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Abstract
Difference-in-differences (DID) is commonly used for causal inference in time-series cross-sectional data.

It requires the assumption that the average outcomes of treated and control units would have followed

parallel paths in the absence of treatment. In this paper, we propose a method that not only relaxes

this often-violated assumption, but also unifies the synthetic control method (Abadie, Diamond, and

Hainmueller 2010) with linear fixed effects models under a simple framework, of which DID is a special case.

It imputes counterfactuals for each treated unit using control group information based on a linear interactive

fixed effects model that incorporates unit-specific intercepts interacted with time-varying coefficients. This

method has several advantages. First, it allows the treatment to be correlated with unobserved unit and

time heterogeneities under reasonable modeling assumptions. Second, it generalizes the synthetic control

method to the case of multiple treated units and variable treatment periods, and improves efficiency and

interpretability. Third, with a built-in cross-validation procedure, it avoids specification searches and thus is

easy to implement. An empirical example of Election Day Registration and voter turnout in the United States

is provided.

1 Introduction

Difference-in-differences (DID) is one of the most commonly used empirical designs in today’s

social sciences. The identifying assumptions for DID include the “parallel trends” assumption,

which states that in the absence of the treatment the average outcomes of treated and control

units would have followed parallel paths. This assumption is not directly testable, but researchers

have more confidence in its validity when they find that the average outcomes of the treated

and control units follow parallel paths in pretreatment periods. In many cases, however, parallel

pretreatment trends are not supported by data, a clear sign that the “parallel trends” assumption

is likely to fail in the posttreatment period as well. This paper attempts to deal with this problem

systematically. It proposes a method that estimates the average treatment effect on the treated

using time-series cross-sectional (TSCS) data when the “parallel trends” assumption is not likely

to hold.

The presence of unobserved time-varying confounders causes the failure of this assumption.

There are broadly two approaches in the literature to deal with this problem. The first one is

to condition on pretreatment observables using matching methods, which may help balance

the influence of potential time-varying confounders between treatment and control groups. For

example, Abadie (2005) proposes matching before DID estimations. Although this method is easy

Author’s note: The author is indebted toMatt Blackwell, Devin Caughey, Justin Grimmer, Jens Hainmueller, DannyHidalgo,

Simon Jackman, Jonathan Katz, Luke Keele, Eric Min, Molly Roberts, Jim Snyder, Brandon Stewart, Teppei Yamamoto,

as well as seminar participants at the 2015 MPSA Annual Meeting and 2015 APSA Annual Meeting for helpful comments

and suggestions. The author thanks the editor, Mike Alvarez, and two anonymous reviewers for their extremely helpful

suggestions. He also thanks Jushan Bai for generously sharing the Matlab codes used in Bai (2009) and Melanie Springer

for kindly providing the state-level voter turnout data (1920–2000). The source code and data used in the paper can be

downloaded from the Political Analysis Dataverse at dx.doi.org/10.7910/DVN/8AKACJ (Xu 2016) as well as the author’s

website.
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to implement, it does not guarantee parallel pretreatment trends. The synthetic control method

proposed by Abadie, Diamond, and Hainmueller (2010, 2015) goes one step further. It matches

both pretreatment covariates and outcomes between a treated unit and a set of control units and

uses pretreatment periods as criteria for good matches.1 Specifically, it constructs a “synthetic

control unit” as the counterfactual for the treated unit by reweighting the control units. It provides

explicit weights for the control units, thus making the comparison between the treated and

synthetic control units transparent. However, it only applies to the case of one treated unit and

the uncertainty estimates it offers are not easily interpretable.2

The second approach is to model the unobserved time-varying heterogeneities explicitly. A

widely used strategy is to add in unit-specific linear or quadratic time trends to conventional

two-way fixed effects models. By doing so, researchers essentially rely upon a set of alternative

identification assumptions that treatment assignment is ignorable conditional on both the fixed

effects and the imposed trends (Mora and Reggio 2012). Controlling for these trends, however,

often consumes a large number of degrees of freedom andmay not necessarily solve the problem

if the underlying confounders are not in forms of the specified trends.

An alternative way is to model unobserved time-varying confounders semiparametrically. For

example, Bai (2009) proposes an interactive fixed effects (IFE) model, which incorporates unit-

specific intercepts interactedwith time-varying coefficients. The time-varying coefficients are also

referred to as (latent) factorswhile the unit-specific intercepts are labeled as factor loadings. This

approach builds upon an earlier literature on factor models in quantitative finance.3 The model

is estimated by iteratively conducting a factor analysis of the residuals from a linear model and

estimating the linear model that takes into account the influences of a fixed number of most

influential factors. Pang (2010, 2014) explores nonlinear IFE models with exogenous covariates in

a Bayesian multi-level framework. Stewart (2014) provides a general framework of estimating IFE

models based on a Bayesian variational inference algorithm. Gobillon and Magnac (2016) show

that IFE models outperform the synthetic control method in DID settings when factor loadings of

the treatment and control groups do not share common support.4

This paper proposes ageneralized synthetic control (GSC)method that links the twoapproaches

and unifies the synthetic control method with linear fixed effects models under a simple

framework, of which DID is a special case. It first estimates an IFE model using only the control

group data, obtaining a fixed number of latent factors. It then estimates factor loadings for each

treated unit by linearly projecting pretreatment treated outcomes onto the space spanned by

these factors. Finally, it imputes treated counterfactuals based on the estimated factors and factor

loadings. The main contribution of this paper, hence, is to employ a latent factor approach to

address a causal inference problem and provide valid, simulation-based uncertainty estimates

under reasonable assumptions.

This method is in the spirit of the synthetic control method in the sense that by essence it is

a reweighting scheme that takes pretreatment treated outcomes as benchmarks when choosing

weights for control units and uses cross-sectional correlations between treated and control units

to predict treated counterfactuals. Unlike the synthetic matching method, however, it conducts

dimension reduction prior to reweighting such that vectors to be reweighted on are smoothed

across control units. The method can also be understood as a bias correction procedure for IFE

1 See Hsiao, Ching, and Wan (2012) and Angrist, Jord, and Kuersteiner (2013) for alternative matching methods along this

line of thought.

2 To gauge the uncertainty of the estimated treatment effect, the synthetic control method compares the estimated

treatment effect with the “effects” estimated from placebo tests in which the treatment is randomly assigned to a control

unit.

3 See Campbell, Lo, and MacKinlay (1997) for applications of factor models in finance.

4 For more empirical applications of the IFE estimator, see Kim and Oka (2014) and Gaibulloev, Sandler, and Sul (2014).
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models when the treatment effect is heterogeneous across units.5 It treats counterfactuals of

treated units as missing data and makes out-of-sample predictions for posttreatment treated

outcomes based on an IFE model.

Thismethod has several advantages. First, it generalizes the synthetic control method to cases

of multiple treated units and/or variable treatment periods. Since the IFEmodel is estimated only

once, treated counterfactuals are obtained in a single run. Users therefore no longer need to find

matches of control units for each treated unit one by one.6 This makes the algorithm fast and less

sensitive to the idiosyncrasies of a small number of observations.

Second, the GSC method produces frequentist uncertainty estimates, such as standard

errors and confidence intervals, and improves efficiency under correct model specifications.

A parametric bootstrap procedure based on simulated data can provide valid inference under

reasonableassumptions. Sincenoobservationsarediscarded fromthecontrol group, thismethod

uses more information from the control group and thus is more efficient than the synthetic

matching method when the model is correctly specified.

Third, it embeds a cross-validation scheme that selects the number of factors of the IFEmodel

automatically, and thus is easy to implement. One advantage of the DID data structure is that

treated observations in pretreatment periods can naturally serve as a validation dataset formodel

selection.Weshowthatwith sufficientdata, the cross-validationprocedure canpickup thecorrect

number of factors with high probability, therefore reducing the risks of overfitting.

The GSCmethod has twomain limitations. First, it requires more pretreatment data than fixed

effects estimators. When the number of pretreatment periods is small, “incidental parameters”

can lead to biased estimates of the treatment effects. Second, and perhaps more importantly,

modeling assumptions play a heavier role with the GSC method than the original synthetic

matching method. For example, if the treated and control units do not share common support in

factor loadings, the synthetic matching method may simply fail to construct a synthetic control

unit. Since such a problem is obvious to users, the chances that users misuse the method

are small. The GSC method, however, will still impute treated counterfactuals based on model

extrapolation,whichmay lead to erroneous conclusions. To safeguard against this risk, it is crucial

to conduct various diagnostic checks, such as plotting the raw data, fitted values, and predicted

counterfactuals.

The rest of the paper is organized as follows. Section 2 sets up the model and defines the

quantities of interest. Section 3 introduces the GSC estimator, describes how it is implemented,

anddiscuss theparametricbootstrapprocedure. Section4 reports simulation results that explores

the finite sample properties of the GSC estimator and compares it with several existing methods.

Section 5 illustrates themethod with an empirical example that investigates the effect of Election

Day Registration (EDR) laws on voter turnout in the United States. The last section concludes.

2 Framework

SupposeYi t is the outcome of interest of unit i at time t . Let T and C denote the sets of units in
treatment and control groups, respectively. The total number of units is N = Ntr + Nco , where

Ntr and Nco are the numbers of treated and control units, respectively. All units are observed for

T periods (from time 1 to timeT ). LetT0,i be the number of pretreatment periods for unit i , which

5 When the treatment effect is heterogeneous (as it is almost always the case), an IFE model that imposes a constant

treatment effect assumption gives biased estimates of the average treatment effect because the estimation of the factor

space is affected by the heterogeneity in the treatment effect.

6 For example, Acemoglu et al. (2016), who estimate the effect of TimGeithner connections on stockmarket returns, conduct

the synthetic controlmethod repeatedly for each connected (treated) firm; Dube and Zipperer (2015) estimate the effect of

minimumwage policies on wage and employment by conducting themethod for each of the 29 policy changes. The latter

also extend Abadie, Diamond, and Hainmueller (2010)’s original inferential method to the case of multiple treated units

using the mean percentile ranks of the estimated effects.
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is first exposed to the treatment at time (T0,i + 1) and subsequently observed for qi = T − T0,i

periods. Units in the control group are never exposed to the treatment in the observed time span.

For notational convenience, we assume that all treated units are first exposed to the treatment at

the same time, i.e.,T0,i = T0 and qi = q ; variable treatment periods can be easily accommodated.

First, we assume thatYi t is given by a linear factor model.

ASSUMPTION 1. Functional form:

Yi t = δi t Di t + x ′i t β + λ ′i ft + εi t ,

where the treatment indicatorDi t equals 1 if unit i has been exposed to the treatment prior to time

t and equals 0 otherwise (i.e., Di t = 1 when i ∈ T and t > T0 and Di t = 0 otherwise).7 δi t is the

heterogeneous treatment effect on unit i at time t ; xi t is a (k × 1) vector of observed covariates,

β = [β1, . . . , βk ]
′ is a (k ×1) vector of unknownparameters,8 ft = [f1t , . . . , fr t ]

′ is an (r ×1) vector of
unobservedcommon factors,λi = [λi1, . . . , λi r ]

′ is an (r×1) vectorofunknown factor loadings, and
εi t representsunobserved idiosyncratic shocks forunit i at time t andhaszeromean.Assumption 1

requires that the treated and control units are affected by the same set of factors and the number

of factors is fixed during the observed time periods, i.e., no structural breaks are allowed.

The factor component of the model, λ ′i ft = λi1f1t + λi2f2t + · · · + λi r fr t , takes a linear, additive

formbyassumption. In spiteof the seemingly restrictive form, it coversawide rangeofunobserved

heterogeneities. First and foremost, conventional additive unit and time fixed effects are special

cases. To see this, if we set f1t = 1 and λi2 = 1 and rewrite λi1 = αi and f2t = ξt , then λi1f1t +

λi2f2t = αi + ξt .
9 Moreover, the term also incorporates cases ranging from unit-specific linear

or quadratic time trends to autoregressive components that researchers often control for when

analyzing TSCS data.10 In general, as long as an unobserved random variable can be decomposed

into a multiplicative form, i.e., Ui t = ai × bt , it can be absorbed by λ
′
i ft while it cannot capture

unobserved confounders that are independent across units.

To formalize the notion of causality, we also use the notation from the potential outcomes

framework for causal inference (Neyman 1923; Rubin 1974; Holland 1986). LetYi t (1) andYi t (0) be

the potential outcomes for individual i at time t when Di t = 1 or Di t = 0, respectively. We thus

haveYi t (0) = x ′i t β + λ ′i ft + εi t andYi t (1) = δi t + x ′i t β + λ ′i ft + εi t . The individual treatment effect

on treated unit i at time t is therefore δi t =Yi t (1) −Yi t (0) for any i ∈ T , t > T0.

We can rewrite the DGP of each unit as:

Yi = Di ◦ δi + Xi β + F λi + εi , i ∈ 1, 2, . . .Nco ,Nco + 1, . . . ,N ,

whereYi = [Yi1,Yi2, . . . ,YiT ]
′; Di = [Di1,Di2, . . . ,DiT ]

′ and δi = [δi1, δi2, . . . , δiT ]
′ (symbol “◦”

stands for point-wise product); εi = [εi1, εi2, . . . , εiT ]
′ are (T × 1) vectors;Xi = [xi1, xi2, . . . , xiT ]

′

is a (T × k ) matrix; and F = [f1, f2, . . . , fT ]
′ is a (T × r ) matrix.

7 Cases in which the treatment switches on and off (or “multiple-treatment-time”) can be easily incorporated in this

framework as long as we impose assumptions on how the treatment affects current and future outcomes. For example,

one can assume that the treatment only affect the current outcome but not future outcomes (no carryover effect), as

fixed effects models often do. In this paper, we do not impose such assumptions. See Imai and Kim (2016) for a thorough

discussion.

8 β is assumed tobeconstantacross spaceand timemainly for thepurposeof fast computation in the frequentist framework.

It is a limitation compared with more flexible and increasingly popular random coefficient models in Bayesian multi-level

analysis.

9 For this reason, additiveunit and time fixedeffects arenot explicitly assumed in themodel. Anextendedmodel thatdirectly

imposes additive two-way fixed effects is discussed in the next section.

10 In the former case, we can set f1t = t and f2t = t 2; in the latter case, for example, we can rewriteYi t = ρYi ,t−1 + x ′
i t
β + εi t

asYi t = Yi0 · ρt + x ′
i t
β + νi t , in which νi t is an AR(1) process and ρt andYi0 are the unknown factor and factor loadings,

respectively. See Gobillon and Magnac (2016) for more examples.
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The control and treated units are subscripted from 1 toNco and fromNco +1 toN , respectively.

The DGP of a control unit can be expressed as:Yi = Xi β + F λi + εi , i ∈ 1, 2, . . .Nco . Stacking all

control units together, we have:

Yco = Xcoβ + FΛ′co + εco , (1)

in which Yco = [Y1,Y2, . . . ,YNco ] and εco = [ε1, ε2, . . . , εNco ] are (T × Nco ) matrices; Xco is a

three-dimensional (T × Nco × p) matrix; andΛco = [λ1, λ2, . . . , λNco ]
′ is a (Nco × r ) matrix, hence,

the productsXcoβ and FΛ′co are also (T × Nco ) matrices. To identify β , F andΛco in Equation (1),

more constraints are needed. Following Bai (2003, 2009), I add two sets of constraints on the

factors and factor loadings: (1) all factor are normalized, and (2) they are orthogonal to each other,

i.e.: F ′F /T = Ir and Λ′coΛco = diagonal.11 For the moment, the number of factors r is assumed

to be known. In the next section, we propose a cross-validation procedure that automates the

choice of r .

The main quantity of interest of this paper is the average treatment effect on the treated (ATT)

at time t (when t > T0):

ATTt ,t>T0 =
1

Ntr

∑
i ∈T

[Yi t (1) −Yi t (0)] =
1

Ntr

∑
i ∈T

δi t .
12

Note that in this paper, as in Abadie, Diamond, and Hainmueller (2010), we treat the treatment

effects δi t as given once the sample is drawn.13 Because Yi t (1) is observed for treated units in

posttreatment periods, the main objective of this paper is to construct counterfactuals for each

treated unit in posttreatment periods, i.e., Yi t (0) for i ∈ T and t > T0. The problem of causal

inference indeed turns into a problem of forecasting missing data.14

2.1 Assumptions for causal identification
In addition to the functional form assumption (Assumption 1), three assumptions are required for

the identification of the quantities of interest. Among them, the assumption of strict exogeneity is

the most important.

ASSUMPTION 2. Strict exogeneity.

εi t ⊥⊥ Dj s , xj s , λj , fs �i , j , t , s .

Assumption 2means that the error termof anyunit at any timeperiod is independent of treatment

assignment, observed covariates, and unobserved cross-sectional and temporal heterogeneities

11 These constraints do not lead to loss of generality because for an arbitrary pair ofmatrices F andΛco , we can find an (r × r )
invertiblematrixA such that (F A)′(F A)/T = Ir and (A

−1Λco )
′A−1Λco is a diagonalmatrix. To see this, we can then rewrite

λ′
i
F as λ̃′

i
F̃ , in which F̃ = F A and λ̃i = A−1λi for units in both the treatment and control groups such that F̃ and Λ̃co satisfy

the above constraints. The total number of constraints is r 2, the dimension of thematrix spacewhereA belongs. It is worth

noting that although the original factors F may not be identifiable, the space spanned by F , a r -dimensional subspace of

in theT -dimensional space, is identified under the above constraints because for any vector in the subspace spanned by

F̃ , it is also in the subspace spanned by the original factors F .
12 For a clear and detailed explanation of quantities of interest in TSCS analysis, see Blackwell and Glynn (2015). Using

their terminology, this paper intends to estimate the Average Treatment History Effect on the Treated given two specific

treatment histories: �[Yi t (a
1
t ) −Yi t (a0t )�Di ,t−1 = a1t−1] in which a0t = (0, . . . , 0), a1t = (0, . . . , 0, 1, . . . , 1) withT0 zeros and

(t −T0) ones indicate the histories of treatment statuses. We keep the current notation for simplicity.

13 We attempt to make inference about the ATT in the sample we draw, not the ATT of the population. In other words, we do

not incorporate uncertainty of the treatment effects δi t .
14 The idea of predicting treated counterfactuals in a DID setup is also explored by Brodersen et al. (2014) using a structural

Bayesian time-series approach.
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of all units (including itself) at all periods. We call it a strict exogeneity assumption, which implies

conditional mean independence, i.e., �[εi t �Di t , xi t , λi , ft ] = �[εi t �xi t , λi , ft ] = 0.15

Assumption2 is arguablyweaker than the strict exogeneityassumption requiredby fixedeffects

models when decomposable time-varying confounders are at present. These confounders are

decomposable if they can take forms of heterogeneous impacts of a common trend or a series of

commonshocks. For instance, supposea law is passed in a statebecause thepublic opinion in that

state becomes more liberal. Because changing ideologies are often cross-sectionally correlated

across states, a latent factor may be able to capture shifting ideology at the national level; the

national shifts may have a larger impact on a state that has a tradition of mass liberalism or

has a higher proportion of manufacturing workers than a state that is historically conservative.

Controlling for this unobserved confounder, therefore, can alleviate the concern that the passage

of the law is endogenous to changing ideology of a state’s constituents to a great extent.

When such a confounder exists, with two-ways fixed effects models we need to assume that

(εi t + λi ft ) ⊥⊥ Dj s , xj s , αj , ξs , �i , j , t , s (with λi ft , αj and ξs representing the time-varying

confounder for unit i at time t , fixed effect for unit j , and fixed effect for time s , respectively)

for the identification of the constant treatment effect. This is implausible because λi ft is likely to

be correlated with Di t , xi t , and αi , not to mention other terms. In contrast, Assumption 2 allows

the treatment indicator to be correlated with both xj s and λ
′
j fs for any unit j at any time periods s

(including i and t themselves).

Identifying the treatment effects also requires the following assumptions:

ASSUMPTION 3. Weak serial dependence of the error terms.

ASSUMPTION 4. Regularity conditions.

Assumptions 3 and 4 (see the Online Appendix in SupplementaryMaterials for details) are needed

for the consistent estimation of β and the space spanned by F (or F ′F /T ). Similar, though slightly

weaker, assumptions are made in Bai (2009) and Moon and Weidner (2015). Assumption 3 allows

weak serial correlations but rules out strong serial dependence, such as unit root processes; errors

of different units are uncorrelated. A sufficient condition for Assumption 3 to hold is that the error

terms are not only independent of covariates, factors, and factor loadings, but also independent

both across units and over time, which is assumed in Abadie, Diamond, and Hainmueller (2010).

Assumption 4 specifies moment conditions that ensure the convergence of the estimator.

For valid inference based on a block bootstrap procedure discussed in the next section, we also

need Assumption 5 (see Online Appendix for details). Heteroscedasticity across time, however, is

allowed.

ASSUMPTION 5. The error terms are cross-sectionally independent and homoscedastic.

REMARK 1. Assumptions 3 and 5 suggest that the error terms εi t can be serially correlated.

Assumption 2 rules out dynamic models with lagged dependent variables; however, this is

mainly for the purpose of simplifying proofs (Bai 2009, p. 1243). The proposed method can

accommodate dynamic models as long as the error terms are not serially correlated.

3 Estimation Strategy

In this section, we first propose a GSC estimator for treatment effect of each treated unit. It is

essentially an out-of-sample prediction method based on Bai (2009)’s factor augmentedmodel.

15 Note that because εi t is independent ofDi s and xi s for all (t , s ), Assumption 2 rules out the possibility that past outcomes

may affect future treatments, which is allowed by the so called “sequential exogeneity” assumption. A directed acyclic

graph (DAG) representation is provided in the Online Appendix. See Blackwell and Glynn (2015) and Imai and Kim (2016)

for discussions on the difference between the strict ignorability and sequential ignorability assumptions. What is unique

here is that we conditional on unobserved factors and factor loadings.
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The GSC estimator for the treatment effect on treated unit i at time t is given by the difference

between the actual outcome and its estimated counterfactual: δ̂i t =Yi t (1)−Ŷi t (0), in which Ŷi t (0)

is imputedwith three steps. In the first step,we estimate an IFEmodel using only the control group

data and obtain β̂ , F̂ , Λ̂co :

Step 1. (β̂ , F̂ , Λ̂co ) = argmin
β̃ ,F̃ ,Λ̃co

∑
i ∈C

(Yi − Xi β̃ − F̃ λ̃i )′(Yi − Xi β̃ − F̃ λ̃i )

s.t. F̃ ′F̃ /T = Ir and Λ̃′coΛ̃co = diagonal.

Weexplain in detail how to estimate thismodel in theOnline Appendix. The second step estimates

factor loadings for each treatedunit byminimizing themeansquarederrorof thepredicted treated

outcome in pretreatment periods:

Step 2. λ̂i = argmin
λ̃i

(Y 0
i − X

0
i β̂ − F̂ 0λ̃i )

′(Y 0
i − X

0
i β̂ − F̂ 0λ̃i )

= (F̂ 0′F̂ 0)−1F̂ 0′(Y 0
i − X

0
i β̂ ), i ∈ T ,

in which β̂ and F̂ 0 are from the first-step estimation and the superscripts “0”s denote the

pretreatmentperiods. In the third step,we calculate treated counterfactuals basedon β̂ , F̂ , and λ̂i :

Step 3. Ŷi t (0) = x ′i t β̂ + λ̂ ′i f̂t i ∈ T , t > T0.

An estimator for ATTt therefore is: �ATT t = (1/Ntr )
∑

i ∈T [Yi t (1) − Ŷi t (0)] for t > T0.

REMARK 2. In the Online Appendix, we show that, under Assumptions 1–4, the bias of the GSC

shrinks to zero as the sample size grows, i.e., �ε (�ATT t �D ,X ,Λ, F ) → ATTt as Nco ,T0 → 0

(Ntr is taken as given), in which D = [D1,D2, . . . ,DN ] is a (T × N ) matrix, X is a three-

dimensional (T × N × p) matrix; andΛ = [λ1, λ2, . . . , λN ]
′ is a (N × r ) matrix. Intuitively, both

large Nco and largeT0 are necessary for the convergences of β̂ and the estimated factor space.

WhenT0 is small, imprecise estimation of the factor loadings, or the “incidental parameters”

problem, will lead to bias in the estimated treatment effects. This is a crucial difference from

the conventional linear fixed effects models.

3.1 Model selection
In practice, researchers may have limited knowledge of the exact number of factors to be

included in themodel. Therefore,wedevelopacross-validationprocedure to selectmodelsbefore

estimating the causal effect. It relies on the control group information as well as information from

the treatment group in pretreatment periods. Algorithm 1 describes the details of this procedure.

ALGORITHM 1 (Cross-validating the number of factors). A leave-one-out-cross-validation pro-

cedure that selects the number of factors takes the following steps:

Step 1. Start with a given number of factors r , estimate an IFE model using the control group data

{Yi ,Xi }i ∈C , obtaining β̂ and F̂ ;

Step 2. Start a cross-validation loop that goes through allT0 pretreatment periods:

(a) In round s ∈ {1, . . . ,T0}, hold back data of all treated units at time s . Run an OLS

regression using the rest of the pretreatment data, obtaining factor loadings for each

treated unit i :

λ̂i ,−s = (F 0′
−s F

0
−s )
−1F 0′
−s (Y

0
i ,−s − X

0′
i ,−s β̂ ), �i ∈ T ,

in which the subscript “-s” stands for all pretreatment periods except for s .
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(b) Predict the treated outcomes at time s using Ŷ (0)i s = x ′
i s
β̂ + λ̂′

i ,−s f̂s and save the

prediction error ei s =Yi s (0) − Ŷi s (0) for all i ∈ T .

End of the cross-validation loop;

Step 3. Calculate the mean square prediction error (MSPE) given r ,

MSPE(r ) =

T0∑
s=1

∑
i ∈T

e2i s/T0.

Step 4. Repeat Steps 1–3 with different r ’s and obtain corresponding MSPEs.

Step 5. Choose r ∗ that minimizes the MSPE.

The basic idea of the above procedure is to hold back a small amount of data (e.g., one

pretreatment period of the treatment group) and use the rest of data to predict the held-back

information. The algorithm then chooses the model that on average makes the most accurate

predictions. A TSCS dataset with a DID data structure allows us to do so because (1) there exists

a set of control units that are never exposed to the treatment and therefore can serve as the basis

for estimating time-varying factors and (2) the pretreatment periods of treated units constitute

a natural validation set for candidate models. This procedure is computationally inexpensive

because with each r , the IFE model is estimated only once (Step 1). Other steps involves merely

simple calculations. In the Online Appendix, we conduct Monte Carlo exercises and show that

the above procedure performs well in term of choosing the correct number of factors even with

relatively small datasets.

REMARK 3. Our framework can also accommodate DGPs that directly incorporate additive fixed

effects, known time trends, and exogenous time-invariant covariates, such as:

Yi t = δi t Di t + x ′i t β + γ ′i l t + z ′i θt + λ ′i ft + αi + ξt + εi t , (2)

in which l t is a (q × 1) vector of known time trends that may affect each unit differently; γi

is (q × 1) unit-specific unknown parameters; zi is a (m × 1) vector of observed time-invariant

covariates; θt is a (m × 1) vector of unknown parameters; αi and ξt are additive individual and

time fixed effects, respectively. We describe the estimation procedure of this extended model

in the Online Appendix.

3.2 Inference
We rely on a parametric bootstrap procedure to obtain the uncertainty estimates of the GSC

estimator (deriving the analytical asymptotic distribution of the GSC estimator is a necessary

step for future research). When the sample size is large, when Ntr is large in particular, a simple

nonparametric bootstrap procedure can provide valid uncertainty estimates. When the sample

size is small, especially whenNtr is small, we are unable to approximate the DGP of the treatment

group by resampling the data nonparametrically. In this case, we simply lack the information of

the joint distribution of (Xi , λi , δi ) for the treatment group. However, we can obtain uncertainty

estimates conditional on observed covariates and unobserved factors and factor loadings using

a parametric bootstrap procedure via resampling the residuals. By resampling entire time series

of residuals, we preserve the serial correlation within the units, thus avoiding underestimating

the standard errors due to serial correlations (Beck and Katz 1995). Our goal is to estimate the

conditional variance of ATT estimator, i.e., Varε (�ATT t �D ,X ,Λ, F ). Notice that the only random

variable that is not being conditioned on is εi , which are assumed to be independent of treatment
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assignment, observed covariates, factors and factor loadings (Assumption 2). We can interpret εi

as measurement errors or variations in the outcome that we cannot explain but are unrelated to

treatment assignment.16

In the parametric bootstrap procedure, we simulate treated counterfactuals and control units

based on the following resampling scheme:

Ỹi (0) = Xi β̂ + F̂ λ̂i + ε̃i , �i ∈ C;
Ỹi (0) = Xi β̂ + F̂ λ̂i + ε̃

p
i
, �i ∈ T ,

in which Ỹi (0) is a vector of simulated outcomes in the absence of the treatment; Xi β̂ + F̂ λ̂i is

the estimated conditional mean; and ε̃i and ε̃
p
i
are resampled residuals for unit i , depending

on whether it belongs to the treatment or control group. Because β̂ are F̂ are estimated using

only the control group information, Xi β̂ + F̂ λ̂i fits Xi β + F λi better for a control unit than for

a treated unit (as a result, the variance of ε̃
p
i
is usually bigger than that of ε̃i ). Hence, ε̃i and

ε̃
p
i
are drawn from different empirical distributions: ε̃i is the in-sample error of the IFE model

fitted to the control group data, and therefore is drawn from the empirical distribution of the

residuals of the IFEmodel, while ε̃
p
i
can be seen as the prediction error of the IFEmodel for treated

counterfactuals.17

Although we cannot observe treated counterfactuals, Yi t (0) is observed for all control units.

With the assumptions that treated and control units follow the same factor model (Assumption 1)

and the error terms are independent and homoscedastic across space (Assumption 5), we can

use a cross-validation method to simulate ε
p
i
based on the control group data (Efron 2012).

Specifically, each time we leave one control unit out (to be taken as a “fake” treat unit) and use

the rest of the control units to predict the outcome of left-out unit. The difference between the

predicted and observed outcomes is a prediction error of the IFE model. ε
p
i
is drawn from the

empirical distributions of the prediction errors. Under Assumptions 1–5, this procedure provides

valid uncertainty estimates for the proposed method without making particular distributional

assumptions of the error terms. Algorithm 2 describes the entire procedure in detail.

ALGORITHM 2 (Inference). A parametric bootstrap procedure that gives the uncertainty

estimates of the ATT is described as follows:

Step 1. Start a loop that runs B1 times:

(a) In roundm ∈ {1, . . . ,B1}, randomly select one control unit i as if it was treated when

t > T0.

(b) Resample the rest of the control group with replacement of size Nco and form a new

sample with one “treated” unit and Nco resampled control units.

(c) Apply the GSC method to the new sample, obtaining a vector of prediction error, or

residuals; ε̂
p

(m)
=Yi − Ŷi (0).

End of the loop, collecting êp = {ε̂
p

(1)
, ε̂

p

(2)
· · · , ε̂p

(B1)
}.

Step 2. Apply the GSCmethod to the original data, obtaining: (1) �ATT t for all t > T0, (2) estimated

coefficients: β̂ , F̂ , Λ̂co , and λ̂j ,j ∈T , and (3) the fittedvaluesand residualsof thecontrol units:

Ŷco = {Ŷ1(0),Ŷ2(0), . . . ,ŶNco
(0)} and ê = {ε̂1, ε̂2, . . . , ε̂Nco

}.

16 εi t may be correlated with λ̂i when the errors are serially correlated because λ̂i is estimated using the pretreatment data.

17 The treated outcome for unit i , thus can be drawn fromỸi (1) = Ỹi (0)+δi . We do not directly observe δi , but since it is taken
as given, its presencewill not affect the uncertainty estimates of �ATT t . Hence, in the bootstrap procedure, we useỸi (0) for
both the treatment and control groups to form bootstrapped samples (set δi = 0, for all i ∈ T ). We will add back �ATT t

when constructing confidence intervals.
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Step 3. Start a bootstrap loop that runs B2 times:

(a) In round k ∈ {1, . . . ,B2}, construct a bootstrapped sample S (k ) by:

Ỹ
(k )
i

(0) = Ŷi (0) + ε̃i , i ∈ C

Ỹ
(k )
i

(0) = Ŷi (0) + ε̃
p
i
, j ∈ T

in which each vector of ε̃i and ε̃
p
j
are randomly selected from sets e and ep ,

respectively, and Ŷi (0) = Xi β̂ + F̂ λ̂i . Note that the simulated treated counterfactuals

do not contain the treatment effect.

(b) Apply the GSC method to S (k ) and obtain a new ATT estimate; add �ATT t ,t>T0 to it,

obtaining the bootstrapped estimate �ATT (k )
t ,t>T0 .

End of the bootstrap loop.

Step 4. Compute the variance of �ATT t ,t>T0 using

Var(�ATT t �D ,X ,Λ, F ) =
1

B

B∑
k=1

��
�
�ATT (k )

t −
1

B

B∑
j=1

�ATT (j )
t
��
�

2

and its confidence interval using the conventional percentile method (Efron and Tibshirani

1993).

4 Monte Carlo Evidence

In this section, we conduct Monte Carlo exercises to explore the finite sample properties of the

GSC estimator and compare it with several existing methods, including the DID estimator, the IFE

estimator, and theoriginal syntheticmatchingmethod.Wealso investigate the extent towhich the

proposed cross-validation scheme can choose the number of factors correctly in relatively small

samples.

We start with the following data generating process (DGP) that includes two observed time-

varying covariates, two unobserved factors, and additive two-way fixed effects:

Yi t = δi t Di t + xi t ,1 · 1 + xi t ,2 · 3 + λ ′i ft + αi + ξt + 5 + εi t (3)

where ft = (f1t , f2t )
′ and λi = (λi1, λi2)

′ are time-varying factors and unit-specific factor loadings.

The covariates are (positively) correlated with both the factors and factor loadings: xi t ,k = 1 +

λ ′i ft + λi1 + λi2 + f1t + f2t + ηi t ,k , k = 1, 2. The error term εi t and disturbances in covariates ηi t ,1

and ηi t ,2 are i.i.d. N (0, 1). Factors f1t and f2t , as well as time fixed effects ξt , are also i.i.d. N (0, 1).

The treatment and control groups consist of Ntr and Nco units. The treatment starts to affect

the treated units at timeT0 + 1 and since then 10 periods are observed (q = 10). The treatment

indicator is defined as in Section 2, i.e.,Di t = 1when i ∈ T and t > T0 andDi t = 0 otherwise. The

heterogeneous treatment effect is generated by δi t ,t>T0 = δ̄t + ei t , in which ei t is i.i.d. N(0,1). δ̄t is

given by: [δ̄T0+1, δ̄T0+1, . . . , δ̄T0+10] = [1, 2, . . . , 10].

Factor loadingsλi1 andλi2, aswell as unit fixed effectsαi , are drawn fromuniformdistributions

U [−
√
3,
√
3] for control units andU [

√
3 − 2w

√
3, 3
√
3 − 2w

√
3] for treated units (w ∈ [0, 1]). This

means that when 0 ≤ w < 1, (1) the random variables have variance 1; (2) the supports of factor

loadings of treated and control units are not perfectly overlapped; and (3) the treatment indicator

and factor loadings are positively correlated.18

18 The DGP specified here is modified based on Bai (2009) and Gobillon and Magnac (2016).
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Figure 1. Estimated ATT for a simulated sample Nt r = 5, Nco = 45,T = 30,T0 = 10.

4.1 A simulated example
We first illustrate the proposed method, as well as the DGP described above, with a simulated

sample of Ntr = 5, Nco = 45, and T0 = 20 (hence, N = 50, T = 30). w is set to be 0.8, which

means that the treated units are more likely to have larger factor loadings than the control units.

Figure 1 visualizes the raw data and estimation results. In the upper panel, the dark and light gray

lines are time series of the treated and control units, respectively. The bold solid line is the average

outcome of the five treated units while the bold dashed line is the average predicted outcome of

the five units in the absence of the treatment. The latter is imputed using the proposedmethod.

The lower panel of Figure 1 shows the estimated ATT (solid line) and the true ATT (dashed line).

The 95 percent confidence intervals for the ATT are based on bootstraps of 2,000 times. It shows

that the estimated average treated outcome fits the data well in pretreatment periods and the

estimated ATT is very close to the actual ATT. The estimated factors and factor loadings, as well

as imputed counterfactual and individual treatment effect for each treat unit, are shown in the

Online Appendix.

4.2 Finite sample properties
We present the Monte Carlo evidence on the finite sample properties of the GSC estimator in

Table 1 (additional results are shown in the Online Appendix). As in the previous example, the

treatment group is set to have five units. The estimand is the ATT at timeT0 + 5, whose expected

value equals 5. Observables, factors, and factor loadings are drawn only oncewhile the error term

is drawn repeatedly; w is set to be 0.8 such that treatment assignment is positively correlated

with factor loadings. Table 1 reports the bias, standard deviation (SD), and root mean squared

error (RMSE) of �ATTT0+5 from 5,000 simulations for each pair of T0 and Nco .
19 It shows that

19 Standard deviation is defined as: SD (�ATT t ) =

√
�[�ATT (k )

t − �(�ATT
(k )
t )]2, while root mean squared error is defined as:

RMSE (�ATT t ) =

√
�(�ATT (k )

t − ATT
(k )
t )2. The superscript (k ) denotes the k th sample. We see that they are very close

because the bias of the GSC estimator shrinks to zero as the sample size grows.
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Table 1. Finite sample properties and coverage rates

Ntr Nco T0 Bias SD RMSE Coverage

5 40 15 0.053 0.589 0.591 0.947

5 80 15 0.017 0.535 0.536 0.949

5 120 15 0.010 0.524 0.524 0.949

5 200 15 0.011 0.518 0.518 0.949

5 40 30 0.046 0.538 0.540 0.946

5 80 30 0.021 0.504 0.505 0.948

5 120 30 0.024 0.494 0.495 0.949

5 200 30 0.008 0.487 0.487 0.949

5 40 50 0.031 0.519 0.520 0.947

5 80 50 0.016 0.497 0.498 0.948

5 120 50 0.003 0.475 0.475 0.949

5 200 50 0.016 0.468 0.469 0.949

the GSC estimator has limited bias even when T0 and Nco are relatively small and the bias

goes away as T0 and Nco grow. As expected, both the SD and RMSE shrink when T0 and Nco

become larger. Table 1 also reports the coverage probabilities of 95 percent confidence intervals

for �ATT i ,T0+5 constructedby theparametric bootstrapprocedure (Algorithm2). For eachpair ofT0

and Nco , the coverage probability is calculated based on 5,000 simulated samples, each of which

is bootstrapped for 1,000 times. These numbers show that the proposed procedure can achieve

the correct coverage rate even when the sample size is relatively small (e.g., T0 = 15, Ntr = 5,

Nco = 80).

In the Online Appendix, we run additional simulations and compare the proposed method

with several existing methods, including the DID estimator, the IFE estimator, and the synthetic

matching method. We find that (1) the GSC estimator has less bias than the DID estimator in the

presence of unobserved, decomposable time-varying confounders; (2) it has less bias than the

IFE estimator when the treatment effect is heterogeneous; and (3) it is usually more efficient than

the original synthetic matching estimator. It is worth emphasizing that these results are under

the premise of correct model specifications. To address the concern that the GSC method relies

on correct model specifications, we conduct additional tests and show that the cross-validation

schemedescribed in Algorithm 1 is able to choose the number of factors correctlymost of the time

when the sample is large enough.

5 Empirical Example

In this section,we illustrate theGSCmethodwith an empirical example that investigates the effect

of EDR laws on voter turnout in the United States. Voting in the United States usually takes two

steps. Except in North Dakota, where no registration is needed, eligible voters throughout the

country must register prior to casting their ballots. Registration, which often requires a separate

trip from voting, is widely regarded as a substantial cost of voting and a culprit of low turnout

rates before the 1993 National Voter Registration Act (NVRA) was enacted (e.g., Highton 2004).

Against this backdrop, EDR is a reform that allows eligible voters to register on Election Day when

they arrive at polling stations. In the mid-1970s, Maine, Minnesota, and Wisconsin were the first

adopters of this reform in the hopes of increasing voter turnout; while Idaho, NewHampshire, and

Wyoming established EDR in the 1990s as a strategy to opt out the NVRA (Hanmer 2009). Before
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the 2012 presidential election, three other states, Montana, Iowa, and Connecticut, passed laws to

enact EDR, adding the number of states having EDR laws to nine.20

Most existing studies based on individual-level cross-sectional data, such as the Current

PopulationSurveysand theNational ElectionSurveys, suggest thatEDR laws increase turnout (the

estimated effect varies from 5 to 14 percentage points).21 These studies do not provide compelling

evidence of a causal effect of EDR laws because the research designs they use are insufficient

to address the problem that states self-select their systems of registration laws. “Registration

requirements did not descend from the skies,” as DeanBurnhamputs it (1980, p. 69). A few studies

employ time-series or TSCS analysis to address the identification problem.22 However, Keele and

Minozzi (2013) cast doubts on these studies and suggest that the “parallel trends” assumptionmay

not hold, as we will also demonstrate below.

In the following analysis, we use state-level voter turnout data for presidential elections from

1920 to2012.23 The turnout rates are calculatedwith total ballots counted in apresidential election

in a state as the numerator and the state’s voting-age population (VAP) as the denominator.24

Alaska and Hawaii are not included in the sample since they were not states until 1959. North

Dakota is also dropped since no registration is required. As mentioned above, up to the 2012

presidential election, nine states had adopted EDR laws (hereafter referred to as treated) and the

rest thirty-eight states had not (referred to as controls). The raw turnout data for all forty-seven

states are shown in the Online Appendix.25

First, we use a standard two-way fixed effectsmode,which is often referred to as aDIDmodel in

the literature. The results are shown in Table 2 columns (1) and (2). Standard errors are produced

by nonparametric bootstraps (blocked at the state level) of 2,000 times. In column (1), only the

EDR indicator is included, while in column (2), we additionally control for indicators of universal

mail-in registration and motor voter registration. The estimated coefficients of EDR laws are 0.87

and0.78 percent using the two specifications, respectively,with standard errors around 3percent.

The two-way fixed effectsmodel presented in Table 2 assumes a constant treatment effect both

across states and over time. Next we relax this assumption by literally employing a DID approach.

In other words, we estimate the effect of EDR laws on voter turnout in the posttreatment period

by subtracting the time intercepts estimated from the control group and the unit intercepts based

on the pretreatment data. The predict turnout for state i in year t , therefore, is the summation of

unit intercept i and time intercept t , plus the impact of the time-varying covariates. The result is

visualized in the upper panel of Figure 2. Figure 2a shows the average actual turnout (solid line)

and average predicted turnout in the absence of EDR laws (dashed line); both averages are taken

based on the number of terms since (or before) EDR laws first took effect. Figure 2b shows the

gap between the two lines, or the estimated ATT. The confidence intervals are produced by block

bootstraps of 2,000 times. It is clear from both figures that the “parallel trends” assumption is not

likely to hold since the average predicted turnout deviates from the average actual turnout in the

pretreatment periods.

20 In theOnline Appendix, we list the years duringwhich EDR lawswere enacted and first took effect in presidential elections.

21 SeeWolfinger and Rosenstone (1980), Mitchell andWlezien (1995), Rhine (1992), Highton (1997), Timpone (1998), Timpone

(2002), Huang and Shields (2000), Alvarez, Ansolabehere, and Wilson (2002), Brians and Grofman (2001), Hanmer (2009),

Burden et al. (2009), Cain, Donovan, and Tolbert (2011), Teixeira (2011) for examples. The results are especially consistent

for the three early adopters, Maine, Minnesota, and Wisconsin.

22 See, for example, Fenster (1994), King andWambeam (1995), Knack andWhite (2000), Knack (2001), Neiheisel and Burden

(2012), Springer (2014).

23 The data from 1920 to 2000 are from Springer (2014). The data from 2004 to 2012 are from The United States Election

Project, http://www.electproject.org/. Indicators of other registration laws, including universal mail-in registration and

motor voter registration, also come from Springer (2014), with a few supplements. Replication files can be found in Xu

(2016).

24 We do not use the voting-eligible population (VEP) as the denominator because they are not available in early years.

25 As is shown in the figure and has been pointed out bymany, turnout rates are in general higher in states that have EDR laws

than states that have not, but this does not necessarily imply a causal relationship between EDR laws and voter turnout.
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Table 2. The effect of EDR on voter turnout

Voter turnout %

FE GSC

Outcome variable (1) (2) (3) (4)

Election Day Registration 0.87 0.78 5.13 4.90

(3.01) (3.31) (2.27) (2.27)

Universal mail-in registration −0.94 0.15

(1.80) (0.80)

Motor voter registration −0.21 −1.05
(1.45) (0.79)

State fixed effects x x x x

Year fixed effects x x x x

Unobserved factors N/A N/A 2 2

Observations 1,128 1,128 1,128 1,128

Treated states 9 9 9 9

Control states 38 38 38 38

Note: Standard errors in columns (1) and (2) are based on nonparametric bootstraps (blocked at the state

level) of 2,000 times. Standard errors in columns (3) and (4) are based on parametric bootstraps (blocked at

the state level) of 2,000 times.

Figure 2. The effect of EDR on turnout: Main results.
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Figure 3. The Effect of EDR on turnout: Factors and loadings.

Next, we apply theGSCmethod to the samedataset. Table 2 columns (3) and (4) summarize the

result.26 Again, both specifications impose additive state and year fixed effects. In column (3), no

covariates are included, while in column (4), mail-in and motor voter registration are controlled

for (assuming that they have constant effects on turnout). With both specifications, the cross-

validation scheme finds two unobserved factors to be important and after conditioning on both

the factors and additive fixed effects, the estimated ATT based on the GSC method is around

5 percent with a standard error of 2.3 percent.27 This means that EDR laws are associated with

a statistically significant increase in voter turnout, consistent with previous OLS results based on

individual-level data. The lower panel of Figure 2 shows the dynamics of the estimated ATT. Again,

in the left figure, averages are taken after the actual and predicted turnout rates are realigned to

the timing of the reform. With the GSCmethod, the average actual turnout and average predicted

turnoutmatchwell in pretreatment periods anddiverge after EDR laws took effect. The right figure

shows that the gaps between the two lines are virtually flat in pretreatment periods and the effect

takes off right after the adoption of EDR.28

Figure 3 presents the estimated factors and factor loadings produced by the GSC method.29

Figure 3a depicts the two estimated factors. The x -axis is year and the y -axis is the magnitude

of factors (rescaled by the square root of their corresponding eigenvalues to demonstrate their

relative importance). Figure 3b shows the estimated factors loadings for each treated (black, bold)

and control (gray) units, with x - and y -axes indicating the magnitude of the loadings for the first

and second factors, respectively. Bearing in mind the caveat that estimated factors may not be

directly interpretable because they are, at best, linear transformations of the true factors, we find

that the estimated factors shown in this figure are meaningful. The first factor captures the sharp

increase in turnout in the southern states because of the 1965 Voting Rights Act that removed

Jim Crow laws, such as poll taxes or literacy tests, that suppressed turnout. As shown in the

26 Note that although the estimated ATT of EDR on voter turnout is presented in the same row as the coefficient of EDR using

the FEmodel, the GSCmethod does not assume the treatment effect to be constant. In fact, it allows the treatment effect

to be different both across states and over time. Predicted counterfactuals and individual treatment effect for each of the

nine treated states are shown in the Online Appendix.

27 The results are similar if additive stateandyear fixedeffectsarenotdirectly imposed, thoughnot surprisingly, thealgorithm

includes an additional factor.

28 Although it is not guaranteed, this is not surprising since the GSC method uses information of all past outcomes and

minimizes gaps between actual and predicted turnout rates in pretreatment periods.

29 The results are essentially the same with or without controlling for the other two registration reforms.
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Table 3. The effect of EDR on voter turnout: Three waves

Voter turnout %

1st wave 2nd wave 3rd wave

Outcome variable (1) (2) (3)

Election Day Registration 7.27 2.17 −1.14
(3.33) (2.82) (3.00)

Mail-in andmotor voter registration x x x

State fixed effects x x x

Year fixed effects x x x

Unobserved factors 2 2 2

Observations 1,128 1,128 1,128

Treated states 3 3 3

(ME, MN, WI) (ID, NH, WY) (MT, IA, CT)

Control states 38 38 38

Note: Standard errors are based on parametric bootstraps (blocked at the state level) of 1,000 times.

right figure, the top eleven states that have the largest loadings on the first factor are exactly the

eleven southern states (which were previously in the confederacy).30 The labels of these states

are underlined in Figure 3b. The second factor, which is set to be orthogonal to the first one, is

less interpretable. However, its nonnegligible magnitude indicates a strong downward trend in

voter turnout inmany states in recent years. Another reassuring finding shown by Figure 3b is that

the estimated factor loadings of the nine treated units mostly lie in the convex hull of those of

the control units, which indicates that the treated counterfactuals are produced mostly by more

reliable interpolations instead of extrapolations.

Finally, we investigate the heterogeneous treatment effects of EDR laws. Previous studies have

suggested that the motivations behind enacting these laws are vastly different between the early

adopters and later ones. For example, Maine, Minnesota, and Wisconsin, which established the

EDR in mid-1970s, did so because officials in these states sincerely wanted the turnout rates

to be higher, while the “reluctant adopters,” including Idaho, New Hampshire, and Wyoming,

introduced the EDR as a means to avoid the NVRA because officials viewed the NVRA as “a more

costly and potentially chaotic system” (Hanmer 2009). Because of the different motivations and

other reasons, we may expect the treatment effect of EDR laws to be different in states that

adopted them in different times.

The estimation of heterogeneous treatment effects is embedded in the GSC method since it

gives individual treatment effects for all treated units in a single run. Table 3 summarizes the ATTs

of EDR on voter turnout among the three waves of EDR adopters. Again, additive state and year

fixed effects, as well as indicators of two other registration systems, are controlled for. Table 3

shows that EDR laws have a large and positive effect on the early adopters (the estimate is about

7 percent with a standard error of 3 percent) while EDR laws were found to have no statistically

significant impact on the other six states.31 Such differential outcomes can be due to two reasons.

First, the NVRA of 1993 substantially reduced the cost of registration: since almost everyone who

30 Although we can control for indicators of Jim Crow laws in the model, such indicators may not be able to capture the

heterogeneous impacts of these laws on voter turnout in each state.

31 In the Online Appendix, we show that the treatment effects are positive (and relatively large) for all three early adopting

states, Maine, Minnesota, and Wisconsin. Using a fuzzy regression discontinuity design, Keele and Minozzi (2013) show

that EDR has almost no effect on the turnout in Wisconsin. The discrepancy with this paper could be mainly due to the

difference in the estimands. Twobiggest cities inWisconsin, Milwaukee andMadison constitute amajor part ofWisconsin’s

constituencybut haveneglectable influence to their local estimates.Oneadvantageof Keele andMinozzi (2013)’s approach

over ours is the use of fine-grainedmunicipal level data.
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has some intention to vote is a registrant after the NVRA was enacted, “there is now little room

for enhancing turnout further by making registration easier” (Highton 2004). Second, because

states having a strong “participatory culture” is more likely to be selected into an EDR system in

earlier years, costly registration, as a binding constraint in these states, may not be a first-order

issue in a state where many eligible voters have low incentives to vote in the first place. It is also

possible that voters in early adopting states formed a habit to vote in the days when the demand

for participation was high (Hanmer 2009).

In short, using the GSC method, we find that EDR laws increased turnout in early adopting

states, including Maine, Minnesota, and Wisconsin, but not in states that introduced EDR as a

strategy to opt out the NVRA or enacted EDR laws in recent years. These results are broadly

consistent with evidence provided by a large literature based on individual-level cross-sectional

data (see, for example, Leighley andNagler 2013 for a summary). They are alsomore credible than

results from conventional fixed effects models when the “parallel trends” assumption appears to

fail.32

6 Conclusion

In this paper, we propose the GSC method for causal inference with TSCS data. It attempts to

address the challenge that the “parallel trends” assumption often fails when researchers apply

fixedeffectsmodels toestimate thecausal effectof acertain treatment. TheGSCmethodestimates

the individual treatment effect on each treated unit semiparametrically. Specifically, it imputes

treated counterfactuals based on a linear interactive fixed effects model that incorporates time-

varying coefficients (factors) interacted with unit-specific intercepts (factor loadings). A built-in

cross-validation scheme automatically selects the model, reducing the risks of overfitting.

This method is in spirit of the original synthetic control method in that it uses data from

pretreatment periods as benchmarks to customize a reweighting scheme of control units in order

to make the best possible predictions for treated counterfactuals. It generalizes the synthetic

control method in two aspects. First, it allows multiple treated units and differential treatment

timing. Second, it offers uncertainty estimates, such as standard errors and confidence intervals,

that are easy to interpret.

Monte Carlo exercises suggest that the proposed method performs well even with relatively

smallT0 andNco and show that it has advantages over several existingmethods: (1) it has less bias

than the two-way fixed effects or DID estimators in the presence of decomposable time-varying

confounders, (2) it corrects bias of the IFE estimator when the treatment effect is heterogeneous

across units; and (3) it is more efficient than the synthetic control method. To illustrate the

applicability of thismethod inpolitical science,weestimate theeffectof EDR lawsonvoter turnout

in the United States. We show that EDR laws increased turnout in early adopting states but not in

states that introduced themmore recently.

Two caveats are worth emphasizing. First, insufficient data (with either a small T0 or a small

Nco ) cause bias in the estimated treatment effect. In general, users should be cautious when

T0 < 10 or Nco < 40. Second, excessive extrapolations based on imprecisely estimated factors

and factor loading can lead to erroneous results. To avoid this problem, we recommend the

following diagnostics upon using this method: (1) plot raw data of treated and control outcomes

as well as imputed counterfactuals and check whether the imputed values are within reasonable

intervals; (2) plot estimated factor loadings of both treated and control units and check the

overlap (as in Fig. 3). We provide software routines gsynth in R to implement the estimation

procedure as well as these diagnostic tests. When excessive extrapolations appear to happen,

32 Glynn and Quinn (2011) argue that traditional cross-sectional methods in general overestimate the effect of EDR laws on

voter turnout and suggest that EDR laws are likely to have minimum effect on turnout in non-EDR states (the ATC). In this

paper, we focus on the effect of EDR in EDR states (the ATT) instead.
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we recommend users to include a smaller number of factors or switch back to the conventional

DID framework. We also recommend users to benchmark the results with estimates from the

IFE model (Bai 2009) as well as Bayesian multi-level factor models (e.g., Pang 2014) whenever

it is possible.

Another limitation of the proposed method is that it cannot accommodate complex DGPs

that often appear in TSCS data (when T is much bigger than panel data), such as (1) dynamic

relationships between the treatment, covariates, and outcome (e.g., Pang 2010, 2014, Blackwell

and Glynn 2015), (2) structural breaks (e.g., Park 2010, 2012), and (3) multiple times of treatment

and variable treatment intensity. Nor does it allow random coefficients for the observed time-

varying covariates, as suchmodeling setups become increasing popularwith Bayesianmulti-level

analysis. Future research is needed to accommodate these scenarios.

Supplementarymaterial

For supplementary material accompanying this paper, please visit

https://doi.org/10.1017/pan.2016.2.
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