 0 , and    Δ ̃   (i)   =   Δ ̃     TR  + λ  w (i)   . Therefore,

(A8)    Δ ̃    (i)    = min (  Δ ̃     TR  + λ  w  (i)   , 0)  .

This equation implies that    Δ ̃   (i)   ≤   Δ ̃     TR  + λ  w (i)   , which in turn implies 
that    Δ ̃     TR  ≤   Δ ̃     TR  + λ , so  λ ≥ 0 .

As a result,    Δ ̃     TR  + λ  w (i)    is decreasing in  i , and because  x ↦ min(x, 0)  
is increasing,    Δ ̃   (i)    is also decreasing in  i . Then    Δ ̃   (n)   < 0 : otherwise one 
would have    Δ ̃   (i)   = 0  for all  i  which would imply    β ̃   fe   = 0 , a contradiction. 
Let  s = min{i ∈ {1, …, n}  :    Δ ̃   (i)   < 0} . Using again (A8), we get

    Δ ̃     TR  =  ∑ 
i≥s

  
 
      
 N  (i)    _  N 1  

     Δ ̃    (i)    =  P s     Δ ̃     TR  + λ  S s    .
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Therefore,

(A9)    Δ ̃     TR  =   λ  S s   _ 
1 −  P s  

    .

Hence, plugging    Δ ̃     TR   in (A8), we obtain that for all  i ≥ s ,

    Δ ̃    (i)    = λ {   S s   _ 
1 −  P s  

   +  w  (i)   }  .

Finally, using again (A8), we obtain

    β ̃   fe   =  ∑ 
i≥s

  
 
      
 N  (i)    _  N 1  

    w  (i)      Δ ̃    (i)    = λ {   S  s  2  _ 
1 −  P s  

   +  T s  }  .

Thus,

  λ =   
  β ̃   fe   ____________  

 T s   +  S  s  2  /  (1 −  P s  ) 
   .

Then, using what precedes,

    σ ‗   fe  2   =  ∑ 
i≥s

  
 
      
 N  (i)    _  N 1  

     (λ  w  (i)   )    2  +  ∑ 
i<s

  
 
      
 N  (i)    _  N 1  

     (  Δ ̃     TR )    
2
  

  =  λ   2   T s   +  (1 −  P s  )    (  λ  S s   _ 
1 −  P s  

  )    
2

  

  =  λ   2  [ T s   +    S  s  2  _ 
1 −  P s  

  ]  

  =   
  β ̃    fe  2  
 _____________  

 T s   +  S  s  2  /  (1 −  P s  ) 
   .

The result follows, once noted that equations  (A8) and  (A9) imply that  
s = min{i ∈ {1, …, n}  :   w (i)   < −  S (i)  /(1 −  P (i)  )} .

Finally, consider the case    β ̃   fe   < 0 . By letting    Δ ̃    (i)  ′   = −   Δ ̃   (i)    and    β ̃    fe  ′   = −   β ̃   fe    , 
we have

    σ ‗   fe   =   min  
  Δ ̃     (1)   ′  ≤0,…,  Δ ̃     (n)   ′  ≤0

  
 
      ∑ 

i=1
  

n

      
 N  (i)    _  N 1  

      Δ ̃     (i)   ′     
2
  −    (  ∑ 

i=1
  

n

      
 N  (i)    _  N 1  

     Δ ̃     (i)   ′  )    
2

  

subject to

    ∑ 
i=1

  
n

      
 N  (i)    _  N 1  

    w  (i)      Δ ̃     (i)   ′   =   β ̃    fe  ′    .

This is the same program as before, with    β ̃    fe  ′    instead of    β ̃   fe   . Therefore, by the same 
reasoning as before, we obtain

    σ ‗   fe  2   =   
  (  β ̃    fe  ′  )    

2
 
 _____________  

 T s   +  S  s  2  /  (1 −  P s  ) 
   =   

  β ̃    fe  2  
 _____________  

 T s   +  S  s  2  /  (1 −  P s  ) 
   . ∎
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PROOF OF COROLLARY 2:
We have

   β fe   = E 
(

  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w g,t     Δ ̃   g,t  )

  

  = E 
(

 
(

  ∑ 
 (g,t) : D g,t  =1

  
 
      

 N g,t   _  N 1  
    w g,t  )

    Δ ̃     TR 
)

  

  = E (  Δ ̃     TR )  

  =  δ   TR  .

The first equality follows from the law of iterated expectations and (A7). 
The second equality follows from Assumption  7. By the definition of   w g,t   ,  
  ∑ (g,t): D g,t  =1  

     ( N g,t  / N 1  )  w g,t   = 1 , hence the third equality. The fourth equality follows 
from the law of iterated expectations. ∎

PROOF OF THEOREM 2:
It follows from the  Frisch-Waugh theorem and the definition of   ε fd,g,t    that

(A10)  E (  β ˆ   fd    |   D)  =   
 ∑  (g,t) :t≥2        N g,t    ε fd,g,t   (E ( Y g,t    |   D)  − E ( Y g,t−1    |   D) ) 

     ________________________________    
 ∑  (g,t) :t≥2        N g,t    ε fd,g,t   ( D g,t   −  D g,t−1  ) 

   .

Now, by definition of   ε fd,g,t    again,

(A11)    ∑ 
g=1

  
G

     N g,t    ε fd,g,t   = 0 for all t ∈  {2, …, T}  .

Then,

(A12)    ∑ 
 (g,t) :t≥2

  
 
     N g,t    ε fd,g,t   (E ( Y g,t    |   D)  − E ( Y g,t−1    |   D) )  

  =   ∑ 
 (g,t) :t≥2

  
 
     N g,t    ε fd,g,t   (E ( Y g,t    |   D)  − E ( Y g,t−1    |   D) 

 − E ( Y 1,t    |   D)  − E ( Y 1,t−1    |   D) )  

  =   ∑ 
 (g,t) :t≥2

  
 
     N g,t    ε fd,g,t   ( D g,t     Δ ̃   g,t   −  D g,t−1     Δ ̃   g,t−1   −  D 1,t     Δ ̃   1,t   +  D 1,t−1     Δ ̃   1,t−1  )  

  =   ∑ 
 (g,t) :t≥2

  
 
     N g,t    ε fd,g,t   ( D g,t     Δ ̃   g,t   −  D g,t−1     Δ ̃   g,t−1  )  

  =  ∑ 
g,t

  
 
     ( N g,t    ε fd,g,t   −  N g,t+1    ε fd,g,t+1  )   D g,t     Δ ̃   g,t   

  =   ∑ 
 (g,t) : D g,t  =1

  
 
     N g,t   ( ε fd,g,t   −   

 N g,t+1   _  N g,t  
    ε fd,g,t+1  )   Δ ̃   g,t    .
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The first and third equalities follow from (A11). The second equality follows from 
Lemma  1. The fourth equality follows from a summation by part, and from the 
fact   ε fd,g,1   =  ε fd,g,T+1   = 0 . The fifth equality follows from Assumption 2.

A similar reasoning yields

(A13)    ∑ 
 (g,t) :t≥2

  
 
     N g,t    ε fd,g,t   ( D g,t   −  D g,t−1  )  =   ∑ 

 (g,t) : D g,t  =1
  

 
     N g,t   ( ε fd,g,t   −   

 N g,t+1   _  N g,t  
    ε fd,g,t+1  )  .

Combining (A10), (A12), (A13), and the law of iterated expectations yields the 
result. ∎

PROOF OF PROPOSITION 2:
It follows from the first order conditions attached to Regression 2 and a few lines  

of algebra that   ε fd,g,t   =  D g,t   −  D g,t−1   −  D .,t   +  D .,t−1   . Therefore, under Assumption 6 
and if   N g,t    does not vary across  t , one has that for all  (g, t)  such that   D g,t   = 1,  
1 ≤ t ≤ T − 1 ,   w fd,g,t    is proportional to  1 −  D g,t−1   − (2  D .,t   −  D .,t−1   −  D .,t+1  ) . 
Now,   D .,t   −  D .,t−1   ≤ 1 , and under Assumption  6   D .,t   −  D .,t+1   ≤ 0 , so  
1 −  D g,t−1   − (2  D .,t   −  D .,t−1   −  D .,t+1  )  can only be strictly negative if   D g,t−1   = 1 . 
Then, for all  (g, t)  such that   D g,t   = 1, 1 ≤ t ≤ T − 1 ,   w fd,g,t    is strictly negative if 
and only if   D g,t−1   = 1  and  2  D .,t   −  D .,t−1   −  D .,t+1   > 0 .

Similarly, when  t = T , under the same assumptions as above, one has that for 
all  g  such that   D g,T   = 1 ,   w fd,g,T    is proportional to  1 −  D g,T−1   − ( D .,T   −  D .,T−1  ) . 
Now,   D .,T   −  D .,T−1   ≤ 1 , so  1 −  D g,T−1   − ( D .,T   −  D .,T−1  )  can only be strictly neg-
ative if   D g,T−1   = 1 . Then,   w fd,g,T    is strictly negative if and only if   D g,T−1   = 1  
and   D .,T   −  D .,T−1   > 0 .

Finally, when  t = 1 , one has that for all  g  such that   D g,1   = 1 ,   D g,2   = 1  under 
Assumption 6, so   w fd,g,1    is proportional to   D .,2   −  D .,1  ,  which is greater than 0 under 
Assumption 6. ∎

PROOF OF THEOREM 3:
First, by definition of   DID M   ,

(A14)  E ( DID M  )  =   ∑ 
t=2

  
T

    E ( (  
 N 1,0,t   _  N S  

   E ( DID +,t    |   D)  +   
 N 0,1,t   _  N S  

   E ( DID −,t    |   D) ) )  .

Let  t  be greater than 2, and let us focus for now on the case where there is at least 
one   g 1    such that   D  g 1  ,t−1   = 0  and   D  g 1  ,t   = 1 . Then Assumption  11 ensures that 
there is a least another group   g 2    such that   D  g 2  ,t−1   =  D  g 2  ,t   = 0 . For every  g  such 
that   D g,t−1   = 0  and   D g,t   = 1 , we have

(A15)  E ( Y g,t   −  Y g,t−1    |   D)  = E ( Δ g,t    |   D)  + E ( Y g,t   (0)  −  Y g,t−1   (0)   |   D)  .

Under Assumptions 12, 4, and 5, for all  t ≥ 2 , there exists a real number   ψ 0,t    
such that for all  g ,

(A16)  E ( Y g,t   (0)  −  Y g,t−1   (0)   |   D)  = E ( Y g,t   (0)  −  Y g,t−1   (0)   |    D g  ) 

 = E ( Y g,t   (0)  −  Y g,t−1   (0) )  =  ψ 0,t    .
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Then,

(A17)    N 1,0,t   E ( DID +,t    |   D)  

  =   ∑ 
g: D g,t  =1, D g,t−1  =0

  
 
     N g,t   E ( Δ g,t    |   D) 

 +   ∑ 
g: D g,t  =1, D g,t−1  =0

  
 
     N g,t   E ( Y g,t   (0)  −  Y g,t−1   (0)   |   D)  

  −   
 N 1,0,t   _  N 0,0,t  

     ∑ 
g: D g,t  = D g,t−1  =0

  
 
     N g,t   E ( Y g,t   (0)  −  Y g,t−1   (0)   |   D)  

  =   ∑ 
g: D g,t  =1, D g,t−1  =0

  
 
     N g,t   E ( Δ g,t    |   D)  

 +  ψ 0,t   (
  ∑ 
g: D g,t  =1, D g,t−1  =0

  
 
     N g,t   −   

 N 1,0,t   _  N 0,0,t  
     ∑ 
g: D g,t  = D g,t−1  =0

  
 
     N g,t  )

  

  =   ∑ 
g: D g,t  =1, D g,t−1  =0

  
 
     N g,t   E ( Δ g,t    |   D)  .

The first equality follows by (A15), the second by (A16), and the third after some 
algebra. If there is no  g  such that   D g,t−1   = 0  and   D g,t   = 1 , (A17) still holds, 
as   DID +,t   = 0  in this case.

A similar reasoning yields

(A18)   N 0,1,t   E ( DID −,t    |   D)  =   ∑ 
g: D g,t  =0, D g,t−1  =1

  
 
     N g,t   E ( Δ g,t    |   D)  .

Plugging (A17) and (A18) into (A14) yields

 E ( DID M  )  =   ∑ 
t=2

  
T

    E 
(

E 
(

  1 _  N S  
   
(

  ∑ 
g: D g,t  =1, D g,t−1  =0

  
 
     N g,t    Δ g,t   +   ∑ 

g: D g,t  =0, D g,t−1  =1
  

 
     N g,t    Δ g,t  )

  |   D)
 
)

  

  =  δ   S  . ∎

PROOF OF THEOREM 4:
First, as with   DID M   , we have

(A19)   E ( DID  M  pl  )  =   ∑ 
t=3

  
T

    E 
(

 
(

  
 N 1,0,0,t   _ 
 N  S  

pl 
   E ( DID  +,t  pl    |   D)  +   

 N 0,1,1,t   _ 
 N  S  

pl 
   E ( DID  −,t  pl    |   D) ) 

)
  .
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Let  t  be greater than 3, and let us for now focus on the case where there exists at 
least one   g 1    such that   D  g 1  ,t−2   =  D  g 1  ,t−1   = 0  and   D  g 1  ,t   = 1 . Then Assumption 13 
ensures that there is a least another group   g 2    such that   D  g 2  ,t−2   =  D  g 2  ,t−1   =  D  g 2  ,t   
= 0 . Then,

(A20)   N 1,0,0,t   E ( DID  +,t  pl    |   D)  

    =   ∑ 
g: D g,t  =1, D g,t−1  = D g,t−2  =0

  
 
     N g,t   E ( Y g,t−1   (0)  −  Y g,t−2   (0)  |   D)  

    −   
 N 1,0,0,t   _  N 0,0,0,t  

      ∑ 
g: D g,t  = D g,t−1  = D g,t−2  =0

  
 
     N g,t   E ( Y g,t−1   (0)  −  Y g,t−2   (0)  |   D)  

    =  ψ 0,t−1   (
  ∑ 
g: D g,t  =1, D g,t−1  = D g,t−2  =0

  
 
     N g,t   −   

 N 1,0,0,t   _  N 0,0,0,t  
     ∑ 

g: D g,t  = D g,t−1  = D g,t−2  =0
  

 
     N g,t  )

  

    = 0 .

The second equality follows by (A16), and the third follows after some algebra. If 
there exists no  g  such that   D g,t−2   =  D g,t−1   = 0  and   D g,t   = 1 , (A20) still holds, 
as   DID  +,t  pl   = 0  in this case.

A similar reasoning yields

(A21)   N 0,1,1,t   E ( DID  −,t  pl    |   D)  = 0 .

The result follows after plugging (A20) and (A21) into (A19). ∎

REFERENCES

Abraham, Sarah, and Liyang Sun. 2018. “Estimating Dynamic Treatment Effects in Event Studies 
with Heterogeneous Treatment Effects.” Unpublished.

Ashenfelter, Orley. 1978. “Estimating the Effect of Training Programs on Earnings.” Review of Eco-
nomics and Statistics 60 (1): 47–57.

Athey, Susan, and Guido W. Imbens. 2018. “Design-Based Analysis in Difference-in-Differences Set-
tings with Staggered Adoption.” NBER Working Paper 24963.

Athey, Susan, and Scott Stern. 2002. “The Impact of Information Technology on Emergency Health 
Care Outcomes.” RAND Journal of Economics 33 (3): 399–432.

Autor, David H. 2003. “Outsourcing at Will: The Contribution of Unjust Dismissal Doctrine to the 
Growth of Employment Outsourcing.” Journal of Labor Economics 21 (1): 1–42.

Borusyak, Kirill, and Xavier Jaravel. 2017. “Revisiting Event Study Designs.” Unpublished.
Callaway, Brantly, and Pedro H. C. Sant’Anna. 2018. “Difference-in-Differences with Multiple Time 

Periods and an Application on the Minimum Wage and Employment.” arXiv e-print 1803.09015.
Card, David. 1996. “The Effect of Unions on the Structure of Wages: A Longitudinal Analysis.” 

Econometrica 64 (4): 957–79.
de Chaisemartin, Clément. 2011. “Fuzzy Differences in Differences.” Center for Research in Econom-

ics and Statistics Working Paper 2011-10.
de Chaisemartin, Clément, and Xavier D’Haultfœuille. 2015. “Fuzzy Differences-in-Differences.” 

arXiv e-print 1510.01757v2.
de Chaisemartin, Clément, and Xavier D’Haultfœuille. 2018. “Fuzzy Differences-in-Differences.” 

Review of Economic Studies 85 (2): 999–1028.



2996 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2020

de Chaisemartin, Clément, and Xavier D’Haultfœuille. 2020a. "Difference-in-Differences Estimators 
of Intertemporal Treatment Effects." arXiv:2007.04267

de Chaisemartin, Clément, and Xavier D’Haultfœuille. 2020b. “Replication Data for: Two-Way Fixed 
Effects Estimators with Heterogeneous Treatment Effects.” American Economic Association 
[publisher], Inter-university Consortium for Political and Social Research [distributor]. https://doi.
org/10.3886/E118363V1.

de Chaisemartin, Clément, Xavier D’Haultfœuille, and Yannick Guyonvarch. 2019. “Fuzzy Differenc-
es-in-Differences with Stata.” Stata Journal 19 (2): 435–58.

Duflo, Esther. 2001. “Schooling and Labor Market Consequences of School Construction in Indone-
sia: Evidence from an Unusual Policy Experiment.” American Economic Review 91 (4): 795–813.

Frank, Marguerite, and Philip Wolfe. 1956. “An Algorithm for Quadratic Programming.” Naval 
Research Logistics Quarterly 3 (1–2): 95–110.

Freeman, Richard B. 1984. “Longitudinal Analyses of the Effects of Trade Unions.” Journal of Labor 
Economics 2 (1): 1–26.

Freeman, Richard B., and James L. Medoff. 1984. “What Do Unions Do?” ILR Review 38 (2): 244–63.
Gentzkow, Matthew, Jesse M. Shapiro, and Michael Sinkinson. 2011. “The Effect of Newspaper Entry 

and Exit on Electoral Politics.” American Economic Review 101 (7): 2980–3018.
Goodman-Bacon, Andrew. 2018. “Difference-in-Differences with Variation in Treatment Timing.” 

Unpublished.
Imai, Kosuke, and In Song Kim. 2018. “On the Use of Two-Way Fixed Effects Regression Models for 

Causal Inference with Panel Data.” Unpublished.
Jakubson, George. 1991. “Estimation and Testing of the Union Wage Effect Using Panel Data.” Review 

of Economic Studies 58 (5): 971–91.
Vella, Francis, and Marno Verbeek. 1998. “Whose Wages Do Unions Raise? A Dynamic Model of 

Unionism and Wage Rate Determination for Young Men.” Journal of Applied Econometrics 13 (2): 
163–83.

Wooldridge, Jeffrey M. 2002. Econometric Analysis of Cross Section and Panel Data. Cambridge, 
MA: MIT Press.

https://doi.org/10.3886/E118363V1

	Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects
	I. Setup
	II. Two-Way Fixed Effects Regressions
	A. A Decomposition Result
	B. Robustness to Heterogeneous Treatment Effects
	C. Extension to the First-Difference Regression

	III. An Alternative Estimator
	IV. Extensions
	V. Applicability, and Applications
	A. Applicability
	B. Application to Gentzkow, Shapiro, and Sinkinson (2011)
	C. The Effect of Union Membership on Wages

	VI. Conclusion
	Appendix A. Proofs
	One Useful Lemma

	REFERENCES


