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1 Introduction

The asset management industry is enormous and growing rapidly. U.S. mutual funds had $24 tril-

lion in assets under management at the end of 2020, more than half of which were in equity mutual

funds. Over 100 million Americans rely on such funds to save for retirement and meet other finan-

cial objectives. Many of these mutual funds actively trade stocks in an effort to out-perform their

benchmarks and create value for their investors. The literature has found mixed results in terms

of the investment performance of actively-traded equity mutual funds. We revisit the evidence

using modern techniques, and ask which–if any–characteristics of mutual funds and of the stocks

they hold can help separate the corn from the chaff. We uncover new evidence that fund flows

and fund return momentum are the only two characteristics that can meaningfully and robustly

help distinguish funds that outperform from those that under-perform. The relative performance

of top and bottom performers is particularly large in times of high investor sentiment.

Specifically, we study the universe of actively-traded U.S. equity mutual funds between 1980

and 2019 and the stocks that they hold. The object we predict is the abnormal fund return, defined

as the four-factor alpha of the mutual fund. The predictors are a long list of 46 stock characteristics

weighted by the funds’ holdings and 13 fund and fund-family characteristics. Fund characteristics

include fund return momentum and fund flow. We also include a variable that summarizes the

overall state of the market, either proxied by investor sentiment or by a comprehensive measure

of macro-economic activity. Our main method is an artificial neural network model, namely a

feedforward neural network, which can reliably estimate a complex functional relationship among

a large set of variables. It is trained and tuned on one subset of the data and evaluated on another

subset of the data. Hence, all of our predictions are out-of-sample. It identifies fund characteristic

information, and specifically fund flow and fund momentum, as the key predictors of mutual

fund out-performance. Moreover, these two fund characteristics matter much more when investor

sentiment is high. That is, there is an important interaction effect, which linear models fail to pick

up.

The model predictions generate a large difference in performance out-of-sample. Buying the

ten percent of mutual funds with the best predicted performance each month, and using the model

not only to select but also to weight the funds within the top decile, generates a cumulative abnor-

mal return of 72% over our sample period. Buying the ten percent of mutual funds with the worst

predicted performance each month produces a cumulative abnormal return of -119%. The 191%

difference in out-of-sample performance based on the model’s predictions is economically large

and statistically significant. Since the best and the worst funds have similar fees, it holds for both

before- and after-fee abnormal returns. Moreover, top performing funds exhibit positive abnormal

performance net-of-fees as well. This performance improves further when we use a model that

directly predicts net-of-fees performance
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The performance differential is nearly identical if we constrain the model by removing all stock

characteristic information. In fact, we can also remove most fund and fund family characteristics.

The predictions of a model that are only fed fund flow, fund momentum, and sentiment are nearly

as good as those of the full model. They deliver out-performance of nearly 50 basis points per

month for the top relative to the bottom deciles of predicted performers. The Sharpe ratio on this

strategy is 0.25 per month.

Having uncovered flow and fund momentum as the key predictors, we show that they each

predict fund performance in a univariate analysis. However, such a univariate analysis fails to

account for the non-linear interaction effects of these two characteristics with investor sentiment.

The state of the macro-economy, measured by the Chicago Fed National Activity Index (CFNAI),

predicts the best and worst fund performers as well as sentiment does when combined with fund

characteristics. However, CFNAI is not as good at predicting the relative returns within the top

and bottom deciles as sentiment. We trace back this difference to a lack of interaction effects

between CFNAI and fund characteristics.

We decompose the fund abnormal return into a between-disclosure component, which holds

fixed the funds’ stock holdings at their previous quarter-end values, and a within-disclosure com-

ponent, which accounts for mutual fund trades during the quarter. The latter is the sum of the

return gap and a risk exposure differential.1 We find that about half of the outperformance comes

from the model’s ability to predict between-disclosure abnormal returns and the other half from

predicting within-disclosure abnormal returns. Both fund flow and fund momentum predict the

return gap and the risk exposure differential, while most stock characteristics that predict the re-

turn gap do so by taking on more systematic risk resulting in little within-disclosure abnormal

return. These results shed additional light on the sources and persistence of out-performance .

In sum, mutual fund returns are predictable in real time. The predictability lasts for three years,

and is economically meaningful. About 10-20% of funds generate positive abnormal returns even

after fees. Most of the benefits accrue from avoiding the worst-performing funds.

The salience of flow and fund return momentum as the key predictors suggests that some

investors can detect skill and (re)allocate their investment towards such skilled managers. This

reallocation of investment flows is not as strong as the frictionless model of Berk and Green (2004)

predicts. Skill leaves a trail in the form of fund return momentum for investors to exploit in the

next period. Put differently, the flows are gradual and small enough that it takes several periods

until the fund runs into zero marginal abnormal returns.

The results are potentially also consistent with funds and fund families attracting flows through

marketing rather than—or in addition to—through investment skill (Ibert, Kaniel, Van Nieuwer-

burgh, and Vestman, 2018; Roussanov, Ruan, and Wei, 2021). Marketing-induced inflows create

1The return gap is the difference between the fund’s actual returns over the period and the hypothetical returns
generated by keeping the fund’s portfolio holdings constant.
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buying pressure for stocks that the fund typically invests in. In a world with downward-sloping

demand curves (Coval and Stafford, 2007; Koijen and Yogo, 2019; Gabaix and Koijen, 2021), this

raises prices and lifts fund returns. Through the flow-performance relationship, as well as through

persistence in marketing-driven flows, the out-performance creates more inflows in the next pe-

riod. The demand pressure increases prices further, generating momentum in fund returns. The

fact that flows and fund momentum have a much stronger association with fund performance in

high-sentiment periods lends further credence to this marketing-driven channel.

Our paper makes several methodological contributions adding to the protocol of how to use

machine learning models for asset pricing. First, we contribute to relative performance prediction.

We show that abnormal returns, obtained as residuals to a factor model, are not only an economi-

cally motivated, but also the statistically better target for prediction. In contrast, the level of fund

(and stock) returns is extremely hard to predict. Abnormal returns remove the level effect of mar-

ket and other risk factors, which makes the prediction of abnormal returns a relative objective.

The commonly-used machine learning prediction of returns can be dominated by the prediction

error in the common component in return levels, resulting in suboptimal use of cross-sectional in-

formation relevant to relative performance. Indeed, we show that using the same flexible methods

for predicting abnormal returns instead of returns results in higher accuracy and better portfolio

performance.

Second, we show how to measure the dependencies on macroeconomic states. Specifically,

we propose a cross-out-of-sample evaluation of conditional models using the full time-series. Im-

portantly, the data points for estimating and evaluating the model have to be sampled such that

all relevant economic conditions are represented in all subsamples, which can be achieved by

random sampling over time. This is particularly important for measuring the dependencies on

macro-economic states which are only available in a subset of the data and might be neglected

in the estimation or evaluation with a conventional chronological data split. Our evaluation ap-

proach allows us to take advantage of all data for the out-of-sample analysis, diminishing the

effect of particular subperiods.

Third, we quantify the economic benefit of different information sets. We suggest to compare

the prediction and trading benefits by varying the information set available to the same flexible

machine-learning algorithm. The focus is the comparison of information sets instead of a horse

race of model specifications.

Fourth, in order to better assess the investment benefits of prediction, we suggest prediction-

weighted portfolios. These portfolios result in the largest return spread as they take advantage

not only of the ranking but also of the relative strength of the prediction signal. The prediction-

weighted portfolios dominate the widely-used equally-weighted portfolios based on prediction

quantiles.

Last but not least, we propose a new measure for interaction effects in machine learning algo-
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rithms, which does not only measure a local slope, but a more informative global slope.

Related Literature An enormous literature in empirical asset pricing studies whether mutual

fund managers outperform their benchmarks through stock picking and market timing. The

seminal paper of Berk and Green (2004) suggests that a large fraction of fund managers out-

performs before fees while Fama and French (2010) find no out-performance before fees. Kacper-

czyk, Nieuwerburgh, and Veldkamp (2014; 2016) find that a modest fraction of managers displays

enough skill to persistently outperform, through a strategy that switches between market timing

in recessions and stock picking in expansions. The presence of uninformed mutual fund managers

and retail traders makes this possible as an equilibrium phenomenon (Stambaugh, 2014).

While investors direct flows to funds that out-perform, at least as measured by the CAPM al-

pha (Berk and Van Binsbergen, 2016; Barber, Huang, and Odean, 2016), there is mounting evidence

that other factors besides fees and before-fee performance determine fund flows. Roussanov,

Ruan, and Wei (2021) argues that marketing is an important determinant of flows, necessary to

understand the empirical joint distribution of fund size and performance. Consistent with this,

Ibert, Kaniel, Van Nieuwerburgh, and Vestman (2018) shows that fund manager compensation is

tied to the component of assets-under-management that is orthogonal to current and past fund

performance.

The predictive role of flows to fund performance was first uncovered by Gruber (1996) and

Zheng (1999), who identified a positive fairly short-lived and weak relationship. The “smart

money” relation they found exists for small but not for large funds. Importantly, risk adjustment

in these papers did not include adjusting for momentum. Using the Carhart (1997) 4-factor model,

Sapp and Tiwari (2004) show the smart money effect is explained by a stock return momentum

factor. Our machine learning approach revives the predictive role of flows, with a 4-factor risk-

adjustment. Furthermore, the predictive power of our method is long lived.

Carhart (1997) finds that persistence in fund net performance essentially disappears once a

momentum factor is added, apart for the worst performing funds where it arises from persistently

high expenses. With the aid of machine learning, we identify an important predictive role for fund

past performance both gross and net of fees, and after controlling for stock momentum. Bollen

and Jeffrey (2005) argue that part of the reason for the lack of performance persistence in Carhart

(1997) is that he forms decile portfolios and considers the time series of performance of these decile

portfolios, instead of computing an abnormal return at the stock level and averaging that across

stocks in each subsequent period. Our predictive results, which find an important role for fund

past performance, hold for long-short portfolios as well, highlighting that including fund past

performance as part of a neural network prediction model is important.

Our paper more broadly relates to the fund return predictability literature. Cremers and

Petajisto (2009)’s Active Share—funds with holdings that differ greatly from their benchmarks—
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predicts benchmark index-adjusted Carhart alphas. Kacperczyk, Sialm, and Zheng (2008a)’s Re-

turn Gap predicts 4-factor monthly alphas. The monthly abnormal return we identify is about

twice as large as theirs. While they finds significance for the short but not the long leg, we find

significance for both.2 More importantly, we show that the predictive power of fund momentum

and fund flows are substantially amplified when investor sentiment is high at the time of forming

portfolios.

There is fairly little evidence on the impact of macro-economic conditions on performance.

Moskowitz (2000) and Kosowski (2011) find that risk-adjusted performance of mutual funds is

better in recessions than in booms. Massa and Yadav (2015) show that a fund’s level of exposure

to high-sentiment beta stocks predicts lower future returns. Sentiment affects the out-performance

of fund managers differently than long-short anomaly strategies. Similar to the findings in Stam-

baugh, Yu, and Yuan (2012) for stock return anomalies, we find that high sentiment periods coin-

cide with more fund return predictability. While the effect for equity anomalies comes primarily

from its short leg, the out- respectively under-performance of the best and worst fund managers

in high sentiment periods is symmetric, suggesting a different economic channel. In contrast to

the novel interaction effects between sentiment and fund characteristics there are no equivalent

interaction effects with the state of the macro-economy, as proxied by CFNAI.

Our work connects to the growing Machine Learning (ML) literature in finance (see Karolyi

and Van Nieuwerburgh, 2020, for a summary). This literature has focused on analyzing the cross-

section of stock returns using a plethora of return predictors.3 Similar techniques are beginning

to be used in other asset classes.4. Contemporaneous and independent work to ours by Li and

Rossi (2020) and DeMiguel, Gil-Bazo, Nogales, and Santos (2022) study mutual fund performance

with ML techniques, both providing a comparison study of predicting fund returns or abnormal

returns, respectively, with machine learning methods similar to Gu, Kelly, and Xiu (2020). In ad-

dition to methodological innovations, we use a richer information set, which allows us to distill

the economic value of holdings-based, fund-specific, and macroeconomic information.5 Our re-

sults emphasize the role of fund-specific characteristics and the interaction with the state of the

economy, and make progress on understanding the economic mechanism.

The rest of the paper is organized as follows. Section 2 describes or data. Section 3 turns to a

2Some other predictive variables identified in the literature include, for example, Industry Concentration of holdings
(Kacperczyk, Sialm, and Zheng (2005)) and fund R2 (Amihud and Ruslan (2013).

3Important contributions include among others: return prediction with flexible and regularized models in Frey-
berger, Neuhierl, and Weber (2020) and Gu, Kelly, and Xiu (2020), robust stochastic discount factor construction with
many characteristics in Kozak, Nagel, and Santosh (2020), Chen, Pelger, and Zhu (2020) and Bryzgalova, Pelger, and
Zhu (2021) and estimation and evaluation of risk factors in Lettau and Pelger (2020), Kelly, Pruitt, and Su (2019), and
Feng, Giglio, and Xiu (2020).

4Bianchi, Büchner, and Tamoni (2021); Bianchi, Büchner, Hoogteijling, and Tamoni (2021) study bonds, Filippou,
Rapach, Taylor, and Zhou (2021) currencies, and Wu, Chen, Yang, and Tindall (2021) hedge fund strategies

5In particular, characteristics based on price trends of funds and sentiment information, which we find to be the
most relevant, are not included in their contemporaneous studies.
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linear, univariate, in-sample analysis as a first pass on analyzing mutual fund performance. Sec-

tion 4 describes our neural network model and our main results. Section 5 studies the mechanism

by decomposing fund abnormal returns. Section 6 concludes. The appendix provides the details

on data cleaning and imputation (A), robustness of our main results (B), and implementation (C).

2 Data

2.1 Mutual Funds

As is customary, we focus on actively-managed mutual funds holding mostly domestic equities.

The mutual fund returns, expenses, total net assets (TNA), investment objectives and other fund

characteristics are from the Center for Research in Security Prices (CRSP) Survivor Bias-Free Mu-

tual Fund Database. Our analysis requires fund holdings, which we obtain by linking the database

to the Thomson Financial Mutual Fund Holdings. Our cleaned data set includes 407,158 (mutual

fund by month) observations for 3275 mutual funds spanning the period from January 1980 until

January 2019. We restrict our study to mutual funds with raw returns observed at time t and hold-

ings data and total net assets observed at t − 1, which guarantees that holding-based abnormal

return returns at time t, as defined below, are observed. At each time t, mutual funds are also re-

quired to have at least 30 non-missing return observations in the last 36 months, which guarantees

that the regression-based abnormal returns are well-defined. Appendix A contains more details

and summary statistics.

2.2 Abnormal Fund Returns

Our main object of interest is the abnormal mutual fund return. It measures fund performance

after subtracting compensation for systematic risk factor exposure. We construct the abnormal

return for each fund-month observation relative to the Carhart (1997) model, following a similar

procedure. First, factor loadings are estimated over the prior 36 months:

Ri,t−36:t−1 = αi + Ft−36:t−1 β̂i,t−1 + ηi,−36:t−1, (1)

where Ri,t is the gross (before-fee) return of fund i in month t in excess of a one-month T-bill

yield. The rolling window regressions allow for time-varying factor exposures. Second, abnormal

returns (Rabn
i,t ) are computed:

Rabn
i,t = Ri,t − Ft β̂i,t−1. (2)

Abnormal returns are not guaranteed have a mean of zero. Their mean and median is -0.03%

per month in our sample with a standard deviation of 2.00%. Hence, mutual funds earn returns
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commensurate with the predictions of the Carhart model on average, but with substantial cross-

sectional dispersion. While there is some controversy over which return model actual mutual

fund investors use (Berk and Van Binsbergen, 2015; Barber, Huang, and Odean, 2016; Jegadeesh

and Mangipudi, 2021), the Carhart model arguably remains the main factor model in the mutual

fund literature and hence a natural benchmark for our purposes. The main results are robust to

using abnormal returns with respect to an eight-factor model.6

We will use machine-learning techniques to connect abnormal fund returns to the character-

istics of mutual funds, including the characteristics of the stocks they hold, and to variables that

capture the state of the economy.

2.3 Holdings-based Characteristics

Mutual funds hold stocks. The stock characteristics are from Chen, Pelger, and Zhu (2020) and

cover 46 characteristics that have been shown to have predictive power for the cross-section of

expected returns. They are listed in Table 1 in six subgroups.

There are 332,294 fund/time observations with fully observed fund characteristics. We impute

the missing fund characteristics with a latent factor model in the characteristics space as described

in Appendix A. Hence, we have a complete set of fund characteristics for all 407,158 fund/time

observations. Our results are robust to the data imputation and are essentially identical on the

subset of funds with fully observed data.

All stock characteristics are cross-sectionally normalized to range from -0.5 to 0.5 based on

stocks’ rankings on that characteristic. We normalize the sign of the characteristic ranking of

stocks such that the corresponding long-short factor has a positive risk premium. For example for

size (LME), the largest stocks have negative rankings while small stocks have positive rankings.

The stock-specific characteristics of each fund are weighted by the fund’s holdings.

2.4 Fund and Family Characteristics

In addition to the 46 stock characteristics, we also form 13 fund characteristics sorted in the last

three subgroups shown in Table 1: fund momentum, fund characteristics, and fund family charac-

teristics. The three fund momentum characteristics are computed from fund returns as defined in

Table 2. Following Brown and Wu (2016), fund family is identified by the management company

code. The variables “Family r12 2” and “Family flow” are the average of the fund-level counter-

parts, “F r12 2” and “flow,” weighted by TNA of all funds in the family, excluding the fund itself.

“Family age” is the age of the oldest fund in the family, excluding the fund itself. “Fund no” is

6That model includes market, size, value, momentum, investment, profitability, short-term reversal, and long-term
reversal factors. The results are available upon request.
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Table 1: Fund-specific and stock-specific characteristics by category

Past Returns (30) CF2P Cashflow to price
(1) r2 1 Short-term momentum (31) D2P Dividend Yield
(2) r12 2 Momentum (32) E2P Earnings to price
(3) r12 7 Intermediate momentum (33) Q Tobin’s Q
(4) r36 13 Long-term momentum (34) S2P Sales to price
(5) ST Rev Short-term reversal (35) Lev Leverage
(6) LT Rev Long-term reversal

Trading Frictions
Investment (36) AT Total Assets

(7) Investment Investment (37) Beta CAPM Beta
(8) NOA Net operating assets (38) IdioVol Idiosyncratic volatility
(9) DPI2A Change in property, plants, and (39) LME Size

equipment (40) LTurnover Turnover
(10) NI Net Share Issues (41) MktBeta Market Beta

(42) Rel2High Closeness to past year high
Profitability (43) Resid Var Residual Variance

(11) PROF Profitability (44) Spread Bid-ask spread
(12) ATO Net sales over lagged net operating assets (45) SUV Standard unexplained volume
(13) CTO Capital turnover (46) Variance Variance
(14) FC2Y Fixed costs to sales
(15) OP Operating profitability Fund Momentum
(16) PM Profit margin (47) F ST Rev Fund short-term momentum
(17) RNA Return on net operating assets (48) F r2 1 Fund short-term momentum
(18) ROA Return on assets (49) F r12 2 Fund momentum
(19) ROE Return on equity
(20) SGA2S Selling, general and administrative Fund Characteristics

expenses to sales (50) age Fund age
(21) D2A Capital intensity (51) tna Fund tna

(52) flow Fund flow
Intangibles (53) exp ratio fund expense ratio

(22) AC Accrual (54) turnover ratio turnover ratio
(23) OA Operating accruals
(24) OL Operating leverage Fund Family Characteristics
(25) PCM Price to cost margin (55) family tna family tna

(56) fund no number of funds in family
Value (57) Family r12 2 family momentum

(26) A2ME Assets to market cap (58) Family age Family age
(27) BEME Book to Market Ratio (59) Family flow Family flow
(28) C Ratio of cash and short-term
(29) CF Free Cash Flow to Book Value

This table shows all 59 characteristics sorted into nine categories. The first six categories represent stock-specific
characteristics and the last three characteristic groups are fund-specific characteristics.

the number of funds in the family and “Family tna” is the sum of TNAs of all funds in the family

excluding the fund itself. The fund and family characteristics are similarly normalized.

On average, mutual funds in our sample are 13.7 years old, manage $1,153 million dollars in

assets, and charge a monthly expense ratio of around 0.1%. The fund’s flow is defined as f lowi,t =
TNAi,t−TNAi,t−1(1+Ri,t)

TNAi,t−1
. Throughout the sample period the mutual fund industry is growing; on

average funds enjoy a 1.6% monthly inflow.
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Table 2: Fund momentum characteristics

Acronym Name Definition Reference

F r2 1 Short-term momentum Lagged one-month abnormal return Jegadeesh and Titman (1993)

F r12 2 Momentum Mean abnormal return from past 12 months before the Fama and French (1996)
abnormal return prediction to two months before. Need
at least 8 non-missing samples to be included.

F ST Rev Short-term reversal Prior month abnormal return Jegadeesh and Titman (1993)

This table summarizes the fund momentum characteristics. We use a ‘F’ prefix to denote that these characteristics are
based on mutual funds. It includes their acronym, name, definition and reference of their stock based counterpart.
The fund momentum characteristics follow the same definition as their stock counterpart in Chen, Pelger, and Zhu
(2020).

2.5 Macro-economic Information

Figure 1: Macroeconomic time series plots

(a) Sentiment

(b) CFNAI

These figures show the macroeconomic time series plot. Panel (a) plots the sentiment time series and panel (b) plots
the CFNAI time series.

To study whether fund performance can be linked to the state of the economy, we include
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investor sentiment (Baker and Wurgler (2006)) and the Chicago Fed National Activity Index (CF-

NAI), a series which captures the state of the macro economy and is itself an index of many macro

time series. Figure 1 plots the time series plots of both macro variables. Kacperczyk, Nieuwer-

burgh, and Veldkamp (2014) shows that mutual fund performance depends on the second vari-

able.

3 In-Sample Fund Performance By Univariate Characteristic

As an initial step before our main analysis, we explore which fund characteristics are associated

with strong mutual fund performance. This analysis is not a substitute for our full analysis since

it is (i) in-sample, rather than predictive, (ii) it ignores the possibility of important non-linearities

in the relationship between fund characteristics and fund abnormal returns, and (iii) it ignores the

possibility of important interaction effects between multiple characteristics or between character-

istics and macro variables.

For each of the 59 characteristics, we sort fund abnormal returns into deciles based on the

value of the characteristic. Then, we construct long-short portfolios as the difference between the

top and bottom deciles. The first two columns of Table 3 report the mean and Sharpe ratio of

these long-short portfolio returns, ranked from highest to lowest Sharpe ratio. The stars report

the significance of a test that the mean of the long-short portfolio return is different from zero.

The main finding, which foreshadows the results in our main analysis, is that portfolios based on

fund characteristics, and in particular fund momentum and flow, are associated with the highest

Sharpe ratios as well as a large and statistically significant mean abnormal fund return. Of the

ten characteristics that are associated with a monthly Sharpe ratio above 0.10, seven are fund-

level variables and only three are stock characteristics. Most stock-specific characteristics cannot

systematically differentiate between the performance of mutual funds. Put simply, little can be

learned about fund abnormal returns from the stocks that they hold.

In Appendix Table B.1, we show that the pre-eminence of fund characteristics as (univariate)

drivers of fund performance also emerges when we collapse characteristics by group (using the

nine groups in Table 1). Group characteristics are formed as the equally-weighted average of the

characteristics within each category, and then long-short portfolios of funds are formed based on

the deciles of the group characteristics. Fund momentum rises to the top as the group character-

istic that is associated most strongly with fund performance (Sharpe ratio of 0.22), followed by

Family characteristics (SR of 0.16), and Fund characteristics (0.13). The holdings-based character-

istics Value (0.16) and Profitability (0.11) are in third and fifth place. Thus, the last five places out

of nine are reserved for stock characteristics.
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Interaction Effects with Macro Variables The univariate analysis also foreshadows a second

main result of the paper, which is that fund characteristics exercise a different influence on fund

performance depending on the state of the economy. The last six columns of Table 3 report Sharpe

ratios and mean returns of the same univariate long-short portfolios, but conditional on the level

of investor sentiment. The sample is split into terciles based on the value of the sentiment index

in the prior month.7 We find that the strong association between abnormal performance and fund

characteristics such as fund momentum, fund short-run reversal, and flow is driven by above-

average sentiment periods. This is an early hint at important interaction effects between macro

variables and (fund) characteristics.8

7We obtain similar results obtain when using the economic activity variable CFNAI; see Table B.5 in Appendix B.
8Appendix Table B.1 shows that this result also applies to the group-averaged characteristics.
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Table 3: Univariate long-short portfolios from mutual fund abnormal returns

Full sample Low sentiment Medium sentiment High sentiment
SR mean (%) SR mean (%) SR mean (%) SR mean (%)

F r12 2 0.28 0.36*** 0.16 0.19* 0.46 0.50*** 0.25 0.40***
F ST Rev 0.20 0.30*** 0.11 0.15 0.22 0.28*** 0.26 0.49***

Family r12 2 0.19 0.13*** 0.24 0.13*** 0.31 0.21*** 0.06 0.05
Beta 0.15 0.18*** 0.17 0.19** 0.06 0.06 0.23 0.31***

Rel2High 0.14 0.20*** 0.06 0.08 0.20 0.24** 0.18 0.31**
RNA 0.13 0.13*** 0.16 0.14* 0.14 0.11* 0.10 0.13

Family TNA 0.13 0.09*** 0.01 0.01 0.24 0.15*** 0.13 0.12
fund no 0.13 0.10*** 0.03 0.01 0.24 0.17*** 0.11 0.11

flow 0.12 0.11** 0.21 0.15** 0.11 0.09 0.08 0.09
Family age 0.11 0.09** 0.01 0.01 0.27 0.17*** 0.08 0.08

ROA 0.10 0.10** 0.16 0.15* 0.05 0.04 0.11 0.13
PM 0.10 0.10** 0.11 0.10 0.19 0.13** 0.07 0.09

ROE 0.10 0.11** 0.13 0.12 0.04 0.04 0.13 0.18
ST Rev 0.09 0.13** 0.04 0.06 0.09 0.11 0.15 0.24*

CF 0.09 0.09** 0.08 0.07 0.02 0.01 0.15 0.21*
Resid Var 0.09 0.14** 0.11 0.15 0.10 0.13 0.09 0.18

ages 0.09 0.05** 0.10 0.05 0.10 0.04 0.09 0.07
MktBeta 0.08 0.14** 0.09 0.16 0.13 0.16 0.06 0.12

r12 2 0.08 0.11** 0.02 0.02 0.17 0.18** 0.06 0.11
Spread 0.08 0.13** 0.11 0.16 0.06 0.07 0.10 0.21

D2P 0.08 0.12** 0.04 0.06 -0.04 -0.05 0.19 0.32**
r12 7 0.08 0.11** 0.08 0.11 0.10 0.10 0.05 0.10

F r2 1 0.08 0.11 0.02 0.02 0.23 0.27*** 0.02 0.04
LTurnover 0.07 0.13 0.13 0.24 -0.00 -0.00 0.09 0.20

Variance 0.07 0.13 0.11 0.17 0.03 0.04 0.10 0.21
IdioVol 0.07 0.12 0.09 0.13 0.09 0.11 0.07 0.15

C 0.07 0.09 0.03 0.04 0.11 0.11 0.06 0.08
Lev 0.07 0.08 0.08 0.09 0.05 0.05 0.05 0.07

Family flow 0.07 0.04 0.09 0.04 0.06 0.03 0.07 0.06
ATO 0.07 0.07 0.02 0.01 0.01 0.01 0.12 0.16

exp ratio 0.07 0.04 0.12 0.06 0.01 0.01 0.07 0.06
CTO 0.06 0.07 0.03 0.02 0.05 0.04 0.08 0.11

tna -0.06 -0.04 -0.03 -0.02 -0.19 -0.11** -0.00 -0.00
SUV 0.06 0.06 0.15 0.14* -0.06 -0.05 0.08 0.10

SGA2S 0.05 0.06 0.11 0.12 0.04 0.04 -0.01 -0.01
OL 0.05 0.05 0.02 0.01 0.02 0.02 0.07 0.08

PCM 0.05 0.05 0.15 0.14* 0.05 0.04 -0.04 -0.05
r2 1 0.05 0.06 0.02 0.02 0.06 0.07 0.07 0.13

CF2P 0.04 0.06 0.03 0.05 0.09 0.10 -0.00 -0.01
NI 0.04 0.05 0.12 0.17 -0.06 -0.05 0.05 0.08
Q 0.04 0.05 0.05 0.07 0.01 0.01 0.03 0.04

FC2Y 0.04 0.05 0.10 0.12 0.04 0.03 -0.02 -0.03
PROF 0.04 0.04 0.11 0.08 0.01 0.01 0.01 0.02
LME 0.04 0.03 0.01 0.01 -0.03 -0.02 0.11 0.11
D2A 0.03 0.03 -0.05 -0.04 0.03 0.02 0.10 0.10

turnover 0.03 0.03 0.03 0.02 -0.03 -0.02 0.08 0.08
AT 0.03 0.04 0.02 0.02 -0.04 -0.03 0.06 0.09
OA 0.03 0.03 -0.02 -0.01 0.08 0.06 0.05 0.06

r36 13 -0.03 -0.04 0.02 0.03 0.01 0.01 -0.09 -0.13
AC 0.03 0.02 -0.01 -0.01 0.08 0.06 0.04 0.04
E2P -0.03 -0.04 0.05 0.06 -0.05 -0.06 -0.04 -0.07
OP 0.02 0.03 0.12 0.10 -0.02 -0.02 0.01 0.02

NOA 0.02 0.02 -0.03 -0.02 0.18 0.13** -0.03 -0.04
DPI2A 0.01 0.01 0.00 0.00 0.19 0.14** -0.08 -0.09
A2ME 0.01 0.02 0.07 0.11 0.03 0.03 -0.07 -0.12

S2P -0.01 -0.02 -0.07 -0.10 -0.07 -0.07 0.10 0.16
Investment 0.01 0.01 -0.01 -0.01 0.12 0.09 -0.05 -0.06

LT Rev 0.01 0.01 0.08 0.08 0.03 0.03 -0.04 -0.06
BEME -0.00 -0.00 -0.07 -0.09 -0.03 -0.02 0.09 0.13

This table reports summary statistics for univariate long-short portfolios in the full sample and in different sentiment terciles. The
results are sorted according to the Sharpe ratio of univariate long-short factors. For each of the 59 characteristics, we construct
ten sorted decile portfolios. The long-short factors are the differences between the top decile and the bottom decile. We split the
time-series into TH , TM and TL, which denotes the high, medium and low sentiment terciles based on the previous months. For
each of these time periods we separately estimate “Mean” and “Sharpe ratio”, which report the mean and Sharpe ratio of this factor
conditional on a sentiment tercile. The stars are the signifance of t-statistics for the test that the factor mean is different from 0. The
sample period is 1980/01 to 2019/01 with monthly rebalancing.

12



Spanning Next, we show that the long-short portfolios that are most strongly associated with

fund outperformance do not simply reflect compensation for exposure to standard risk factors. To

that end, we estimate multivariate regressions of the long-short portfolios based on fund charac-

teristics on the four Carhart factors and an intercept. The results are in Table 4. All R2 are small

(below 10%) except for fund momentum (23%). Most of the factor loadings are also insignifi-

cant. Importantly, a vast majority of alphas are highly significant, meaning that the returns on

long-short portfolios are not spanned by the equity asset pricing factors. We also report the mean

return on the long-short portfolios. In the few cases where the alpha is not significant, the risk

premium of the portfolios is typically not significant. For most fund variables, the mean return

and the mean intercept are similar in magnitude, which implies that the Carhart factor exposure

explains little of the abnormal returns of fund characteristic portfolios.9

Holding Period Before we turn to the main analysis, we note that these results are robust to

alternative holding period assumptions. This is germane, as mutual funds tend to be held by

investors for longer periods than one month. We consider three robustness tests: (1) we update

characteristics annually, (2) we hold each fund investment for one year with overlapping returns,

and (3) we consider quarterly returns of quarterly updated positions. For all three, as for monthly

returns, portfolios sorted on fund-specific characteristics, in particular flow and fund momentum,

have the highest Sharpe ratio and a statistically significant mean, while most stock-specific charac-

teristics cannot systematically differentiate the performance of funds. Appendix B.3 contains the

details. These results show that monthly rebalancing of mutual funds is not crucial to earning the

high abnormal returns associated with strongly-performing funds. We study even longer holding

periods in our main analysis below.

4 Main Analysis

Our main analysis aims to predict mutual fund abnormal returns. In contrast to the preceding

analysis, this analysis is an out-of-sample prediction analysis with many conditioning variables. It

allows for interactions of characteristics (the 59 characteristics in Table 1 plus sentiment), as well as

for non-linearities in the relationship between characteristics and future fund outperformance. To

that end, we use an artificial neural network, similar to Gu, Kelly, and Xiu (2020). In their extensive

comparison study, they show that this method dominates other ML techniques for predicting stock

9Appendix Table B.3 shows that these results are robust to using alternative factor models: the Fama-French three-
factor model, the Fama-French five-factor model (with investment and profitability factors), a six-factor model that
adds momentum to the Fama-French five factors, and an eight-factor model that adds short-term reversal, long-term
reversal, and momentum to the Fama-French five factors.
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Table 4: Spanning of univariate long-short portfolios with FFC-4 factors.

Mkr SMB HML Mom α Factor mean R2

F ST Rev -0.09* 0.07 0.08* 0.13*** 0.18*** 0.20*** 0.04
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

F r2 1 0.10** -0.05 0.05 0.34*** 0.01 0.08 0.11
(0.05) (0.04) (0.05) (0.05) (0.05) (0.05)

F r12 2 0.29*** 0.04 0.11** 0.44*** 0.17*** 0.28*** 0.23
(0.04) (0.04) (0.04) (0.04) (0.04) (0.05)

ages -0.00 -0.11** 0.07 0.06 0.08 0.09* 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

flow 0.12** -0.10** 0.03 0.03 0.10** 0.12** 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

exp ratio -0.07 0.02 -0.08* -0.20*** 0.11** 0.07 0.04
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

tna -0.09* -0.03 0.03 0.05 -0.05 -0.06 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

turnover -0.00 0.04 0.03 0.06 0.02 0.03 0.01
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family TNA 0.11** -0.03 -0.06 -0.07 0.13*** 0.13*** 0.02
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

fund no 0.17*** 0.02 0.03 0.08 0.09* 0.13*** 0.03
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family r12 2 0.10* 0.04 0.10** 0.21*** 0.14*** 0.19*** 0.04
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family age 0.18*** 0.01 0.00 0.07 0.08 0.11** 0.03
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Family flow -0.04 0.04 -0.01 -0.06 0.08* 0.07 0.01
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

This table reports the multivariate time-series regression results of univariate long-short abnormal return portfolios
on the four Fama-French-Carhart factors. The first four columns report the slope coefficient on the FFC-4 factors in the
regression and the fifth column, α reports the time-series pricing error of the regression. The last two columns report
the mean of the univariate long-short decile portfolios and the R2 of the regression. Both, the univariate long-short
abnormal return portfolios and FFC-4 factors, are normalized to have a standard deviation of 1.

returns. We predict fund abnormal returns with a neural network of lagged predictors:

Rabn
i,t+1 = g(zit, zt) + εi,t+1 (3)

The structure of the neural network g(·) is selected based on a validation sample. It uses as its

inputs the characteristics zi,t specific to mutual funds, and macro-economic variables zt (sentiment

or CFNAI) to build the best predictors of fund abnormal returns.

We use a cross-out-of-sample analysis to evaluate the performance of the neural network

model. Following Kozak, Nagel, and Santosh (2020), Lettau and Pelger (2020) and Bryzgalova,

Pelger, and Zhu (2021), we split the full sample into three periods of the same length but select the

dates randomly. We use two of the periods to estimate the model and select the tuning parameters,

and evaluate the prediction out-of-sample on the remaining third of the sample. We repeat the es-

timation on three different combinations of the three time periods and report the average results.
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The estimation and validation time period is split into 3/4 used for training (estimation) and 1/4

used for validation (to select the tuning parameters). The random sampling of the dates assumes

that the functional relationship between abnormal returns and the conditioning information is

independent over time. The details of the hyperparameter tuning are in Appendix C.

Our cross-out-of-sample evaluation is important for two reasons. First, the random sampling

is crucial for measuring the dependencies on macroeconomic states. Some states, such as highly

elevated sentiment, are only available in a subset of the data and might be neglected in the estima-

tion or evaluation with a conventional chronological data split. Figure C.1 depicts the time-series

information used in the three folds and how they relate to sentiment. Second, the cross-out-of-

sample evaluation allows us to use all data for the out-of-sample analysis and diminishes the

effect of particular subperiods. In other words, we have an out-of-sample prediction for each data

point in our sample. We have confirmed that our results are qualitatively robust to multiple alter-

native out-of-sample evaluations. We have implemented the conventional chronological split into

training and test data, where the first part of the data serves as training data, the middle portion is

used for tuning parameter selection, and the last part for the out-of-sample analysis. As described

above, this split focuses the evaluation only on the shorter last part of the data. We have also

implemented the cross-out-of-sample analysis, which generalizes the chronological split. In this

case we split the data into the three folds chronologically, and then apply the same type of cross-

analysis as above, but respect the chronological order within each fold. One of the three possible

fold evaluations is exactly the conventional out-of-sample analysis. We note that our cross-out-

of-sample analysis is different from a conventional cross-validation, which would use all but one

fold for estimation and the remaining fold for evaluation and the tuning parameter selection, that

is, there would be no complete out-of-sample evaluation.

4.1 Neural Network

A feedforward network (FFN)10 is a flexible non-parametric estimator that can learn any func-

tional relationship y = f (x) between an input x and output variable y with sufficient data.

Our best model structure is a one-layer neural network. It combines the raw predictor variables

(or features) z = z(0) ∈ RK(0)
linearly and applies a non-linear transformation. This non-linear

transformation is based on an element-wise operating activation function. We choose the popular

function known as the rectified linear unit (ReLU)11, which component-wise thresholds the inputs

10FFN are among the simplest neural networks and treated in detail in standard machine learning textbooks, e.g.
Goodfellow, Bengio, and Courville (2016).

11ReLU activation functions have a number of advantages including the non-saturation of its gradient, which greatly
accelerates the convergence of stochastic gradient descent compared to the sigmoid/hyperbolic functions and fast
calculations of expensive operations.
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Figure 2: Illustration of Feedforward Network with Single Hidden Layer

and is defined as

ReLU(zk) = max(zk, 0).

The result is the hidden layer z(1) = (z(1)1 , ..., z(1)
K(1)) of dimension K(1) which depends on the pa-

rameters W(0) = (w(0)
1 , ..., w(0)

K(0)) and the bias term w(0)
0 . The output layer is simply a linear trans-

formation of the output from the hidden layer.

z(1) = ReLU(W(0)>z(0) + w(0)
0 ) = ReLU

(
w(0)

0 +
K(0)

∑
k=1

w(0)
k z(0)k

)
Rabn = W(1)>z(1) + w(1)

0 with z(1) ∈ RK(1)
, W(0) ∈ RK(1)×K(0)

, W(1) ∈ RK(1)
.

Note that without the non-linearity in the hidden layer, the one-layer network would reduce to a

generalized linear model. A deep neural network combines several layers by using the output of

one hidden layer as an input to the next hidden layer. Our optimal network has 64 nodes in the

hiden layer, which can be interpreted as representing the information set with 64 basis functions

which are non-linear transformations of the original characteristics and macroeconomic variables

and which are linearly combined to predict the abnormal return.

Our results are extremely robust to the choice of tuning parameters. Networks with more lay-

ers and nodes result in a very similar performance and estimated functional form as our optimal

network. This is consistent with the findings in Chen, Pelger, and Zhu (2020) and Gu, Kelly, and

Xiu (2020). Hence, it matters primarily to allow for the flexible functional form and interaction

effects, which can be achieved with many model specifications.
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We quantify the economic benefit of different information sets by comparing the prediction

and trading benefits of varying the information set available to the neural network. As appro-

priately tuned neural networks can approximate any functional relationship, they allow us to

understand what the best possible prediction is for a given information set.

4.2 Optimal Prediction

Having estimated the neural network model, we form the model’s prediction of fund abnormal

returns for each fund-month using all 59 characteristics listed in Table 1 and investor sentiment.

We sort funds in deciles based on their predicted abnormal return for the next month. Within the

deciles we weight the funds either equally or by their predicted value. Figure 3 illustrates the

two weighting schemes in the extreme deciles for a representative month. The prediction weights

exploits the heterogeneity in the prediction and assigns a higher relative weight to predictions that

deviate from the center of the decile.12

Figure 4 plots the cumulative abnormal return from investing in each of these 10% of funds.

The right panel equally-weights the abnormal returns of the funds within each decile, using the

neural network model only to sort funds into deciles. The left panel additionally uses the neural

network model prediction to form portfolio weights; we refer to this as the prediction-weighted

return. A prediction-weighted approach uses more information resulting in a larger spread in the

prediction portfolios. Therefore, our baseline model is prediction-weighted.13 An investor who

had followed an investment strategy that invests in the 10% best mutual funds based on the neural

network model’s predictions would have earned a cumulative abnormal return of 72% prediction-

weighted and 48% equally-weighted. The difference between these two numbers shows that the

neural net is not only good at predicting which funds are likely to be in the top performance decile,

but also at how good some of the funds in the top decile are relative to other top-performing funds.

At the other end of the spectrum, the 10% worst funds according to the out-of-sample pre-

diction of the neural network model generate cumulative abnormal returns of -119% prediction-

12The prediction based weights are defined as the following shifted and scaled weights:

For top portfolio: µ̃i,t = µ̂i,t − min
i∈Top

(µ̂i,t) (4)

For bottom portfolio: µ̃i,t = µ̂i,t − max
i∈Bottom

(µ̂i,t) (5)

wpred
i,t =

µ̃i,t

∑N
i=1 µ̃i,t

(6)

where µ̂i,t are the predictions of neural network models. For top-performing funds, we subtract the smallest model pre-
diction within the group in equation (4) to ensure that the top portfolio is a long-only portfolio. For bottom-performing
funds, we subtract the largest model prediction within the group in equation (5) to ensure that the bottom portfolio is
a short-only portfolio. We then standardize the normalized predictions to sum up to 1 per equation (6). The prediction
weights are similar for the other deciles. The results for quintiles and 20 quantiles are very similar and available upon
request. An alternative to the prediction weights within the quantiles are rank weights. The results are very similar to
the prediction weights and hence omitted.

13The results for the equally-weighted approach are qualitatively similar and presented in Appendix B.5.
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Figure 3: Equally and prediction-weighted portfolio weights within deciles

(a) Prediction weights (b) Equal weights

These figures show the equal and prediction-weighted portfolio weights for the first and tenth decile in a long-short
portfolio for the representative example month 2000/01.

weighted and -93% equally-weighted. Hence, avoiding the worst mutual funds is even more

valuable than investing in the best 10% of mutual funds.

The main conclusion is that abnormal mutual fund returns are predictable and the extent of

predictability over the past 40 years is economically large. The cumulative abnormal return trans-

lates into a monthly out-performance of 15 (10) basis points for the 10% best funds prediction-

weighted (equally-weighted).

Panel (a) of Figure 5 shows the average fees for the different prediction based decile portfolios.

While those funds with higher predicted and realized abnormal returns charge a higher fee, the

spread in fees does not explain the spread in expected returns. In fact, the worst and best 10% of

funds both have a cumulative expense ratio of around 50%, which are higher than the expense ra-

tios of the funds in the middle of the predicted performance distribution. Given that the 10% best

and 10% worst funds have the same fees, fees can explain nothing of their relative performance.

The 10% best funds earn cumulative abnormal gross returns of 72%, exceeding cumulative fees.

Indeed, Panel (b) of Figure 5 shows that the funds in the top two prediction deciles still earn a pos-

itive abnormal return after fees. Note that these are lower bounds as predicting abnormal returns

after fees (rather than before fees) could improve the predicted after fee performance. Indeed, in

Figure B.1 we show performance for predicting abnormal net returns which improves the results.

The 9th decile based on predicting abnormal gross returns has a lower expense ratio than the 10th

decile, which is taken into account in the prediction of abnormal net returns. In fact, the 10%

best funds achieve a cumulative abnormal return after fees of 37%. On the other hand, the 10%

worst funds earn cumulative abnormal returns after fees of around -170%, further highlighting

the usefulness of the neural network in identifying which funds to avoid.
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Figure 4: Cumulative abnormal returns of prediction deciles for all characteristics.

(a) Prediction-weighted abnormal returns. (b) Equally-weighted abnormal returns.

These figures show the cumulative abnormal returns sorted into prediction deciles when considering the complete
information set (fund-specific and stock-specific characteristics + sentiment) to predict abnormal returns.

Figure 5: Cumulative expense ratios and abnormal net return.

(a) Cumulative prediction-weighted expense ratios (b) Cumulative abnormal net returns

The left figure shows the cumulative expense ratios of prediction-weighted deciles based on the full information set
(fund-specific and stock-specific characteristics + sentiment). The right figures shows the abnormal net returns for the
prediction-weighted deciles, that is, the abnormal returns minus the fees.

4.3 Which Information Most Useful When Predicting Fund Abnormal Returns?

To assess the importance of stock-specific characteristics (labeled 1-46 in Table 1), fund momentum

(47-49), fund characteristics (50-54), family characteristics (55-59), and sentiment for the prediction

of fund abnormal performance, we estimate neural network models that are given subsets of pre-

dictors. Our main finding is that the combination of fund-level variables and sentiment results in

the best performance.
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Figure 6: Cumulative abnormal returns for different information sets.

(a) Stock-specific characteristics (b) Stocks-specific characteristics + sentiment

(c) Fund-specific characteristics (d) Fund-specific characteristics + sentiment

These figures show the cumulative abnormal returns sorted into prediction deciles for different information sets. The
returns are prediction-weighted within deciles. We consider fund-specific characteristics + sentiment, stock-specific
characteristics+ sentiment, fund-specific characteristics or stock-specific characteristics to predict abnormal returns.

Figure 6 shows the cumulative abnormal returns for the fund deciles when using stock char-

acteristics 1-46 only (Panel A), stock characteristics and sentiment (Panel B), fund characteristics

47-59 (Panel C), and fund characteristics and sentiment (Panel D). Fund abnormal returns within

each decile are prediction-weighted. The best model for predicting fund abnormal returns ignores

stock characteristics entirely. Fund characteristics, in sharp contrast to stock characteristics, are ex-

tremely useful for prediction, as is sentiment. We note the monotone (almost monotone) pattern

in Panel D (C). As we will see shortly, fund characteristics interact with sentiment in important

ways.

Figure 7 shows that the portfolio that goes long in the (predicted) best 10% of funds and short

in the (predicted) worst 10% of funds earns cumulative returns of -9% out-of-sample when only
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Figure 7: Cumulative abnormal returns of long-short prediction portfolios

This figure plots the cumulative abnormal returns of prediction-weighted long-short decile portfolios that use dif-
ferent information sets for prediction. We consider fund-specific and stock-specific characteristics combined with
sentiment.

stock information is used, 69% when using stock plus sentiment information, 178% when using

fund information, 188% when using fund plus sentiment information, and 191% when using stock

plus fund plus sentiment information. The results are qualitatively the same for equally-weighted

portfolios as shown in Appendix B.5.

Table 5: Performance of long-short abnormal return portfolios for different information sets.

Information set mean(%) t-stat SR R2
F (%)

Stock -0.02 -0.2 -0.01 -1.60
Stock+ sentiment 0.15 1.6 0.07 1.27

Stock+ fund 0.28 3.3*** 0.15 2.30
Stock+ fund+ sentiment 0.41 4.5*** 0.21 5.00

Fund 0.38 5.5*** 0.25 0.19
Fund+ sentiment 0.40 5.4*** 0.25 2.73

Fund momentum + sentiment 0.35 4.4*** 0.21 0.29
Fund momentum + Flow + sentiment 0.48 5.2*** 0.24 0.92
Fund excl. fund momentum and flow 0.06 1.5 0.07 0.12

This table reports the Sharpe ratio, mean and factor R2 of long-short prediction-weighted decile portfolios that use
different information sets for the prediction. We consider nine different information sets which combine fund-specific
and stock-specific characteristics and sentiment. We also include flow and fund momentum individually.

To assess whether these different long-short investment strategies incur different amounts of

risk, we also compute the Sharpe Ratio on the long-short decile portfolio, which Table 5 reports

alongside the mean return. Consistent with the prior results, the highest Sharpe-ratio strategy

ignores stock-specific information. Using fund information and sentiment to select the best and
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worst 10% of funds results in a monthly long-short return of 40 basis points with a monthly Sharpe

ratio of 0.25.

The last three rows show that when one only uses two out of the 13 fund characteristics,

namely fund momentum (F r12 2) and flow, combined with sentiment, the resulting long-short

portfolio has a similar Sharpe ratio and return to the portfolio based on all fund information. Us-

ing all fund characteristics except for these two results in substantially worse performance. In

summary, fund momentum and flow, interacted with sentiment, are the key variables for predict-

ing fund abnormal returns.

Table 5 also reports the R2
F statistic, which measures how well the realized long-short portfo-

lio return is predicted by the neural network model.14 If the realized long-short abnormal return

factor is predicted more accurately, then an investor knows better by how much funds in the top

decile will outperform funds in the bottom decile in the next period.15 The highest R2
F of 5.00%

monthly, which is substantial, is obtained for the model with fund, sentiment, and stock informa-

tion. Dropping sentiment information results in a large decline in R2
F, which suggests that senti-

ment is crucial for predicting the high-minus-low abnormal fund return. The conditional mean of

the long-short portfolio is higher in high sentiment periods, consistent with the results in Section

3. Replacing fund- with stock-level information also results in a large drop in R2
F. Note that the

R2
F measures accuracy of both the relative cross-sectional prediction of funds (the fund ranking)

and the level of the abnormal returns. The prediction based only on fund information correctly

predicts the ranking of future abnormal fund returns, but not their magnitude as suggested by

the low R2
F. Including sentiment slightly improves the relative prediction, due to the interaction

effects studied in Section 4.4, but substantially improves the level prediction of abnormal returns.

Table 6: Performance of long-short return portfolios for different information sets.

Data mean(%) t-stat SR R2
F (%)

Fund+ sentiment 0.49 3.0*** 0.14 0.97
Fund 0.53 3.5*** 0.16 0.97

Stock+ sentiment 0.44 3.1*** 0.14 -20.03
Stock 0.11 1.1 0.05 -53.21

Stock+ fund+ sentiment 0.45 3.1*** 0.14 -26.54

This table reports the Sharpe ratio, mean and factor R2 of long-short prediction-weighted decile portfolios based on
predicting returns instead of abnormal returns with different information sets. We consider five different informa-
tion sets which combine fund-specific and stock-specific characteristics and sentiment to predict returns instead of
abnormal returns.

14We denote by Ft the realized return and by F̂t the predicted return of the long-short portfolio based on prediction-

sorted deciles. The normalized time-series prediction error is measured by R2
F = 1− ∑T

t=1(F̂t−Ft)2

∑T
t=1 F2

t
.

15This information could be used for timing the portfolio investment in the spirit of Haddad, Kozak, and Santosh
(2020).
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Figure 8: Cumulative returns of prediction-weighted return deciles for different information sets.

(a) Fund-specific characteristics+sentiment (b) Stock-specific characteristics+ sentiment

This figure plots the cumulative returns sorted into prediction deciles for different information sets. The returns are
prediction-weighted within deciles. We consider information sets which combine fund-specific and stock-specific
characteristics and sentiment to predict returns instead of abnormal returns.

Abnormal versus Total Return Prediction Abnormal returns are the appropriate prediction tar-

get because they measure the returns managers earn in excess of risk compensation. But for com-

parison, Figure 8 and Table 6 report the results for predicting the total returns of mutual funds

(rather than abnormal returns). First, stock characteristics are substantially more predictive for to-

tal fund returns than for their abnormal returns. In other words, the stock characteristics seem to

be able to predict the systematic factor component in fund returns. As we have established above,

once this factor component is taken out, the stock characteristics lose most of their predictability.

Second, the Sharpe ratio of long-short portfolios based on return prediction is lower than from

predicting abnormal returns. This points to an important methodological contribution of this pa-

per. The level of fund returns (and also stock returns) is extremely hard to predict, while the

relative performance is more predictable. Abnormal returns remove the level effect of market and

other risk factors. Hence, an abnormal return prediction objective is mainly a relative objective. In

contrast, a machine learning prediction for returns might not select a model with a correct relative

cross-sectional ranking of funds if it has a high prediction error in the level (which is largely irrel-

evant for relative trading). In summary, abnormal returns might be a better objective for machine

learning prediction in general, and for our question in particular.

Spanning Revisited Do the long-short portfolio returns formed from the neural network model’s

prediction reflect compensation for risk or a true abnormal return? We estimate a multivariate re-

gression of long-short portfolio returns on the four factors in the Carhart model. We find low R2

and large and highly significant intercepts. Appendix Table B.6 shows the details. It also shows
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that these results are robust to richer factor models, and reflect abnormal returns.

Longer Holding Periods The monthly rebalancing of mutual funds is not crucial to earning the

high abnormal returns associated with the relative performance of funds. Figure 9 shows the

abnormal returns on a long-short prediction portfolio for holding periods ranging from 1 month

to 3 years. Fund investments are made every month based on a one-month ahead prediction, but

investments are held for a longer holding period (ranging from 1 to 36 months with overlapping

returns). As expected, the mean return decreases over time but it stays significant for all holding

periods. At the same time, the longer holding periods decrease the variance. A quarterly holding

period actually reduces the standard deviation more than the mean, and hence results in a higher

Sharpe ratio than the one-month holding period. Trading based on the most important predictors

(flow, fund momentum and sentiment) results in the same holding-period patterns as using the

full information set. In sum, while price-based fund characteristics such as fund momentum are

changing relatively quickly, they contain predictive information that remains relevant for a longer

horizon.

4.4 Variable Importance and Interaction Effects

Importance of Predictors In order to visualize which variables are the most important for pre-

diction, we construct a metric based on the average absolute gradient of the abnormal return

prediction to a characteristic, following Sadhwani, Giesecke, and Sirignano (2020) and Horel and

Giesecke (2020):

Sensitivity(zk) =
1
T

T

∑
t=1

1
Nt

Nt

∑
i=1

∣∣∣∂R̂abn
i,t

∂zi,k,t

∣∣∣ (7)

The partial derivatives are evaluated at the observed characteristics and are approximated with

numerical derivatives. T is the number of periods and Nt is the number of funds available at time

t. The Sensitivity(zk) is then averaged over the three cross-out-of-sample folds and normalized

to sum up to 1. This sensitivity measure simplifies to the standard slope coefficient in the special

case of a linear regression framework. A larger sensitivity means that a variable has a larger effect

on the neural network prediction.

The left panel of Figure 10 shows the sensitivities for the neural network model with fund-level

information and sentiment. Sentiment is the most important variable, followed by fund momen-

tum, fund reversal, turnover, and flow. In the right panel, we define the variable importance

measure of a group by taking the average of the sensitivity measures within that group. The most

important fund-specific characteristics group is still fund momentum characteristics.
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Figure 9: Performance for Different Holding Periods

(a) Mean of abnormal returns (b) Standard deviation

(c) Sharpe ratio (d) T-statistics of abnormal mean returns

This figure shows the results for long-short prediction-weighted portfolios for different holding periods. At each
time t, we sort funds based on the one-month prediction into deciles and hold the long-short prediction portfolio
for s months with overlapping returns. We calculate the mean, Sharpe ratio, standard deviation, and t-statistics of
the overlapping abnormal returns. The one-month prediction uses either fund+sentiment, stock+fund+sentiment or
flow+fund+sentiment.

Interaction Effects We now analyze the interactions between sentiment and fund characteristics

that are implied by the neural network model. Table 3 suggested that fund-specific characteristics

have the most predictive power in times of high sentiment, while Table 5 indicated that senti-

ment information is important to predict the skill of mutual fund managers. Figure 11 plots the

predicted abnormal fund return (on the y-axis) as a function of one fund-level variable (on the

x-axis), keeping all the other variables at their median level. The function is averaged over three

cross-out-of-sample folds. In order to study the interaction effects with sentiment, we plot this

one-dimensional function for different quantiles of the sentiment distribution. Hence, the plots
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Figure 10: Top variable importance for explaining abnormal returns.

(a) Top variable importance. (b) Top variable group importance.

This figure shows the importance ranking for individual variables and variable groups. The ranking is the average
of the absolute gradient for the eight ensemble fits. The variable importance measures are evaluated on the test data
and averaged across three cross-out-of-sample folds. Fund-specific characteristics and sentiment are used as network
input.

show the mean of abnormal fund returns conditional on the values of one fund variable and sen-

timent.

There are clear interaction effects between sentiment and fund-level variables. Predicted ab-

normal returns are almost linear in fund-specific variables, but the slope of that relationship is

substantially higher in times of high sentiment. Note that without interaction effects between sen-

timent and the flow variable, the different curves in each panel would be parallel shifts. They

clearly are not. The interaction effect with sentiment is particularly strong for fund momentum in

panel (a). In contrast, there is no interaction effect for family momentum.

Why is our neural network structure able to generate such an interaction effect between sen-

timent and fund-level characteristics? The first hidden layer of the neural network performs a non-

linear transformation of original characteristics into new characteristics: z(1) = ReLU(∑K
k=1 w(0)

k z(0)k +

w(0)
0 ). There are some hidden-layer neurons that get activated only when sentiment is high (zt is

large), which changes the dependency of the abnormal return prediction on fund-level character-

istics. When the neuron gets activated, the slope of this dependency gets higher, which is exactly

what we see in Figure 11. While the interaction effects with sentiment are the strongest, there are

also interaction effects between the fund specific variables as shown in Appendix B.7.

4.5 Which Macro-economic Variable?

Having shown the importance of sentiment and its interaction effects with fund characteristics, it

is reasonable to ask whether other variables like CFNAI might play a similarly important role in

predicting mutual fund out-performance. Or maybe they add a useful piece of macro-economic

information that is not contained in sentiment? To answer these questions, we estimate several ad-

ditional neural network models which combine fund-level information with the following macro

variables: sentiment (benchmark), CFNAI, sentiment orthogonalized to CFNAI, CFNAI orthogo-
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Figure 11: Conditional mean as a function of fund characteristics and sentiment.

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic conditional
on different sentiment quantiles. The other variables are set to their median. The neural network model is estimated
with fund-specific characteristics and sentiment. The interaction effects are evaluated on the test data and averaged
across three cross-out-of-sample folds. The high-minus-low portfolios have a higher mean conditional on high past
sentiment. This is a non-linear interaction effect.

nal to sentiment, and sentiment plus CFNAI.16 Table 7 shows the results.

In terms of out-of-sample mutual fund return predictability, using CFNAI leads to equally

strong results in terms of the mean and Sharpe Ratio of the long-short portfolio. This result is

surprising at first in light of the low correlation between sentiment and CFNAI. However, the

low (linear) correlation is misleading. Sorting the respective time series of sentiment, CFNAI,

and orthogonalized sentiment into high, medium, and low states (terciles) results in large overlap

between the states. High-sentiment and high-CFNAI periods are often the same periods. What

16We use a least-squares orthogonalization. The results are similar for a least absolute deviation orthogonalization.
Sentiment and both orthogonalized sentiment series are all very similar because sentiment has a low 10% correlation
with CFNAI.
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Table 7: Long-short abnormal return portfolios for different macro-economic information.

Weighting method Information set mean (%) t-stat SR R2
F (%)

Prediction-weighted

Fund+sentiment 0.40 5.4*** 0.25 2.73
Fund+CFNAI 0.39 6.0*** 0.28 0.72

Fund+sentiment+CFNAI 0.42 6.3*** 0.29 2.48
Fund+sentiment orth 0.43 6.4*** 0.29 1.22

Fund+CFNAI orth 0.38 5.4*** 0.25 0.92
Fund 0.38 5.5*** 0.25 0.19

Equally-weighted

Fund+sentiment 0.33 5.9*** 0.27 3.50
Fund+CFNAI 0.33 6.5*** 0.30 0.85

Fund+sentiment+CFNAI 0.32 6.0*** 0.28 2.71
Fund+sentiment orth 0.34 6.8*** 0.31 1.58

Fund+CFNAI orth 0.31 5.8*** 0.27 1.11
Fund 0.31 5.8*** 0.27 0.24

This table reports the Sharpe ratio, mean and R2
F of long-short prediction-weighted and equally-weighted decile

portfolios that use different macro-economic information sets for the prediction. We consider six different macro-
economic information sets: none, sentiment, CFNAI, sentiment orthogonal to CFNAI, CFNAI orthogonal to sentiment
and sentiment+CFNAI. We use least-squares orthogonalization.

matters for mutual fund abnormal return predictability is to distinguish between the good and

the bad states. This can be done equally effectively with sentiment and CFNAI. Put differently,

different neural network models place very similar mutual funds into the same deciles. We calcu-

late that 78% of mutual funds that are put in the bottom decile by the model that uses sentiment

are also put in the bottom decile by the model that uses CFNAI. The corresponding number for

the top decile is 74%. These numbers are even higher for the orthogonalized sentiment measure

and when using both sentiment and CFNAI as shown in Table B.11.

Figure 12 shows cumulative abnormal returns on the long-short portfolio, using prediction-

weighting and equally-weighted funds within the top and bottom deciles. It reinforces the result

that the four different macro-economic information sets result in similarly strong out-performance.

Consistent with our previous results, the prediction-weighting results in larger return spreads be-

tween the extreme deciles and hence a larger mean return.

Does that mean that the predictions with sentiment and CFNAI are equally good? No. The R2
F

statistic is substantially higher when sentiment is used than when CFNAI is used. In other words,

the actual outperformance of the best relative to the worst funds aligns better with the predicted

outperformance when sentiment is used. The reason is that the model with sentiment does a

better job predicting the actual (the cardinal and not just the ordinal) abnormal return of the funds

in the top and bottom deciles than the model with CFNAI. In other words, while sentiment and

CFNAI result in similar decile rankings of funds, the model with sentiment is substantial better in

predicting the level of the performance. This can be exploited for timing the investments. Table 8

shows the out-of-sample performance based on sentiment terciles. The predictability of abnormal

returns is the highest for medium and high sentiment states. An investor, who only invests into
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Figure 12: Cumulative abnormal returns of long-short portfolios for different macroeconomic
information sets

(a) Prediction-weighted long-short portfolio (b) Equally-weighted long-short portfolio

This figure plots the cumulative abnormal return returns of long-short prediction-weighted and equally-weighted
decile portfolios that use different macroeconomic information and fund-specific characteristics to predict abnormal
returns. We consider the following macro-economic information sets: none, sentiment, CFNAI, sentiment orthogonal
to CFNAI and sentiment+CFNAI. We use least-squares orthogonalization.

the long-short strategy during periods of high predictability, earns more than twice the expected

return compared to the low predictability state. The table also shows that even investors who

can only take long positions can still achieve an average monthly abnormal return of 0.27% by

investing into the top funds in high sentiment periods. Note that these results represent a valid

out-of-sample performance as the strategy uses lagged sentiment and estimates the terciles cut-

offs without the use of out-of-sample data.

To help understand the origin of the weaker performance of the model with CFNAI, appendix

Figure B.7 revisits the interaction effects of fund-level characteristics with CFNAI. It shows no

interaction effects: the predictive effect of a fund characteristic on abnormal returns in high CFNAI

periods is a parallel shift from the relationship in low-CFNAI periods.

This is in contrast to the strong interaction effects for sentiment. It turns out the interaction

effects of sentiment with fund-level variables is monotonic for all our variables. In order to assess

the economic magnitude and the relative importance, we introduce a new interaction measure,

which measures the differences in slopes for high and low macroeconomic states.

Interaction(z, macro) =
(

R̂abn(high z, high macro)− R̂abn(low z, high macro)
)

−
(

R̂abn(high z, low macro)− R̂abn(low z, low macro)
)

.

We evaluate the predicted abnormal return R̂abn for the highest and lowest value of the fund

variable z and the high (90% quantile) and the low (10% quantile) macroeconomic state. The other
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Table 8: Long-short abnormal return portfolios in different sentiment terciles.

TL TM TH

Portfolio SR mean t-stat R2
F SR mean t-stat R2

F SR mean t-stat R2
F

D10-D1 0.12 0.23 1.6 0.50 0.37 0.42 4.6*** 3.39 0.32 0.55 4.0*** 4.83

D1 -0.11 -0.18 -1.4 0.71 -0.25 -0.23 -3.1*** 3.65 -0.23 -0.29 -2.9*** 1.35
D2 -0.19 -0.16 -2.4** 1.77 -0.15 -0.10 -1.8* 1.77 -0.05 -0.04 -0.6 -3.43
D3 -0.12 -0.09 -1.5 0.80 -0.05 -0.04 -0.7 1.14 0.03 0.02 0.4 -7.41
D4 -0.15 -0.10 -1.9* 1.10 0.01 0.01 0.1 -0.53 -0.07 -0.06 -0.9 -4.49
D5 -0.09 -0.06 -1.1 0.44 0.01 0.01 0.2 0.49 0.01 0.00 0.1 -2.90
D6 -0.09 -0.06 -1.2 0.67 0.12 0.07 1.5 -0.85 0.06 0.04 0.7 -3.20
D7 -0.15 -0.09 -1.8* 1.05 0.10 0.06 1.2 -0.12 0.15 0.11 1.9* -0.43
D8 -0.10 -0.06 -1.2 -0.55 0.15 0.10 1.8* -1.01 0.14 0.12 1.7* -1.69
D9 -0.06 -0.05 -0.8 -0.80 0.19 0.24 2.3** -0.32 0.07 0.08 0.9 -0.12

D10 0.05 0.04 0.6 -0.86 0.22 0.19 2.7*** 1.00 0.21 0.27 2.6** 2.68

This table reports the Sharpe ratio, mean, t-statistic of mean and R2
F of prediction-weighted decile portfolios evaluated

in different sentiment terciles. The mean and R2
F are reported in percentages. The low, medium and high tercile (TL,

TM and TH) splits for sentiment are based on the in-sample data of each of the three folds, and represent a valid
out-of-sample performance. We use fund-specific characteristics and sentiment to predict abnormal returns.

variables are set to their median values. A high absolute value in this measure indicates a strong

interaction effect and measures the difference in the return spread of characteristic z in high and

low sentiment states.

Figure 13 reports the interaction measure for sentiment and CFNAI with the fund character-

istics. Return spreads due to fund momentum, turnover, flow and reversal are the most affected

by sentiment. The predicted monthly spread in fund momentum is almost ten basis points higher

in high sentiment states compared to low sentiment states. In contrast, CFNAI has virtually no

interaction with the fund characteristics.

5 Inspecting the Mechanism

Having established that fund characteristics, and in particular fund momentum and flow, and

their interaction with sentiment are key inputs for predicting mutual fund abnormal return, we

now try to understand in more detail the mechanisms behind this prediction. To that end, we

return to the univariate setting of Section 3. We decompose the mutual funds’ abnormal return into

a component that reflects trading between disclosure dates (between quarters) and a component

that reflects trading within a disclosure period (within quarter).

Rabn
i,t = R̃i,t − ft β̃i︸ ︷︷ ︸

Between-disclosure abnormal return

+ Ri,t − ftβi − (R̃i,t − ft β̃i)︸ ︷︷ ︸
Within-disclosure abnormal return

(8)
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Figure 13: Interaction of fund variables with sentiment and CFNAI

This figure reports the measure Interaction(z,macro) for fund characteristics and sentiment and CFNAI as macro-
economic variables. We evaluate the predicted abnormal return R̂abn for the highest and lowest value of the fund
variable z and the high (90% quantile) and the low (10% quantile) macro-economic state. The other variables are set
to their median values. The measure is reported in percentages.

= R̃i,t − ft β̃i︸ ︷︷ ︸
Between-disclosure abnormal return

+ Ri,t − R̃i,t︸ ︷︷ ︸
Return gap

+ ft(β̃i − βi)︸ ︷︷ ︸
Risk exposure difference

(9)

The between-disclosure abnormal return is the abnormal return of an investor who invests

in the most recently disclosed stock positions of a fund and holds that portfolio until next fund

disclosure. In the equation above, R̃i,t is the hypothetical return of a mutual fund i that keeps its

portfolio weights fixed at their last-disclosed levels (at t − 1), ft is the contemporaneous return

vector on the Carhart factors, and β̃i is the vector of exposures to the Carhart factors associated

with this hypothetical fund return R̃i,t. The exposures β̃i are estimated from a regression of R̃i,t−h

on the Carhart factors in the previous 36 months (h = 1, · · · , 36), where R̃i,t−h = ∑j wi,j,tRj,t−h.

That is, R̃i,t−h is the return on a portfolio that holds the identity of the stocks j and their portfolio

weights wi,j,t fixed at the last-disclosed period t for every h. The between-disclosure abnormal

return is not simply the abnormal return of stocks with respect to the Carhart factors but captures

the long-term stock-picking skills of mutual funds. A positive average between-disclosure abnor-

mal return means that the mutual fund can pick stocks with positive alpha at disclosure dates

(quarterly frequency).

A high value of within-disclosure abnormal returns indicates that the fund is adding value by

actively trading between two adjacent disclosure dates. The within-disclosure abnormal return

can be decomposed further into two parts: the return gap, as defined in Kacperczyk, Sialm, and

Zheng (2008b), and the risk exposure differential, which is the difference between the risk expo-

sure of the hypothetical fixed portfolio from the latest stock holding disclosure and the real risk
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Table 9: Decomposition of univariate long-short abnormal return factors

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

F r12 2 0.28 0.36*** 0.14 0.20*** 0.20 0.17*** 0.14 0.11*** 0.10 0.06***
F ST Rev 0.20 0.30*** 0.14 0.16*** 0.15 0.15*** 0.12 0.08** 0.12 0.06***

Family r12 2 0.19 0.13*** 0.10 0.09*** 0.09 0.04** 0.12 0.07** -0.06 -0.03
Beta 0.15 0.18*** 0.12 0.16*** 0.03 0.03 -0.01 -0.00 0.05 0.03

Rel2High 0.14 0.20*** 0.13 0.25*** -0.05 -0.05 -0.03 -0.03 -0.03 -0.03
RNA 0.13 0.13*** 0.11 0.12*** 0.01 0.01 -0.03 -0.02 0.04 0.02

Family TNA 0.13 0.09*** 0.09 0.07 0.05 0.03 -0.12 -0.06** 0.16 0.08***
fund no 0.13 0.10*** 0.10 0.07** 0.06 0.03 -0.12 -0.05** 0.14 0.07***

flow 0.12 0.11** 0.08 0.08** 0.06 0.03 -0.00 -0.00 0.08 0.03**
Family age 0.11 0.09** 0.08 0.07 0.03 0.02 -0.13 -0.06** 0.13 0.08***

ROA 0.10 0.10** 0.11 0.13*** -0.03 -0.03 -0.05 -0.03 0.01 0.01
PM 0.10 0.10** 0.10 0.11** -0.01 -0.01 -0.03 -0.02 0.02 0.01

ROE 0.10 0.11** 0.09 0.12** -0.01 -0.01 -0.02 -0.01 0.00 0.00
ST Rev 0.09 0.13** 0.06 0.11 0.02 0.02 0.02 0.02 0.01 0.01

CF 0.09 0.09** 0.11 0.16** -0.07 -0.06** -0.06 -0.04 -0.04 -0.03

This table reports mean and Sharpe ratio of the decomposition of univariate long-short abnormal return factors.
Means of abnormal returns are reported in percentages. The results are sorted according to the Sharpe ratio of the
long-short factors and show the first 15 factors. The full results are in Table B.4. For each of the 59 characteristics and
each abnormal return, we construct decile-sorted portfolios. The long-short factors are the differences between the
top decile and the bottom decile. Stars denote the significance levels.

exposure from the current (since rebalanced) portfolio.

We ask which characteristics best predict each of these three components of the fund abnormal

return. Table 9 shows the results for the three-way decomposition. Columns 2 and 3 report the

mean return and Sharpe ratio associated with an investment that goes long the 10% best funds

and short the 10% worst funds based on a univariate prediction using the variable listed in the

first column. These are the same results reported before. For brevity, we only report the first 15

rows of this table; the full table appears in the appendix (Table B.4). The next four sets of two

columns predict one of the components of the abnormal fund return.

Momentum characteristics in the first few rows of the table are the most important char-

acteristics for both between-disclosure and within-disclosure abnormal returns. A few stock-

specific characteristics, and number of funds in the family, are useful for predicting between-

disclosure returns, while these momentum characteristics are the only significant predictors of

within-disclosure abnormal returns.17 When it comes to understanding within-disclosure returns,

we find that fund momentum and reversal are the only characteristics that predict both the return

gap and the risk difference with the same sign. Other fund- and family variables predict the return

gap significantly, but this effect is offset by an opposite-sign prediction for the risk difference. That

is, while funds with these characteristics are trading in a way that increases the fund’s return, they

17An exception being CF that is a significant negative predictor of within and positive predictor of between.
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Table 10: Decomposition of prediction long-short abnormal return portfolios

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

Stock+ fund 0.15 0.28*** 0.05 0.13 0.14 0.15*** 0.06 0.06 0.11 0.09***
Stock+ fund+ sentiment 0.21 0.41*** 0.10 0.28** 0.13 0.13*** 0.07 0.06 0.09 0.06**

Stock -0.01 -0.02 -0.01 -0.03 0.01 0.01 -0.01 -0.01 0.03 0.02
Stock+ sentiment 0.07 0.15 0.04 0.12 0.02 0.02 0.00 0.00 0.02 0.02

Fund 0.25 0.38*** 0.15 0.20*** 0.17 0.18*** 0.15 0.12*** 0.08 0.06**
Fund+ sentiment 0.25 0.40*** 0.15 0.24*** 0.16 0.16*** 0.16 0.13*** 0.03 0.03

Flow+fund momentum+ sentiment 0.24 0.48*** 0.14 0.26*** 0.17 0.22*** 0.13 0.12*** 0.11 0.10***

This table reports the mean and Sharpe ratio for the decomposition of the prediction-weighted long-short decile
portfolios. We use different information sets to predict abnormal returns. Means of abnormal returns are reported in
percentages. Stars denote the significance levels.

do so by taking on more systematic risk. Funds with high fund momentum and reversal charac-

teristics, in contrast, trade within the quarter in ways that both increase the return gap and reduce

the systematic risk of the portfolio.

The same insights carry over to the neural network prediction model as shown in Table 10.

The decomposition is a complex average of the univariate results. A prediction model that is only

based on fund momentum, flow, and sentiment (the last row of the table) has the strongest within-

disclosure effects, which is driven by the significant positive risk difference and return gap. When

adding more fund characteristics, they lower the within-disclosure mean return.

6 Conclusion

In this paper, we revisit the question of predicting mutual fund performance. While predictability

has been difficult to establish thus far, modern neural network techniques find strong evidence

of predictability. An important advantage of non-linear neural network methods is that they can

reliably estimate a complex functional relationship among a large set of variables. This turns out

especially advantageous in predicting returns of actively managed mutual funds. The predictabil-

ity we identify is real-time, out-of-sample, long-lived, and economically meaningful. It holds both

before and after fees. Most of the benefits accrue from avoiding funds that the model predicts to

be the worst performers. However, the prediction model is also able to identify about 10-20% of

funds that generate positive abnormal returns even after fees.

We identify two fund characteristics, fund flow and fund momentum, as the key predictors

of mutual fund out-performance. Characteristics of the stocks that funds hold do not play a sig-

nificant role in predicting future abnormal performance. Moreover, these two fund characteris-

tics matter much more when investor sentiment is high. That is, there are important interaction

effects, which linear models fail to pick up. While including sentiment or CFNAI, a proxy for

macro-economic activity, both improve predictability, there are no discernible interaction effects

associated with CFNAI. These results should prove useful for improving theories of delegation in
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the mutual fund market.

Methodologically, we show that abnormal returns, obtained as local residuals to a factor model,

are not only an economically motivated, but also the statistically better target for prediction. We

demonstrate how to measure dependencies on macro-economic states. We suggest that instead

of the typical horse race of model specifications it may be better to compare the prediction and

trading benefits by varying the information set available to the same flexible machine learning

algorithm. Finally, we introduce a novel measure for interaction effects in machine learning al-

gorithms, which does not only measure a local slope, but a more informative global slope. These

methodological contributions will help advance future asset pricing and investment research us-

ing machine learning, a growing area of research.

This paper focused on actively-managed equity mutual funds. Natural next steps are to con-

sider bond mutual funds, as well as portfolios managed by hedge funds, pension funds, and

endowments.
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A Data Cleaning and Imputation

A.1 Data Cleaning

We make use of the code of Doshi, Elkamhi, and Simutin (2015) for processing mutual fund data.

The fund returns, expenses, total net assets (TNA), investment objectives and other fund char-

acteristics are from the Center for Research in Security Prices (CRSP) Survivor Bias-Free Mutual

Fund Database. Our analysis requires fund holdings, which we obtain by linking the database to

the Thomson Financial Mutual Fund Holdings. The stock characteristics are from Chen, Pelger,

and Zhu (2020) and cover 46 characteristics that have been shown to have predictive power for

the cross section of expected returns.

We restrict the analysis to diversified domestic active managed equity mutual funds. We use

the newly introduced CRSP funds’ investment objectives, crsp obj cd to define our sample and

funds’ style categories. The final sample selected with crsp obj cd is nearly identical to the one

obtained when including funds with AGG, GMC, GRI, GRO, ING, and SCG Strategic Insight

codes, EIEI, G, LCCE, LCGE, LCVE, MCCE, MCGE, MCVE, MLCE, MLGE, MLVE, SCCE, SCGE,

and SCVE Lipper codes, and G, G-I, AGG, GCI, GRI, GRO, LTG, MCG, and SCG Wiesenberger

codes. We screen styles and fund names to exclude international, balanced, sector, bond, money

market, and index funds. There are eleven (mutual fund, time) observations for which the raw

return is larger than 1, which we also remove.

A fund’s total net asset value (TNA) is summed across share classes, and its return, expense

ratio, turnover and flow are averages weighted by the lagged asset value of each share class.

Fund age is defined as the number of years since the inception of the oldest share class. The fund

momentum characteristics are constructed as defined in Table 2.

Following Brown and Wu (2016), fund family is identified by the management company code.

For the quarters with a missing company code, we use the mapping between the company name

and company code identified in other quarters. For a given fund and month, Family r12 2 and

Family flow are the averages of F r12 2 and flow weighted by tna of all funds in the family, ex-

cluding the fund itself. Family age is the age of the oldest fund in the family, excluding the fund

itself. Fund no is the number of funds in the family and Family tna is the sum of TNAs of all

funds in the family excluding the fund itself.
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Table A.1: Summary statistics of fund characteristics

Statistic N Mean St. Dev. Median

turnover 358,303 0.826 1.015 0.620
ages 407,139 13.669 10.200 11.000
flow (%) 406,661 1.601 419.975 −0.392
r12 2 407,158 0.108 0.173 0.107
LME 407,158 −0.385 0.108 −0.424
BEME 407,158 −0.153 0.376 −0.161
abnormal return (%) 407,158 −0.028 2.000 −0.028
exp ratio (%) 407,043 0.097 0.086 0.095
TNA 406,802 1,153.180 4,833.920 214.700
Family TNA 398,655 19,834.410 60,108.400 1,584.700
Family age 399,011 22.657 19.512 18.000
fund no 399,011 13.017 18.165 6.000

This table reports summary statistics of the fund characteristics. The sample period is from 1980/01 to 2019/01.

A.2 Data Imputation

We use a panel of monthly firm returns and characteristics from 1963/01 to 2019/12. The data set

has in total 30,000 different stocks with around 5,000-9,000 stocks available in each month. How-

ever, in each month only around 2,000-3,000 stocks have all 46 characteristics available. In order

to use almost all stocks in our sample, we impute the missing characteristic information. This

is important as a large number of funds’ holdings include stocks that have missing characteris-

tics. We follow the insights of Bryzgalova, Lettau, Lerner, and Pelger (2021) to impute the missing

characteristics. More specifically, we the cross-sectional factor model advocated by Bryzgalova,

Lettau, Lerner, and Pelger (2021), which is a modification of the method developed in Xiong and

Pelger (2021) applied to characteristics. Intuitively, each month we estimate a latent factor model

with principal components analysis (PCA) in the characteristic space and impute the missing ob-

servations as the common components of the factor model. For special cases this approach is

equivalent to the expectation maximization (EM) algorithm, but this estimation approach is more

general. This approach has the advantage that it takes into account the dependency between

characteristics, which is not the case with a simple mean or median imputation. Importantly, the

method of Xiong and Pelger (2021) allows the missing pattern to depend on the latent factor model

or characteristic specific features, which is crucial as the data is not missing at random as shown

by Bryzgalova, Lettau, Lerner, and Pelger (2021).

We have a three dimensional array of firm-characteristics Ct,l,i which denotes the characteris-

tics l of firm i at time t. We have in total L firm characteristics which we report as cross-sectional

quantiles from -0.5 to 0.5. The number of total time periods is T and at time t there are Nt stocks

available. We denote by Ct the L× Nt matrix of L characteristics for the Nt stocks in month t. We
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assume that the characteristics can be modeled by an approximate K-factor model as in Xiong and

Pelger (2021):

Ct
i,l = Ft

i Λt
l
>
+ et

i,l

Without missing values the latent factors and loadings can be estimated by PCA from the “charac-

teristics covariance matrix” Σt = 1
Nt

CtCt>. In the presence of missing values, we use the method

of Xiong and Pelger (2021) to estimate the latent factors. More specifically, we estimate the L× L

matrix Σt as

Σt
l,r =

1
|Ql,r| ∑

i∈Ql,r

Ct
l,iC

t
r,i, (A.1)

where Ql,r are the indices of all the stocks that have characteristics l and r in common at time t and

|Ql,r| is the cardinality of this set. The Λt are estimated with PCA as the normalized eigenvectors

of Σt. Last but not least, we estimate the “characteristic factors” with a weighted regression

F̂t
i︸︷︷︸

K×1

=

(
∑

l∈Qi,t

Λ̂t
lΛ̂

t
l
>
)−1

∑
l∈Qi,t

Λ̂t
lC

t
l,i.

Given the estimated factors and loadings, the missing values are imputed with Ĉt
l,i = F̂t

i Λ̂t
l
>.

The factor imputation depends on two parameters. First, we select the number Lmin of charac-

teristics that a stock needs to have in order to be included in the sample. By construction this is

an upper bound on the number of latent factors. Second, we select the number of latent factors K.

Based on an extensive analysis we have set Lmin = 10 and K = 10 as the benchmark model. The

results are robust to this choice, while it allows us to include almost all stocks in the sample.

We assess the accuracy of the data imputation method based on how well the characteristic fac-

tor model approximates the observed characteristic entries. We measure the amount of explained

variation by the following R2 using only the observed entries:

R2 = 1−
∑t,l,i e2

t,l,i

∑t,l,i C2
t,l,i

.

Table A.2 shows that a model with K = 10 factors explains around 75% of the cross-sectional

variation in characteristics. Note that the first latent factor is very close to a cross-sectional average

for each characteristic. Hence, a one-factor model is essentially imputation with a cross-sectional

median, which is strongly suboptimal.

Table A.3 shows that after the data imputation we have full characteristic information for al-

most 99% of the stocks held by mutual funds. Without the data imputation, we could only observe
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the characteristics for around 57% of the stocks held by mutual funds. The choice of Lmin trades off

the accuracy of the imputation and the goal of keeping as many stocks as possible. The extensive

empirical study in Bryzgalova, Lettau, Lerner, and Pelger (2021) provides further support for this

imputation model.

Table A.2: R2 of Factor Model

K 2 4 6 8 10

R2 34.7% 50.7% 60.6% 68.4% 74.5%

This table shows the time average of R2 of the characteristics imputation for different number of factors K. We require
at least Lmin = 10 observed characteristics for each stock.

Table A.3: Proportion of Missing Characteristics for Different Lmin

Lmin Missing (i, j, t) No. Proportion of total observations

8 565,663 0.98%
10 744,087 1.29%
12 1,794,131 3.12%
14 2,025,437 3.52%

46, original characteristic data 24,596,754 42.80%

This table shows the number of missing characteristics observations and the corresponding proportion relative to the
total number of entries. The results are summed over mutual funds, stocks and time.

B Robustness Results

B.1 More univariate sorting results

Table B.1: Group characteristic long-short factors from abnormal returns

mean (%) std (%) SR t-stat

fund momentum 0.33 1.45 0.22 4.9***
family 0.12 0.74 0.16 3.5***
value 0.18 1.11 0.16 3.4***
fund 0.09 0.71 0.13 2.8***

profitability 0.13 1.02 0.13 2.7***
friction 0.17 1.72 0.10 2.1**

intangile 0.08 0.88 0.09 1.9*
past 0.11 1.39 0.08 1.7*

investment 0.06 0.93 0.06 1.3

This table reports the summary statistics for univariate long-short factors based on group-averaged abnormal returns
and sorted according to their Sharpe ratios. For each of the 9 categories, we construct group characteristics as the
equally-weighted average of the characteristics within each category. The long-short factors are the differences be-
tween the top decile and the bottom decile. “Mean”, “std” and “Sharpe ratio” report the mean, standard deviation
and Sharpe ratio of the factors and the fourth column, “t-stat” denotes the t-statistics for a test that the factor mean is
different from 0.
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Table B.2: First Principal Component within each Characteristic Group in Different Sentiment
Terciles

TL TM TH

Name SR t-stat SR t-stat SR t-stat

fund momentum 0.02 0.3 0.30 5.0*** 0.23 4.6***
family 0.08 1.0 0.15 1.8* 0.16 2.5**

profitability 0.01 0.1 0.20 1.9** 0.17 2.5**
fund 0.10 0.9 0.04 0.4 0.16 2.1**
past -0.07 -0.6 0.24 1.7*** 0.12 1.3

friction 0.02 0.2 0.01 0.1 0.18 2.1**
value 0.04 0.1 0.19 0.2** -0.12 -0.2

intangile -0.00 -0.0 -0.08 -0.1 0.12 0.2
investment -0.02 -0.0 -0.10 -0.1 0.12 0.1

This table reports the mean, standard deviation and Sharpe ratio for different sentiment terciles. For each of the 9
categories, we apply PCA to the abnormal returns of all long-short factors within a group to obtain a group factor.
We split the time-series into TH , TM and TL, which denotes the high, medium and low sentiment terciles based on
the previous months. For each of these time periods we separately estimate the mean, standard deviation and Sharpe
ratio of the factors conditional on a sentiment tercile. The column, “t-stat” denotes the t-statistics for factor mean
different from 0 in each sentiment tercile.
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Table B.3: Spanning of univariate long-short portfolios with different factor models.

4 factors 5 factors 6 factors 8 factors

α R2 α R2 α R2 α R2 mean
F ST Rev 0.18*** 0.04 0.19*** 0.02 0.18*** 0.04 0.23*** 0.31 0.20***

(0.04) (0.04) (0.04) (0.04) (0.05)
F r2 1 0.01 0.11 0.03 0.03 -0.01 0.12 0.01 0.17 0.08

(0.05) (0.05) (0.05) (0.05) (0.05)
F r12 2 0.17*** 0.23 0.22*** 0.06 0.16*** 0.23 0.16*** 0.23 0.28***

(0.04) (0.04) (0.04) (0.04) (0.05)
ages 0.08 0.02 0.06 0.03 0.05 0.03 0.06 0.03 0.09*

(0.05) (0.05) (0.05) (0.05) (0.05)
flow 0.10** 0.02 0.08 0.03 0.08 0.03 0.07 0.03 0.12**

(0.05) (0.05) (0.05) (0.05) (0.05)
exp ratio 0.11** 0.04 0.14*** 0.07 0.16*** 0.09 0.16*** 0.11 0.07

(0.05) (0.05) (0.05) (0.05) (0.05)
tna -0.05 0.02 -0.05 0.02 -0.06 0.02 -0.07 0.04 -0.06

(0.05) (0.05) (0.05) (0.05) (0.05)
turnover 0.02 0.01 -0.05 0.08 -0.05 0.08 -0.07 0.12 0.03

(0.05) (0.05) (0.05) (0.05) (0.05)
Family TNA 0.13*** 0.02 0.16*** 0.05 0.16*** 0.05 0.18*** 0.07 0.13***

(0.05) (0.05) (0.05) (0.05) (0.05)
fund no 0.09* 0.03 0.12** 0.03 0.11** 0.04 0.13*** 0.07 0.13***

(0.05) (0.05) (0.05) (0.05) (0.05)
Family r12 2 0.14*** 0.04 0.17*** 0.01 0.15*** 0.05 0.14*** 0.05 0.19***

(0.05) (0.05) (0.05) (0.05) (0.05)
Family age 0.08 0.03 0.11** 0.04 0.10** 0.04 0.11** 0.07 0.11**

(0.05) (0.05) (0.05) (0.05) (0.05)
Family flow 0.08* 0.01 0.07 0.00 0.08 0.01 0.07 0.02 0.07

(0.05) (0.05) (0.05) (0.05) (0.05)

This table reports the multivariate time-series regression results of univariate long-short abnormal return portfolios for
different factor models. We consider the 4-factor Fama-French-Carhart model (market, size, value and momentum),
the 5-factor Fama-French model (market, size, value, profitability and investment), a 6-factor model which adds the
momentum factor to the Fama-French 5 factors, and an 8-factor model which adds the momentum, short-term reversal
and long-term reversal factors to the Fama-French 5 factors. The α column reports the time-series pricing error and
R2 is the explained variation of the regression. Both the univariate long-short abnormal return portfolios and the
factor models are normalized to have a standard deviation of 1. Standard errors are in brackets and stars denote the
significance levels.
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Table B.4: Decomposition of univariate long-short portfolios from mutual fund abnormal returns

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

F r12 2 0.28 0.36*** 0.14 0.20*** 0.20 0.17*** 0.14 0.11*** 0.10 0.06***
F ST Rev 0.20 0.30*** 0.14 0.16*** 0.15 0.15*** 0.12 0.08** 0.12 0.06***

Family r12 2 0.19 0.13*** 0.10 0.09*** 0.09 0.04** 0.12 0.07** -0.06 -0.03
Beta 0.15 0.18*** 0.12 0.16*** 0.03 0.03 -0.01 -0.00 0.05 0.03

Rel2High 0.14 0.20*** 0.13 0.25*** -0.05 -0.05 -0.03 -0.03 -0.03 -0.03
RNA 0.13 0.13*** 0.11 0.12*** 0.01 0.01 -0.03 -0.02 0.04 0.02

Family TNA 0.13 0.09*** 0.09 0.07 0.05 0.03 -0.12 -0.06** 0.16 0.08***
fund no 0.13 0.10*** 0.10 0.07** 0.06 0.03 -0.12 -0.05** 0.14 0.07***

flow 0.12 0.11** 0.08 0.08** 0.06 0.03 -0.00 -0.00 0.08 0.03**
Family age 0.11 0.09** 0.08 0.07 0.03 0.02 -0.13 -0.06** 0.13 0.08***

ROA 0.10 0.10** 0.11 0.13*** -0.03 -0.03 -0.05 -0.03 0.01 0.01
PM 0.10 0.10** 0.10 0.11** -0.01 -0.01 -0.03 -0.02 0.02 0.01

ROE 0.10 0.11** 0.09 0.12** -0.01 -0.01 -0.02 -0.01 0.00 0.00
ST Rev 0.09 0.13** 0.06 0.11 0.02 0.02 0.02 0.02 0.01 0.01

CF 0.09 0.09** 0.11 0.16** -0.07 -0.06** -0.06 -0.04 -0.04 -0.03
Resid Var 0.09 0.14** 0.08 0.17** -0.03 -0.03 0.03 0.03 -0.06 -0.06

ages 0.09 0.05** 0.01 0.01 0.06 0.04 0.07 0.04 0.02 0.01
MktBeta 0.08 0.14** 0.07 0.14 0.00 0.00 0.05 0.05 -0.07 -0.05**

r12 2 0.08 0.11** 0.08 0.19** -0.06 -0.08** -0.08 -0.09** 0.01 0.01
Spread 0.08 0.13** 0.07 0.14 -0.01 -0.01 0.04 0.04 -0.04 -0.04

D2P 0.08 0.12** 0.08 0.13** -0.01 -0.01 0.09 0.08*** -0.16 -0.09***
r12 7 0.08 0.11** 0.10 0.19*** -0.07 -0.08** -0.09 -0.09** 0.02 0.02

F r2 1 0.08 0.11 -0.00 -0.00 0.13 0.11*** 0.12 0.08** 0.07 0.04**
LTurnover 0.07 0.13 0.06 0.14 -0.01 -0.01 0.08 0.08** -0.12 -0.09***

Variance 0.07 0.13 0.07 0.17 -0.04 -0.04 0.04 0.04 -0.09 -0.08**
IdioVol 0.07 0.12 0.07 0.15 -0.04 -0.04 0.03 0.03 -0.07 -0.06

C 0.07 0.09 0.08 0.12** -0.04 -0.03 -0.10 -0.08*** 0.11 0.05***
Lev 0.07 0.08 0.05 0.07 0.02 0.01 -0.02 -0.01 0.04 0.02

Family flow 0.07 0.04 0.05 0.03 0.02 0.01 0.04 0.02 -0.03 -0.01
ATO 0.07 0.07 0.05 0.05 0.02 0.02 -0.03 -0.02 0.09 0.04**

exp ratio 0.07 0.04 -0.03 -0.02 0.13 0.06*** 0.08 0.04** 0.05 0.03
CTO 0.06 0.07 0.06 0.07 -0.01 -0.01 -0.07 -0.04 0.07 0.03

tna -0.06 -0.04 -0.04 -0.03 -0.03 -0.02 0.09 0.04** -0.11 -0.06***
SUV 0.06 0.06 0.06 0.07 -0.03 -0.02 -0.04 -0.02 0.01 0.01

SGA2S 0.05 0.06 0.08 0.10** -0.06 -0.04 -0.07 -0.05** 0.02 0.01
OL 0.05 0.05 0.03 0.04 0.01 0.01 -0.01 -0.00 0.03 0.01

PCM 0.05 0.05 0.10 0.12** -0.09 -0.07** -0.06 -0.04 -0.06 -0.03
r2 1 0.05 0.06 0.00 0.00 0.06 0.06 0.05 0.04 0.03 0.02

CF2P 0.04 0.06 0.04 0.08 -0.02 -0.02 -0.08 -0.06** 0.08 0.04**
NI 0.04 0.05 0.04 0.05 0.01 0.01 0.12 0.09** -0.16 -0.08***
Q 0.04 0.05 0.02 0.04 0.01 0.01 -0.07 -0.05** 0.10 0.07**

FC2Y 0.04 0.05 0.07 0.09 -0.06 -0.05 -0.06 -0.04** -0.00 -0.00
PROF 0.04 0.04 0.05 0.08 -0.06 -0.05 -0.06 -0.03 -0.02 -0.01
LME 0.04 0.03 0.04 0.04 -0.01 -0.00 0.03 0.03 -0.03 -0.03
D2A 0.03 0.03 0.03 0.03 0.00 0.00 -0.02 -0.01 0.01 0.01

turnover 0.03 0.03 0.04 0.04 -0.02 -0.01 -0.01 -0.01 -0.02 -0.01
AT 0.03 0.04 0.01 0.02 0.02 0.02 -0.04 -0.02 0.05 0.04
OA 0.03 0.03 -0.01 -0.00 0.05 0.03 0.07 0.04 -0.01 -0.00

r36 13 -0.03 -0.04 -0.10 -0.13** 0.12 0.09*** 0.12 0.08*** 0.02 0.01
AC 0.03 0.02 -0.00 -0.00 0.04 0.02 0.06 0.03 -0.02 -0.01
E2P -0.03 -0.04 -0.01 -0.02 -0.03 -0.02 0.06 0.03 -0.10 -0.05**
OP 0.02 0.03 0.02 0.03 -0.00 -0.00 -0.02 -0.01 0.01 0.01

NOA 0.02 0.02 0.05 0.05 -0.06 -0.03 -0.11 -0.06** 0.05 0.03
DPI2A 0.01 0.01 0.08 0.08** -0.11 -0.07*** -0.19 -0.09*** 0.05 0.02
A2ME 0.01 0.02 0.05 0.07 -0.07 -0.06** -0.15 -0.12*** 0.12 0.06***

S2P -0.01 -0.02 -0.02 -0.03 0.02 0.02 0.13 0.11*** -0.18 -0.09***
Investment 0.01 0.01 0.08 0.08** -0.11 -0.07*** -0.14 -0.09*** 0.04 0.02

LT Rev 0.01 0.01 -0.01 -0.01 0.02 0.02 0.02 0.01 0.01 0.01
BEME -0.00 -0.00 -0.03 -0.04 0.05 0.04 0.13 0.11*** -0.15 -0.07***

This table reports the mean and Sharpe ratio for the decomposition of univariate long-short abnormal return factors.
Means of abnormal returns are reported in percentages. The results are sorted according to the Sharpe ratio of uni-
variate long-short factors. For each of the 59 characteristics and each abnormal return, we construct ten sorted decile
portfolios. The long-short factors are the differences between the top decile and the bottom decile.
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Table B.5: Univariate long-short portfolios in different CFNAI terciles

Low CFNAI Medium CFNAI High CFNAI
SR mean (%) SR mean (%) SR mean (%)

F r12 2 0.26 0.39*** 0.34 0.40*** 0.25 0.30***
F ST Rev 0.17 0.31** 0.19 0.26** 0.25 0.34***

Family r12 2 0.28 0.23*** 0.13 0.08* 0.13 0.08
Beta 0.17 0.24** 0.12 0.13 0.17 0.18**

Rel2High 0.07 0.14 0.22 0.25*** 0.20 0.21**
RNA 0.18 0.21** 0.17 0.12** 0.05 0.05

Family TNA 0.04 0.04 0.26 0.16*** 0.11 0.08
fund no 0.02 0.02 0.25 0.15*** 0.16 0.12*

flow 0.03 0.04 0.15 0.13* 0.18 0.15**
Family age 0.04 0.04 0.27 0.15*** 0.10 0.07

ROA 0.17 0.20** 0.09 0.07 0.04 0.04
PM 0.21 0.24** 0.13 0.11* -0.04 -0.04

ROE 0.19 0.23** 0.08 0.07 0.02 0.02
ST Rev 0.09 0.16 0.15 0.18* 0.05 0.06

CF 0.03 0.04 0.19 0.16** 0.08 0.08
Resid Var 0.11 0.23 0.06 0.08 0.08 0.10

ages -0.00 -0.00 0.06 0.04 0.19 0.12**
MktBeta 0.12 0.25 0.06 0.09 0.06 0.09

r12 2 -0.03 -0.05 0.25 0.27*** 0.09 0.12
Spread 0.13 0.26 0.06 0.08 0.04 0.07

D2P 0.12 0.22 0.03 0.04 0.08 0.10
r12 7 -0.05 -0.10 0.20 0.23** 0.14 0.19*

F r2 1 -0.01 -0.03 0.19 0.23** 0.09 0.12
LTurnover 0.12 0.25 -0.01 -0.01 0.10 0.17

Variance 0.10 0.20 0.03 0.05 0.09 0.13
IdioVol 0.11 0.22 0.04 0.05 0.06 0.08

C 0.02 0.04 0.24 0.27*** -0.04 -0.04
Lev 0.07 0.11 0.03 0.03 0.11 0.11

Family flow 0.09 0.05 0.06 0.03 0.06 0.04
ATO -0.01 -0.02 0.07 0.08 0.17 0.14**

exp ratio 0.06 0.04 0.16 0.09** -0.00 -0.00
CTO -0.01 -0.02 0.07 0.07 0.16 0.14*

tna -0.06 -0.05 -0.06 -0.03 -0.06 -0.05
SUV 0.01 0.01 0.12 0.12 0.04 0.04

SGA2S 0.01 0.02 0.18 0.18** -0.02 -0.02
OL 0.02 0.02 0.08 0.07 0.05 0.04

PCM -0.02 -0.02 0.15 0.13* 0.03 0.03
r2 1 0.02 0.03 0.12 0.13 0.03 0.03

CF2P 0.05 0.08 0.06 0.08 0.02 0.02
NI 0.09 0.13 -0.09 -0.11 0.14 0.15*
Q 0.04 0.07 0.04 0.04 0.05 0.05

FC2Y 0.01 0.01 0.14 0.15* -0.01 -0.02
PROF 0.00 0.00 0.09 0.06 0.06 0.05
LME 0.11 0.12 0.00 0.00 -0.03 -0.02
D2A 0.06 0.05 -0.00 -0.00 0.05 0.04

turnover 0.03 0.03 0.04 0.02 0.03 0.03
AT 0.06 0.09 0.02 0.01 0.01 0.01
OA 0.14 0.14* 0.11 0.08 -0.16 -0.13**

r36 13 0.08 0.12 -0.18 -0.19** -0.04 -0.04
AC 0.12 0.12 0.12 0.08 -0.16 -0.12**
E2P -0.03 -0.04 -0.04 -0.05 -0.01 -0.02
OP -0.01 -0.01 -0.02 -0.02 0.13 0.11

NOA -0.02 -0.02 0.12 0.09 -0.02 -0.01
DPI2A -0.01 -0.01 0.13 0.11* -0.06 -0.06
A2ME -0.07 -0.12 0.09 0.10 0.05 0.06

S2P 0.05 0.09 -0.08 -0.10 -0.02 -0.03
Investment -0.05 -0.07 0.10 0.09 0.00 0.01

LT Rev 0.09 0.13 -0.13 -0.11 0.02 0.02
BEME 0.11 0.14 -0.10 -0.11 -0.03 -0.04

This table reports summary statistics for univariate long-short factors in different CFNAI terciles. The results are
sorted according to the Sharpe ratio of univariate long-short factors. For each of the 59 characteristics, we construct
ten sorted decile portfolios. The long-short factors are the differences between the top decile and the bottom decile.
We split the time-series into TH , TM and TL, which denotes the high, medium and low CFNAI terciles based on the
previous months. For each of these time periods we separately estimate “Mean” and “Sharpe ratio”, which report the
mean and Sharpe ratio of this factor conditional on a CFNAI tercile. The stars are the signifance of t-statistics for the
test that factor mean is different from 0.
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B.2 Spanning

Table B.6: Spanning of long-short abnormal prediction portfolios with different factor models.

FF 4 factors FF 5 factors FF 6 factors FF 8 factors
α R2 α R2 α R2 α R2 mean µ

Stock+ fund 0.07 0.14 0.08* 0.13 0.06 0.15 0.04 0.19 0.04
(0.05) (0.05) (0.05) (0.05) (0.05)

Stock+ fund+ sentiment 0.13*** 0.29 0.10** 0.33 0.08** 0.36 0.07* 0.37 0.13***
(0.04) (0.04) (0.04) (0.04) (0.05)

Stock 0.05 0.15 0.04 0.16 0.03 0.17 0.01 0.22 0.01
(0.04) (0.04) (0.04) (0.04) (0.05)

Stock+ sentiment 0.09** 0.31 0.04 0.39 0.03 0.40 0.02 0.41 0.08*
(0.04) (0.04) (0.04) (0.04) (0.05)

Fund 0.14*** 0.17 0.20*** 0.04 0.16*** 0.18 0.16*** 0.18 0.18***
(0.05) (0.05) (0.05) (0.05) (0.05)

Fund+ sentiment 0.17*** 0.16 0.22*** 0.04 0.18*** 0.16 0.19*** 0.18 0.20***
(0.05) (0.05) (0.05) (0.05) (0.05)

Flow+ fund momentum+ sentiment 0.11*** 0.28 0.22*** 0.13 0.16*** 0.33 0.18*** 0.37 0.15***
(0.04) (0.04) (0.04) (0.04) (0.05)

F r12 2+ sentiment 0.13*** 0.30 0.25*** 0.11 0.19*** 0.34 0.19*** 0.34 0.19***
(0.04) (0.04) (0.04) (0.04) (0.05)

This table reports the time-series regression results of long-short prediction-weighted decile portfolios for different
factor models. We compare different information sets to predict abnormal returns. We consider the 4-factor Fama-
French-Carhart model (market, size, value and momentum), the 5-factor Fama-French model (market, size, value,
profitability and investment), a 6-factor model which adds the momentum factor to the Fama-French 5 factors, and
an 8-factor model which adds the momentum, short-term reversal and long-term reversal factors to the Fama-French
5 factors. The α column reports the time-series pricing error and R2 is the explained variation of the regression. Both
the long-short abnormal return portfolios and the factor models are normalized to have a standard deviation of 1.
Standard errors are in brackets and stars denote the significance levels.

B.3 Robustness to Holding Period

We show that our main findings are robust to longer holding periods. This is relevant as funds

are usually held for longer periods. We consider three different robustness tests: (1) we update

characteristics annually, (2) we hold each fund investment for one year with overlapping returns

and (3) we consider quarterly returns of quarterly updated positions.

First, we construct annually updated monthly abnormal return portfolios. Specifically, we sort

funds into portfolios only once a year. We keep the weights constant in the sorting portfolios for 12

months. We use the December characteristics to obtain the decile sorting allocations and update

these allocations each December. Then we compute the monthly abnormal returns as before. We

report the univariate sorting results in panel (a) of table B.7. Second, we consider overlapping ab-

normal returns with one-year holding periods. At each time t− 1, investors use the current month

characteristics to form portfolios and hold the portfolio for one year. The overlapping holding re-

sults are in panel (b) of table B.7. Last but not least, we consider the abnormal return of investors

who rebalance their portfolios every quarter. They rebalanced fund portfolios using the fund char-

acteristics at the end of each quarter and hold the same portfolio for one quarter. These returns
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are not overlapping. For all three specifications, we observe that the Sharpe ratios and average

abnormal returns are comparable to the results in Table 3. The fund-specific characteristics, in

particular flow and fund momentum, have the highest Sharpe ratio and a statistically significant

mean, while most stock-specific characteristics are not significant.

Table B.7: Univariate long-short portfolios from abnormal returns at different holding frequency

(a) Annually updated characteristics (b) Overlapping annual holdings (c) Quarterly
mean std SR t-stat mean std SR t-stat mean std SR t-stat

F r12 2 0.23 1.16 0.20 4.3*** 0.32 2.35 0.24 5.1*** 0.20 12.82 0.19 4.0***
F ST Rev 0.18 1.18 0.16 3.4*** 0.19 2.71 0.12 2.7*** 0.17 8.86 0.23 4.9***

Family r12 2 0.06 0.84 0.07 1.5 0.10 1.39 0.13 2.8*** 0.05 8.29 0.07 1.4
Beta 0.24 1.13 0.21 4.6*** 0.20 1.98 0.18 3.8*** 0.18 9.71 0.23 4.8***

Rel2High 0.19 1.29 0.15 3.2*** 0.26 2.29 0.20 4.2*** 0.20 13.55 0.18 3.8***
RNA 0.09 0.88 0.10 2.2** 0.13 1.74 0.13 2.8*** 0.07 7.36 0.12 2.6**

Family TNA 0.08 0.73 0.12 2.5** 0.10 1.23 0.14 3.0*** 0.09 8.20 0.13 2.6***
fund no 0.07 0.73 0.10 2.2** 0.10 1.24 0.14 3.0*** 0.09 7.54 0.14 3.0***

flow 0.16 0.93 0.17 3.6*** 0.16 1.33 0.20 4.4*** 0.05 4.71 0.12 2.6***
Family age 0.09 0.76 0.12 2.6*** 0.10 1.26 0.14 3.0*** 0.08 7.54 0.12 2.5**

ROA 0.07 0.92 0.08 1.7* 0.10 1.79 0.10 2.2** 0.07 6.85 0.12 2.5**
PM 0.06 0.94 0.06 1.3 0.14 1.64 0.14 3.1*** 0.08 6.48 0.14 2.9***

ROE 0.06 0.97 0.06 1.4 0.09 1.73 0.09 2.0** 0.07 7.56 0.11 2.3**
ST Rev 0.08 1.31 0.06 1.3 0.11 2.59 0.07 1.6 0.09 7.46 0.15 3.1***

CF 0.02 0.97 0.02 0.5 0.05 1.92 0.04 0.9 0.09 10.98 0.10 2.1**
Resid Var 0.15 1.57 0.09 2.0** 0.20 2.67 0.13 2.8*** 0.18 18.18 0.12 2.4**

ages 0.05 0.60 0.08 1.7* 0.05 1.07 0.08 1.6 0.05 6.35 0.10 2.1**
MktBeta 0.12 1.65 0.07 1.5 0.13 2.79 0.08 1.7* 0.18 17.37 0.13 2.7***

r12 2 0.04 1.30 0.03 0.7 0.10 2.77 0.06 1.4 0.03 13.73 0.02 0.5
Spread 0.14 1.58 0.09 1.9* 0.18 2.79 0.11 2.5** 0.16 17.85 0.11 2.3**

D2P 0.10 1.46 0.07 1.5 0.14 2.41 0.10 2.2** 0.15 15.23 0.12 2.4**
r12 7 0.04 1.40 0.03 0.6 0.09 2.64 0.06 1.3 -0.01 12.64 -0.01 -0.2

F r2 1 0.14 1.27 0.11 2.5** 0.16 2.38 0.12 2.6** 0.14 8.61 0.20 4.2***
LTurnover 0.17 1.73 0.10 2.1** 0.18 2.88 0.11 2.3** 0.22 19.92 0.13 2.8***

Variance 0.16 1.62 0.10 2.1** 0.20 2.83 0.12 2.6** 0.20 19.48 0.12 2.6**
IdioVol 0.13 1.59 0.08 1.7* 0.19 2.66 0.13 2.7*** 0.17 18.21 0.11 2.4**

C -0.01 1.23 -0.01 -0.2 0.05 2.37 0.03 0.7 -0.02 12.20 -0.02 -0.4
Lev 0.10 1.20 0.08 1.7* 0.06 2.18 0.05 1.1 0.06 10.74 0.07 1.4

Family flow 0.04 0.66 0.07 1.4 0.01 1.10 0.02 0.4 0.01 3.54 0.04 0.8
ATO 0.03 1.04 0.03 0.6 0.11 1.84 0.10 2.1** 0.07 9.14 0.09 1.9*

exp ratio 0.04 0.73 0.05 1.1 -0.01 1.17 -0.01 -0.2 -0.04 6.50 -0.07 -1.5
CTO 0.05 1.02 0.05 1.0 0.09 1.74 0.09 1.9* 0.07 7.71 0.11 2.4**

tna -0.02 0.77 -0.03 -0.7 -0.06 1.14 -0.09 -2.0* -0.01 6.70 -0.01 -0.3
SUV 0.07 1.02 0.07 1.5 0.07 1.74 0.07 1.5 0.00 5.76 0.00 0.1

SGA2S 0.04 0.95 0.04 0.9 0.06 2.13 0.05 1.0 0.04 11.44 0.05 1.0
OL 0.05 0.97 0.05 1.1 0.09 1.71 0.09 1.9* 0.08 8.77 0.11 2.2**

PCM -0.01 0.90 -0.01 -0.2 0.01 1.88 0.01 0.3 0.02 7.48 0.03 0.6
r2 1 0.11 1.41 0.07 1.6 0.11 2.42 0.08 1.6 0.07 7.68 0.12 2.4**

CF2P 0.03 1.34 0.03 0.6 0.03 2.60 0.02 0.4 -0.01 13.92 -0.01 -0.2
NI 0.02 1.10 0.02 0.3 0.04 2.10 0.03 0.6 0.08 11.23 0.09 1.8*
Q 0.06 1.22 0.05 1.0 0.07 2.42 0.05 1.0 -0.01 11.26 -0.01 -0.1

FC2Y 0.04 0.98 0.04 0.8 0.06 2.24 0.05 1.0 0.04 11.67 0.04 0.8
PROF 0.07 0.86 0.08 1.7* 0.04 1.90 0.04 0.8 0.11 8.71 0.15 3.2***
LME 0.05 0.87 0.06 1.2 -0.01 1.21 -0.01 -0.2 0.01 5.89 0.01 0.2
D2A -0.03 0.82 -0.03 -0.7 -0.01 1.46 -0.01 -0.1 -0.02 6.23 -0.04 -0.9

turnover 0.05 0.92 0.05 1.2 0.03 1.73 0.03 0.6 0.07 12.73 0.07 1.4
AT 0.07 1.11 0.06 1.4 0.00 1.82 0.00 0.1 -0.01 8.89 -0.02 -0.4
OA 0.00 0.73 0.00 0.1 0.02 1.48 0.02 0.5 0.01 5.30 0.02 0.5

r36 13 -0.02 1.04 -0.02 -0.4 -0.02 2.03 -0.02 -0.3 0.02 11.73 0.02 0.4
AC 0.01 0.71 0.01 0.3 0.03 1.43 0.04 0.8 0.01 5.02 0.02 0.4
E2P -0.03 1.33 -0.02 -0.5 -0.00 2.47 -0.00 -0.0 0.06 14.70 0.05 0.9
OP 0.04 0.96 0.04 0.8 0.03 1.91 0.03 0.6 0.08 9.40 0.10 2.2**

NOA -0.02 0.92 -0.02 -0.5 -0.03 1.39 -0.04 -0.8 -0.02 6.17 -0.04 -0.8
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mean std SR t-stat mean std SR t-stat mean std SR t-stat

DPI2A 0.04 0.93 0.04 0.8 0.08 1.83 0.07 1.6 -0.01 6.27 -0.02 -0.4
A2ME -0.03 1.13 -0.02 -0.5 0.07 2.38 0.05 1.1 0.01 11.54 0.01 0.3

S2P 0.01 1.27 0.01 0.2 -0.02 2.48 -0.02 -0.4 0.02 13.55 0.02 0.4
Investment 0.08 1.01 0.08 1.6 0.07 2.00 0.06 1.3 0.02 7.40 0.03 0.6

LT Rev 0.02 0.98 0.02 0.5 0.04 1.71 0.04 0.9 0.04 9.41 0.05 1.1
BEME 0.05 1.11 0.05 1.1 -0.03 2.34 -0.02 -0.5 0.00 11.50 0.00 0.1

This table reports summary statistics for univariate long-short factors based on fund abnormal returns. Mean and
std of abnormal returns are reported in percentages. The results are sorted according to the Sharpe ratio of univariate
long-short factors based on abnormal returns, in the same order as in Table 3. In panel (a), the characteristics of mutual
funds are updated in December of each year and kept constant throughout the year. Panel (b) reports the results for
overlapping annual returns. The standard deviation and t-statistics are reported with Newey-West correction for
time-series correlation with 12 lags. Panel (c) displays the results for non-overlapping quarterly abnormal return. For
each of the 59 characteristics, we construct ten sorted decile portfolios based on fund abnormal returns. The long-short
factors are the differences between the top decile and the bottom decile. The fourth column, “t” reports the t-statistics
for a test that the factor mean is different from 0 and stars denote the significance levels.

B.4 Net Abnormal Returns

Figure B.1: Cumulative abnormal net returns of prediction deciles.

(a) Prediction-weighted abnormal net return (b) Equally-weighted abnormal net return

These figures show the cumulative abnormal net returns for prediction sorted decile portfolios. We use fund-specific
characteristics and sentiment to predict abnormal net returns. The left subfigure weights funds based on their predic-
tion, while the right subfigure equally weights funds within the prediction deciles.
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Figure B.2: Cumulative expense ratios and abnormal net return for equally-weighted deciles.

(a) Cumulative equally-weighted expense ratios (b) Cumulative abnormal net returns

The left figure shows the cumulative expense ratios of equally-weighted prediction deciles. We use the full informa-
tion set (fund-specific and stock-specific characteristics + sentiment) to predict abnormal returns. The right figures
shows the abnormal net returns for the equally-weighted deciles, that is, the abnormal returns minus the fees.

B.5 Equally-Weighted Prediction Portfolios

Figure B.3: Cumulative abnormal returns of equally-weighted long-short prediction portfolios.

This figure plots the cumulative abnormal returns of equally-weighted long-short decile portfolios that use different
information sets to predict abnormal returns. We consider fund-specific and stock-specific characteristics combined
with sentiment.
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Figure B.4: Cumulative abnormal returns of equally-weighted deciles for different information
sets.

(a) Stock-specific characteristics (b) Stocks-specific characteristics + sentiment

(c) Fund-specific characteristics (d) Fund-specific characteristics + sentiment

This figure shows the cumulative abnormal returns sorted into prediction deciles for different information sets. The
returns are equally-weighted within deciles. We consider fund-specific characteristics + sentiment, stock-specific
characteristics+ sentiment, fund-specific characteristics or stock-specific characteristics to predict abnormal returns.
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Figure B.5: Cumulative abnormal returns of equally-weighted deciles for different information
sets.

(a) Fund-specific characteristics+ sentiment (b) Stock-specific characteristics+ sentiment

This figure plots the cumulative returns sorted into prediction deciles for different information sets. The returns
are equally-weighted within deciles. We consider information sets which combine fund-specific and stock-specific
characteristics and sentiment to predict returns instead of abnormal returns.

Figure B.6: Cumulative return of long-short portfolio with stock and fund-specific characteristics

(a) Prediction-weighted (b) Equally-weighted

This figure plots the cumulative return of long-short decile portfolios that use fund- or stock-specific characteristics
and sentiment to predict returns instead of abnormal returns.
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Table B.8: Performance of equally-weighted long-short abnormal return portfolios for different
information sets.

Information set mean (%) t-stat SR R2
F (%)

Stock+ fund 0.21 3.1*** 0.14 2.03
Stock+ fund+ sentiment 0.30 4.3*** 0.20 4.47

Stock 0.01 0.1 0.01 -1.29
Stock+ sentiment 0.13 1.9* 0.09 0.18

Fund 0.31 5.8*** 0.27 0.24
Fund+ sentiment 0.33 5.9*** 0.27 3.50

Flow+ fund momentum+ sentiment 0.38 5.7*** 0.26 1.26
F r12 2+ sentiment 0.38 6.0*** 0.28 0.43

This table reports the Sharpe ratio, mean and R2
F of long-short equally-weighted decile portfolios that use different

information sets to predict abnormal returns. We consider eight different information sets which combine fund-
specific and stock-specific characteristics and sentiment. We also include flow and fund momentum individually.

Table B.9: Performance of equally-weighted long-short return portfolios for different
information sets.

Information set mean (%) t-stat SR R2
F (%)

Fund+ sentiment 0.40 2.7*** 0.13 0.56
Fund 0.44 3.2*** 0.15 0.84

Stock+ sentiment 0.35 2.9*** 0.14 -18.98
Stock 0.06 0.8 0.04 -55.93

Stock+ fund+ sentiment 0.35 2.9*** 0.14 -25.20

This table reports the Sharpe ratio, mean and R2
F of long-short equally-weighted decile portfolios based on predicting

returns instead of abnormal returns with different information sets. We consider five different information sets which
combine fund-specific and stock-specific characteristics and sentiment.

Table B.10: Decomposition of equally-weighted prediction long-short portfolios

Total Between-disclosure Within-disclosure Risk difference Return gap
SR mean SR mean SR mean SR mean SR mean

Stock+ fund 0.14 0.21*** 0.04 0.09 0.14 0.11*** 0.08 0.05 0.10 0.06**
Stock+ fund+ sentiment 0.20 0.30*** 0.08 0.18** 0.16 0.12*** 0.10 0.08** 0.09 0.05**

Stock 0.01 0.01 -0.01 -0.01 0.03 0.02 0.01 0.01 0.03 0.02
Stock+ sentiment 0.09 0.13** 0.05 0.11 0.03 0.03 0.03 0.03 0.00 0.00

Fund 0.27 0.31*** 0.15 0.17*** 0.18 0.14*** 0.14 0.10*** 0.07 0.04**
Fund+ sentiment 0.27 0.33*** 0.16 0.18*** 0.20 0.15*** 0.16 0.11*** 0.07 0.04

Flow+ fund momentum+ sentiment 0.26 0.38*** 0.13 0.20*** 0.19 0.18*** 0.16 0.11*** 0.11 0.07***

This table reports the mean and Sharpe ratio for the decomposition of equally-weighted long-short abnormal return
portfolios. We use different information sets to predict abnormal returns. Means of abnormal returns are reported in
percentages. The long-short portfolios are the differences between the top decile and the bottom decile. Stars denote
the significance level.
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B.6 Macroeconomic Conditioning Variables

Table B.11: Prediction based classification relative to fund+ sentiment information.

# bin = 2 # bin = 5 # bin = 10 # bin = 20
Bin 1st 2nd 1st 5th 1st 10th 1st 20th

Fund+ CFNAI 0.91 0.91 0.84 0.82 0.78 0.74 0.70 0.61
Fund+ sentiment orth 0.95 0.95 0.89 0.89 0.85 0.81 0.79 0.70

Fund+CFNAI orth 0.91 0.91 0.83 0.83 0.78 0.74 0.70 0.61
Fund+ sentiment and CFNAI 0.94 0.94 0.87 0.89 0.83 0.82 0.75 0.73

Fund 0.93 0.93 0.87 0.86 0.81 0.78 0.73 0.67
Stock 0.55 0.55 0.27 0.27 0.17 0.16 0.11 0.08

Stock+ sentiment 0.55 0.55 0.27 0.27 0.17 0.15 0.11 0.08

This figure shows the percentage of funds that overlap with the prediction quantiles based on fund+ sentiment infor-
mation. We consider two, five, 10 or 20 quantiles and six different information sets for predicting abnormal returns.
The reference classification is fund + sentiment.
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Figure B.7: Conditional mean as a function of fund characteristics and CFNAI

(a) Predicted abnormal returns as function of F r12 2 (b) Predicted abnormal returns as function of flow

(c) Predicted abnormal returns as function of F ST Rev (d) Predicted abnormal returns as function of Family r12 2

This figure shows the predicted abnormal returns (in percentages) as a function of one fund characteristic and dif-
ferent CFNAI quantiles. The other variables are set to their median values. The neural network model is estimated
with fund-specific characteristics and CFNAI. The interaction effects are evaluated on test data and averaged across
three cross-out-of-sample folds. The high-minus-low factors have almost the same mean conditional on different past
CFNAI. There is essentially no interaction effect.

B.7 Interaction Effects

Lastly, we assess more general interactions between different fund characteristics. Here, we cal-

culate the interactions between fund-specific characteristics. The interaction measure is defined

similar to the main text as:

Interaction(zi, zj) =
(

R̂abn(high zi, high zj)− R̂abn(low zi, high zj)
)

−
(

R̂abn(high zi, low zj)− R̂abn(low zi, low zj)
)

.
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We set the high values of zi and zj to 0.5, and the low value to -0.5, which makes the measure

symmetric with respect to zi and zj, that is, Interaction(zi, zj) = Interaction(zj, zi). The other

variables are set to their median values. The results are presented in Table B.12.

Table B.12: Interaction for fund-specific characteristics in the neural network model

flow F r12 2 F ST Rev Family r12 2 turnover

F r12 2 0.251
F ST Rev 0.068 0.336

Family r12 2 0.037 0.147 0.018
turnover 0.004 0.070 0.050 -0.020

F r2 1 0.080 0.284 0.049 0.048 -0.007

This table shows the interaction measure between the fund-specific characteristics. The results are presented in basis
points. The neural networks use fund-specific characteristics and sentiment as input.

C Implementation

Table C.1 summarizes the tuning parameters for the possible network structures. HU, the number

of hidden units in each layer, deserves more explanation. The nodes of first layer are 64 or 32 and

the number of nodes in each layer is half of the previous layer. For example, for a neural network

with 3 layers the number of nodes are 32, 16, 8 and 64, 32, 16. In mathematical terms the number

of nodes in the ith layer is 27−i or 26−i.

Table C.1: Selection of tuning parameters

Notation Tuning Parameters Candidates Optimal

HL Number of layers in Neural Network 1, 2, 3 1
HU Number of hidden units in each layer 26−i or 27−i, i = 1 to HL 64
DR Dropout 0.90, 0.95 0.95
LR Learning rate 0.001 , 0.1 0.001
L1 l1 regularization 0, 1e-5 0
L2 l2 regularization 0, 1e-2, 1e-3 0.01

This table shows the set of tuning parameters, which result in 144 candidate models. The optimal parameters are
selected on the validation data.

We obtain robust and stable fits by ensemble averaging over several fits of the models. A dis-

tinguishing feature of neural networks is that the estimation results can depend on the starting

value used in the optimization. The standard practice which has also been used by Chen, Pelger,

and Zhu (2020) is to train the models separately with different initial values chosen from an opti-

mal distribution. Averaging over multiple fits achieves two goals: First, it diminishes the effect of

a local suboptimal fit. Second, it reduces the estimation variance of the estimated model. All our

neural networks are averaged over eight model fits.
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We split the full time-series sample into three periods of the same length but select the dates

randomly for each fold as shown in Figure C.1. We keep the same three randomly selected folds

throughout our analysis. We use two of the periods to estimate the model and select the tuning

parameters, and evaluate the prediction out-of-sample on the remaining third of the sample. We

repeat the estimation on three different combinations of the three time periods and report the

average results. The estimation and validation time period is split into 3/4 used for training and

1/4 used for validation to select the optimal tuning parameters from the candidate set in Table C.1.

For each combination of candidate tuning parameters we train the network for 512 epochs. Our

results are robust to the choice of tuning parameters. In particular, our results do not depend on

the structure of the network and all models with good performance on the validation data provide

essentially an identical model with the same relative performance on the test data.

Figure C.1: Sentiment time series for the different cross-out-of-sample folds

This figure plots the Baker and Wurgler (2006) sentiment measure from 1979/12 to 2018/12. Different colors denote
the three different cross-out-of-sample folds, which we use throughout the paper.
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