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We use machine learning as a tool to study decision making, focusing specifi-
cally on how physicians diagnose heart attack. An algorithmic model of a patient’s
probability of heart attack allows us to identify cases where physicians’ testing de-
cisions deviate from predicted risk. We then use actual health outcomes to evaluate
whether those deviations represent mistakes or physicians’ superior knowledge.
This approach reveals two inefficiencies. Physicians overtest: predictably low-risk
patients are tested, but do not benefit. At the same time, physicians undertest:
predictably high-risk patients are left untested, and then go on to suffer adverse
health events including death. A natural experiment using shift-to-shift testing
variation confirms these findings. Simultaneous over- and undertesting cannot
easily be explained by incentives alone, and instead point to systematic errors
in judgment. We provide suggestive evidence on the psychology underlying these
errors. First, physicians use too simple a model of risk. Second, they overweight
factors that are salient or representative of heart attack, such as chest pain. We
argue health care models must incorporate physician error, and illustrate how
policies focused solely on incentive problems can produce large inefficiencies. JEL
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I. INTRODUCTION

A patient arrives in the emergency room complaining of chest
pain and nausea. Should she be tested for a heart attack (tech-
nically, a new blockage in the coronary arteries)? A missed heart
attack can have catastrophic consequences, but testing for it is
costly and invasive. So the choice is not easy, particularly because
many benign conditions (like acid reflux) share symptoms with
heart attack. To make the choice, the physician must integrate a
diverse set of data to predict the risk a patient is having a heart
attack. We use machine learning to study these choices and the
predictions on which they are based. Though we focus on heart
attack, our approach applies more broadly, as all testing decisions
can be similarly cast as prediction problems (Kleinberg et al. 2015,
2018; Agrawal, Gans, and Goldfarb 2019).

Our sample spans all 246,265 emergency visits over 2010–
2015 at a large, top-ranked hospital.1 We track tests given, result-
ing treatments, and subsequent health outcomes, encompassing
most (but not all) of the data available to physicians. On a random
three-quarters sample of these data, we train an ensemble ma-
chine learning model to predict the outcome of testing, using only
information available at the time of the testing decision. We do
not naively benchmark physician choices against these algorith-
mic predictions, assuming that they are accurate. Instead, we use
the algorithm only to identify (in the remaining one-quarter hold-
out sample) patient subgroups with potential inefficiency, where
physicians might have made mistakes. We then look at actual
health outcomes for these subgroups to test whether errors were
made or whether physicians correctly relied on data unavailable
to the algorithm.

This approach reveals two kinds of allocative inefficiency in
how physicians test. First, many patients who predictably will not
benefit from testing are nevertheless tested. We quantify the value
of a test here using the treatment benefits it produces (allowing for
the fact that the test itself is imperfect), expressed in cost per life-
year saved. By this measure, 62% of tests cost more than $150,000
per life-year. Algorithmic predictions are crucial in uncovering
these low-yield marginal tests. Had we instead followed the usual
approach of using overall average yields to assess efficiency, we

1. We repeat much of our analysis in a large sample of nationally representa-
tive Medicare claims.
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DIAGNOSING PHYSICIAN ERROR 681

would have concluded that testing as a whole is cost-effective,
at $89,714 per life-year (Weinstein et al. 1996; Sanders et al.
2016). Machine learning is useful for capturing such patient-level
heterogeneity.

Second, at the same time, many patients who predictably
would benefit from testing nevertheless go untested. One hint of
this problem, resembling Abaluck et al. (2016)’s earlier work, is
that physician choices deviate from a structural risk model: we
also find that physicians fail to test many apparently high-risk
patients. By themselves, though, such deviations do not estab-
lish error, as we do not know what the test results would have
been. Physicians may have valid reasons for leaving these pa-
tients untested, some of which may be unobserved in our data
(and thus to the algorithm): how the patient looks, what they say,
the results of X-rays or electrocardiograms (ECGs). The problem
cannot be solved by imputing outcomes to the untested.2

Health outcomes in the untested provide a way to empirically
assess these choices. In the 30 days after their visit, high-risk
untested (and thus untreated) patients exhibit the well-known
signs of missed heart attack: “major adverse cardiac events” at
rates well above existing clinical guideline thresholds for heart
attack.3 One-third of these events lead to death. So these patients
appear to have indeed been at high risk. Still, it is possible that
physicians recognize this risk but choose not to test because they
deem patients unsuitable for invasive treatments. We find evi-
dence to the contrary. For example, a large fraction do not even
receive an ECG or other very low-cost, noninvasive tests given to
any patient with even a small suspicion of heart issues. Physicians
simply seem to overlook the risk for these patients.

2. We illustrate using ECGs, typically missing from research data sets and
effectively an unobserved variable to our algorithm: we only have them for a
subset of patients (and do not use them in the main analyses). But for this subset,
incorporating waveform data via deep learning decreases predicted risk for 97.5%
of patients, and 100% of the highest-risk untested, suggesting that predictions
are confounded for the untested. Despite growing attention to the selective labels
problem, similar biases pervade much of machine learning (Kleinberg et al. 2018;
Kallus and Zhou 2018; Rambachan 2021).

3. Such decision rules (e.g., TIMI, GRACE, HEART) are commonly imple-
mented in emergency medicine. We do not take a stance on whether they are
physiologically optimal, only that they represent current physician understand-
ing of who should be tested. If physicians use private information in deciding not
to test apparently high-risk patients, adverse-event rates should be low.
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For more direct evidence of undertesting, we rely on a nat-
ural experiment: a patient’s arrival time determines which staff
members see them, and staff vary in their tendency to test for
heart attack. Conditioning on the visit’s hour and day, this pro-
vides plausibly exogenous shift-to-shift variation in testing rates.4

We find that higher-testing shifts do not show statistically signif-
icant effects on health outcomes on average, indicating so-called
“flat of the curve” health care: more testing yields little return
(Fisher et al. 2003). But as before, averages obscure heterogeneity.
Predicted high-risk patients benefit from more testing: in the sub-
sequent year, those who arrive during the highest-testing shifts
have significantly lower mortality (2.5 percentage points, or 32%),
making these additional tests highly valuable.5 Undertesting is
also quantitatively important: we simulate a range of policy coun-
terfactuals that put the size of the undertested set between 15.6%
and 99.5% of the currently tested set.

Why do physicians both over- and undertest? Comparing
physician decisions to algorithmic predictions suggests several
sources of error. We first find evidence of bounded rationality: lim-
its in cognitive resources such as attention, memory, or computa-
tion (Simon 1955; Mullainathan 2002; Sims 2003; Gabaix 2014,
2019; Bordalo, Gennaioli, and Shleifer 2020). The risk model that
best predicts physician testing is much simpler than the one that
best predicts true test outcomes. By way of analogy, physicians
seem to overregularize (Camerer 2019). We also find evidence
that physicians overweight salient risks (Tversky and Kahneman
1974; Bordalo, Gennaioli, and Shleifer 2012), such as those due to
demographics and symptoms. Finally, they overweight symptoms
that are representative (stereotypical) of heart attack (Kahneman
and Tversky 1972; Bordalo et al. 2016). For example, patients with
chest pain, a salient and representative symptom, are particularly
overtested.

Health care models have long emphasized moral hazard: pay-
ing for tests, rather than outcomes, results in too much testing

4. Patients’ observable characteristics appear largely balanced across shifts. In
addition, realized yield does not meaningfully relate to shift test rates, suggesting
that unobservables may also be balanced.

5. These direct results on health rule out an additional concern: our definition
of risk has so far rested on the assumption that treatments following positive
tests are useful. But if physicians overtreat, some of those treatments may fail to
improve health, inflating our perceptions of undertesting.
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(Arrow 1963; Pauly 1968). Recent work has broadened this per-
spective to include skill differences, comparative advantage, and
error as sources of inefficiency (Abaluck et al. 2016; Chandra
and Staiger 2020; Chan, Gentzkow, and Yu 2022).6 We extend
this literature by providing evidence of substantial undertesting,
methodologically showing an important role for machine learning,
and by uncovering some potential sources of error.

Our results imply that a core prescription of moral hazard
models—incentivizing high-testers to act like low-testers—can
have perverse effects. Low-testing regimes do test fewer low-
risk patients (less overtesting), but at the same time they also
test fewer high-risk patients (more undertesting). When physi-
cians make systematic prediction errors, incentives that address
one inefficiency can exaggerate the other. Models and policies
must account for such systematic mistakes, analogous to behav-
ioral hazard models of patient errors (Baicker, Mullainathan, and
Schwartzstein 2015).

II. CONTEXT AND FRAMEWORK

II.A. Medical Context

The coronary arteries provide blood flow to the heart, allow-
ing it to pump. A blockage in those arteries abruptly reduces
blood flow and kills a patch of heart muscle, an event called an
acute coronary syndrome (ACS).7 Its consequences can be im-
mediate (e.g., arrhythmia, sudden death) and longer-term (e.g.,
fatigue, heart failure). Randomized control trials have shown two
treatments greatly improve mortality and morbidity if delivered
promptly: inserting a flexible metal tube into the blocked artery
to restore flow (stenting), and for severe cases, bypassing the

6. Abaluck et al. (2016) highlight how errors may produce both under- and
overtesting. Chan, Gentzkow, and Yu (2022) show how differences in skill alone,
without incentives, can produce what appears to be overtesting. Chandra and
Staiger (2020) focus on comparative advantage: because some health systems spe-
cialize and focus on certain tests and conditions, they may appear to overtreat
those. There is also a large clinical literature on error and its behavioral sources
(Dawes, Faust, and Meehl 1989; Elstein 1999; Redelmeier et al. 2001; Ægisdóttir
et al. 2006).

7. This is colloquially called a heart attack. We use “blockage” to refer to ACS,
to distinguish it from a broader category of problems involving damage to the heart
from any cause.
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blockage through open-heart surgery.8 Timely treatment, though,
requires timely diagnosis, a challenging task in the emergency
department (ED). Even life-threatening blockages have subtle
symptoms, for example, a mild squeezing in the chest, short-
ness of breath, nausea, or weakness—symptoms that also arise
from more benign conditions, such as acid reflux, viral infections,
and muscle strain. Any suspicion of blockage triggers two simple,
noninvasive tests: first the ECG, which measures the electrical
activity of the beating heart and can diagnose acute disturbances.
Second, a laboratory test called troponin, a component of heart
muscle that, when detected in the bloodstream, implies the death
of heart muscle cells. Both help estimate the likelihood of blockage
and the urgency of the problem. But no test done in the ED can
actually diagnose a blockage.

The definitive test for blockage is cardiac catheterization, an
invasive procedure carried out in a dedicated laboratory, separate
from the ED. A cardiologist inserts an instrument into the coro-
nary arteries, injects dye, and visualizes the presence and location
of blockages via X-ray. If a blockage is found, a stent is inserted to
open it during the same procedure. An alternative testing pathway
adds a step before catheterization: stress testing. This increases
patients’ heart activity (e.g., by exercising on a treadmill or with a
drug). If supply is limited by a blockage, this excess demand will
be detected via heart monitoring. The advantage of stress tests
is that they are less expensive and noninvasive: if negative, an
invasive catheterization can be avoided. The disadvantage is that
if positive, the patient still needs catheterization to deliver the
stent, and precious time has been wasted.

The proliferation of both tests has been part of the dra-
matic reductions in rates of missed blockages in the ED. Be-
fore widespread testing, miss rates were substantial: between
2% and 11% of blockages went undiagnosed in the ED (see Pope
et al. 2000). Both tests, though, are costly: thousands of dollars
for stress tests and tens of thousands for catheterization, plus
overnight observation and monitoring before testing. They also
have health risks, particularly catheterization, which is invasive.
In addition to a large dose of radiation, it involves injection of

8. See Amsterdam et al. (2014) for a review. Of note, the emergency treat-
ment we study is distinct from the practice of treating patients with more stable,
long-standing coronary artery disease, which does not appear to improve either
mortality or morbidity (Al-Lamee et al. 2018).
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dye that can cause kidney failure, a risk of arterial damage, and
stroke (Hamon et al. 2008). The decision to test must weigh po-
tential treatment gains against these costs.

II.B. Framework

In our model, patients are characterized by a feature vector
(X, Z) and drawn from a fixed distribution over (X, Z). Both X and
Z are observed by the physician, but only X is recorded in the data.
A blockage B = 1 occurs with probability b(X, Z), and a test T for
blockage yields a positive outcome with Pr(Y = 1|B, X, Z) = Pr(Y =
1|B) = p + B(q − p), where p and q are the false and true positive
rate, respectively, and q > p. Stenting S can treat the blockage, but
because the procedure requires knowing where to place the stent,
we assume it can only be done on patients with a positive test
Y = 1.9 Moreover, medical ethics would make treatment without
testing dubious. (More details are in Online Appendix A.1.C.) B,
T, Y, and S are all binary variables, and testing and stenting cost
cT and cS, respectively.

Using potential outcomes notation, a patient’s health is a
continuous variable WS whose value depends on stenting:

W S = W − B(η − Sτ K),

with E[W|X, Z, B] = w(X, Z). A blockage harms health by η; stent-
ing partially offsets this harm by τK. The binary variable K de-
notes patients who benefit less from treatment than others (e.g.,
the frail); they are said to be contraindicated. We assume τK = τ

− θK, where τ is the baseline treatment effect and the constant
θ captures the diminished benefits for contraindicated patients
due to their particular health risks from invasive treatment.10

Patients are contraindicated with probability k(X, Z); physicians
know k(X, Z) because it captures known risks, based on current
medical knowledge. We define τ̃ K = E[W1 − W0|Y = 1, K], the av-
erage benefit of treating everyone in the population with a positive
test. It differs from the average benefit of treating everyone with
a blockage, τK = E[W1 − W0|B = 1, K], because the test has false

9. For simplicity, we use stenting, the most common method, to denote all
treatments. Note that open-heart surgery also requires prior catheterization to
identify suitability and anatomy for surgery.

10. Practically, those with K = 1 may also have higher (health) costs of testing
itself, but we omit this for simplicity; it does not change our core empirical results,
which focus only on the K = 0 population.
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positives and negatives. Randomized trials of stenting, because
they enroll only those who show no contraindications and test pos-
itive, estimate τ̃ 0. Based on those results, we assume that τ̃ 0 > 0.
Finally, an untreated blockage can lead to adverse events after
the visit, denoted by a binary variable A. Adverse events occur
with probability μ + B(ζ − Sφ), so that if φ > 0 stenting reduces
their occurrence.

For a patient with characteristics (X, Z), socially optimal test-
ing and treatment would maximize expected health (E[WS|X, Z])
net of costs:

max
S,T

w(X, Z) − b(X, Z)(η − Sτ K) − cT T − cSS,

subject to the constraint that only tested patients with a positive
test can be stented.11 Physicians, however, may have a different
objective. They maximize

max
S,T

w(X, Z) − h(X, Z)(η − Sτ K) − (cT − ν)T − cSS.

Physician objectives deviate from social objectives in two ways.
First, they derive additional benefit ν > 0 from testing, for ex-
ample, they are paid by the test. Second, they may misestimate
the probability of a blockage as h(X, Z) rather than b(X, Z). Given
these differing objectives, the socially optimal and the physician
testing rule differ:

Socially optimal testing: Test iff b(X, Z) >
cT + pcS

qτ K − cS(q − p)
,

Physician testing: Test iff h(X, Z) >
cT − ν + pcS

qτ K − cS(q − p)
.

Private benefits from testing and misestimation of risk produce
clear inefficiencies: ν lowers the threshold for testing, and h(X, Z)
distorts who is perceived as above that threshold.12

11. Notice in this setup, testing only benefits health by affecting treatment;
it has no other indirect health benefits (such as through information generated
for later use). We discuss in greater detail how testing affects stenting in Online
Appendix A.1.C.

12. These two equations characterize testing. Treatment is more straight-
forward: both the physician and socially optimal rules treat all patients with a
positive test result.
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To empirically test for such distortions, note that any subset
of patients defined by (X, Z) is either above or below the thresh-
old for efficient testing. Those above the threshold should always
be tested, and their yield rate should be sufficiently high; those
below the threshold should never be tested, and they should have
few adverse events. To establish inefficiencies, therefore, we only
need to find patient pools that are either (i) tested but have low
average yield, or (ii) untested but have high adverse-event rates.
The following lemma formalizes this logic.

LEMMA 1. Consider any set of patients defined by a set of charac-
teristics V.

Suppose the tested patients in this set have lower than av-
erage yield, E[Y |(X, Z) ∈ V, T = 1] < E[Y |T = 1], and their
testing and yield rates further satisfy:

E[T |(X, Z) ∈ V] > 0︸ ︷︷ ︸
tested

and E[Y |(X, Z) ∈ V, T = 1] <
cT

τ̃ 0 − cS︸ ︷︷ ︸
but low yield

,

then V is called overtested and eliminating all testing in V
increases efficiency.

Suppose instead the testing and adverse-event rates in V
satisfy:

E[T |(X, Z) ∈ V, K = 0] < 1︸ ︷︷ ︸
untested

and

E[A|(X, Z) ∈ V, K = 0, T = 0] > μ + ζ

(
cT + pcS

qτ 0 − cS(q − p)

)
︸ ︷︷ ︸

but high adverse events

,

then V is called undertested and testing all K = 0 patients in
V increases efficiency.

If physician judgments are erroneous, h(X, Z) �= b(X, Z),
then there can simultaneously be both undertested and
overtested patient subsets. If accurate, h(X, Z) = b(X, Z),
there can only be overtested subsets, and this happens only
if ν > 0.

Proof. Consider a set of patients V, and define
T̄V = E[T |(X, Z) ∈ V], ȲV = E[Y |(X, Z) ∈ V, T = 1], and ĀV =
E[A|(X, Z) ∈ V, T = 0, K = 0]. First, suppose V satisfies the
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conditions for being overtested. If we were to stop testing all tested
patients in V, we would save cT T̄V per test. But we would no longer
get the benefits of the resulting treatments. Because the Y = 1 pa-
tients (and only those) get treated, these gains come from fraction
T̄V ȲV of patients. The net benefit of treating these patients is
equal to T̄V ȲV (xτ 0 − cS) where x is the fraction of these patients
that have a blockage. Tests are wasted if this is less than cT T̄V or
equivalently if ȲV < cT

xτ 0−cS
. We can upper bound xτ 0 with τ̃ 0, the

average benefit of treating all positive patients, because we have
assumed that tested patients in V have lower than average yield;
thus they have lower than average rates of blockage. As such, we
can say that the tests in V are wasted if ȲV < cT

τ̃ 0−cS
, which is true

given the definition of overtested.
Now suppose that V satisfies the conditions for being un-

dertested, and we were to test all K = 0 untested patients in
V. Given the optimal testing rule, for the K = 0 patients, it
is optimal to test these patients if b(X, Z) >

cT +pcS
qτ 0−cS(q−p) . Given

that ĀV = μ + ζb(X, Z), it is optimal to test these patients if
ĀV > μ + ζ ( cT +pcS

qτ K−cS(q−p) ), which is the condition for being under-
tested.

Finally, if we assume b(X, Z) = h(X, Z) the physician testing
rule above becomes

Test iff b(X, Z) >
cT + pcS

qτ K − cS(q − p)
,

and if ν > 0, it can only produce overtesting. If h(X, Z) �= b(X, Z),
it is clear that any kind of over- or undertesting is possible since
h(X, Z) can be set to any value. �

Several points are worth noting about this lemma. First, it il-
lustrates the role of machine learning in our analysis: it serves
to identify candidate subsets V where inefficiencies might be
present. Second, once identified, inefficiencies are evaluated using
observed outcomes: there is no imputation of outcomes. Instead,
the key calculations rely only on measured quantities: yield Y for
the tested and adverse events A for the untested. Similarly, the
relevant thresholds are defined using the clinical literature, as
we describe in detail below.13 Third, it allows physicians to have

13. The adverse event threshold in the lemma cannot be easily stated in terms
of model primitives (i.e., the risk of blockage, the imperfect performance of testing,
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access to information Z that the algorithm does not: it holds for
subsets V identified using only X. One crucial bit of information,
though, must be treated carefully: to identify undertesting, we
must know K = 0. To do so, in the empirical work, we initially
assume that k(·) depends only on X, but we weaken this assump-
tion in Section IV.C to allow for it to depend on X and Z. Finally,
the lemma links the evidence to an underlying model of physician
behavior. Moral hazard alone (bad incentives) can produce over-
but not undertesting; misprediction, however, can produce both.

It is useful to contrast this model with two others.
Chan, Gentzkow, and Yu (2022) model radiologists who re-
ceive a noisy signal about patient risk and choose a diagnostic
threshold.14 While superficially analogous to h(X, Z) and ν, a cru-
cial difference is that in their model physicians are aware that
their signal is noisy (and compensate for it, e.g., by testing more
to reduce their miss rate). Physicians in our model are unaware
of their errors and view their predictions as correct. Our model is
closest to Abaluck et al. (2016), who also model physician error.
The key difference with them is in how we characterize undertest-
ing: we do not assume b(X) = b(X, Z), that is, that the econome-
trician can recover an accurate model of the risk of blockage with
respect to the physician’s information, nor define undertesting as
deviations of decisions from predicted risk. Instead, we assume
measured health outcomes reflect undiagnosed blockage and use
these to characterize undertesting.

III. DATA AND METHODS

Our primary data come from the electronic health records
(EHRs) of a large urban hospital from January 2010 to May 2015.
It is an academic medical center, consistently ranked in the top 10
best in the country and affiliated with a top-ranked medical school,
thus widely believed to provide high-quality care. We begin with
all visits to the ED in that period, then exclude patients 80 years
or older, those with poor prognosis like known metastatic cancer
or dementia, those with hospice or nursing home care, those with

the effect of treatment on health) because several key parameters (i.e., p, q, μ, ζ ,
φ) are unknown.

14. Norris (2019) makes similar points in a model of judicial decision-making.
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a known recent blockage (or treatment of one), and those who died
in the ED before they could be sent for testing.15

We observe the patient’s main symptom, but do not exclude
those with apparently obvious noncardiac problems to avoid po-
tentially arbitrary judgments. While some cases seem clear (e.g.,
an ankle sprain), many are not: blockage can present in various
ways. Worse, we do not observe all of a patient’s symptoms, only
the one judged most important by the triage nurse.16 Instead, we
use the full sample, and include recorded symptoms in our pre-
dictor to make it an empirical question. By including cases highly
unlikely to be a blockage, the algorithmic prediction task does
become harder: very high-risk cases are comingled with (effec-
tively) zero-risk patients. If it fails, it will appear as an inability to
separate high-risk patients from less risky ones. Our final sample
has 246,265 ED visits (indexed by j), by 129,859 patients (indexed
by i).

III.A. Definitions of Key Variables

In this sample, we define testing Tij = 1 if patient i has proce-
dure codes for either stress testing or catheterization in the 10-day
window (inclusive) following visit j.17 We define treatment Sij =
1 if there is a procedure code for stenting or open-heart surgery
(CABG) in the 10-day window following the visit.

To define test yield Yij, we rely on the principle that a
positive test implies stenting: a cardiologist should not subject
a patient to the risks of emergency catheterization unless she
has already decided the patient would benefit from a stent if
a blockage is detected. So we set Yij = Sij for the tested. As
we discuss further in Online Appendix A.1.C, physicians may
overtreat conditional on test results (e.g., because of moral hazard
or false-positive tests). One might worry this by itself could arti-
ficially produce the results we find. It does not for two reasons.
First, overtesting is established through low yield. If physicians

15. See Shanmugam et al. (2015), Obermeyer et al. (2017) for rationale and
details.

16. Online Appendix Table A.17 shows the presenting symptom for those
ultimately found to have blockage. Nonobvious symptoms (e.g., foot and ankle
complaints, nose bleed) are rare but present.

17. We collapse these two tests into one for simplicity (as is reflected in our
model). Treating the two tests separately does change our results materially. In
Online Appendix A.3, we show the results of performing counterfactuals for each
test separately, for example, eliminating all stress tests.
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overtreat, yield will be too high, making it less likely we find
overtesting. Second, establishing undertesting does not use infor-
mation on the yield of testing—only health outcomes—and thus is
unaffected.

To flag patients with contraindications Kij = 1, we first ob-
serve whether they show evidence of poor health prior to visit
j (as described above). Second, we observe whether they show
evidence of damage to heart muscle by the end of visit j:18 physi-
cians can note such diagnoses, which is financially incentivized,
or we can observe a positive troponin laboratory test suggestive of
such problems. If either is present, we assume the physician was
aware of possible blockage but decided not to pursue it further
because of a contraindication. This assumes all contraindications
are measured in our data. In Section IV.C, we explore a broader
set of contraindications unobserved in our data but observed by
the physician.

Cost-effectiveness is calculated using parameters and as-
sumptions from the literature, summarized in Mahoney et al.
(2002) and described in more detail in Online Appendix A.2. Es-
timates of the benefit of treatment are drawn from clinical trials,
which provide estimates of average gains from timely treatment.
These trials estimate short-term (e.g., annual) benefits in terms
of mortality and morbidity, but total benefits depend on life ex-
pectancy. In our model, we abstracted from these considerations
for simplicity. Here, to account for actual welfare gains over the life
span, we estimate a patient’s life expectancy based on their age
and individual basket of previsit observed chronic illnesses. We
then calculate the life-years a patient would lose from a blockage,
both fatal and nonfatal (the latter using a standard discount rate
for quality of life losses). Finally, we assume stenting produces a
25% relative reduction in the impact of a blockage; this estimate
comes from the most relevant trials, those that randomize testing
pathways, for example, immediate versus delayed catheterization.
We conduct a sensitivity analysis using a wide range of plausible
estimates in Online Appendix A.2. This yields individual-level es-
timates of the gains from timely treatment, based on the average
effect of treatment and the patient’s idiosyncratic medical history.

We form an indicator Aij = 1 if a patient i experiences a major
adverse cardiac event after visit j within a short time window

18. We use this term to denote the medical concepts of infarction and ischemia,
a broad category of heart problems including blockage.
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(30 days). The intuition is that blockages have consequences—
indeed, this is why we test and treat them—that manifest shortly
after onset. We draw on clinical literature that defines these
events using the EHR, in a way that shows good agreement
with expert judgment after chart review (e.g., Wei et al. 2014).
These events fall into three categories: (i) delayed diagnosis and
treatment of blockage and diagnosed damage to heart muscle,
which we confirm with laboratory biomarkers (positive troponin);
(ii) malignant arrhythmia, which we measure using diagno-
sis codes and cardiopulmonary resuscitation procedures; and
(iii) mortality, which we obtain via linkage to Social Security
Death Index data. Importantly, apart from mortality, adverse
events are only measured if the patient returns to the same
health system we study for care. So Aij may be a lower bound on
true adverse event rates, relative to widely accepted thresholds
from studies that perform active follow-up of enrolled patients.
To define objective thresholds for levels of risk that would
mandate consideration of testing for blockage, we rely on widely
implemented decision rules (e.g., the HEART score of Backus
et al. 2010), supported by recommendations from professional
societies: 2% over the 30 days after visits. We do not assume
such thresholds are optimal; rather, we assume that physicians
believe them to be optimal, and thus would not knowingly leave
high-risk patients untested. More details are in Online Appendix
A.1.C, and additional justification of this threshold based on
cost-effectiveness is in Online Appendix A.2.B.

Table I shows that the overall rate of testing is 2.9% of all
visits (1.3% with immediate catheterization and 2.0% with stress
tests, of which 0.3% subsequently had catheterization, implying
a positive stress test). Table II shows that among the tested, the
rate of treatment is low: 14.6% (12.9% with stents and 1.8% via
open-heart surgery). Among the untested, 27.5% and 11.1% have
an ECG and troponin performed, respectively, indicating some
suspicion for blockage; 1.2% and 1.9% have explicit evidence of
damage to the heart, via the physician’s diagnosis ex post and a
positive troponin test, respectively. The 30-day adverse event rate
is 1.1%.

III.B. Algorithm Design

Our machine learning estimator of risk m̂(·) is an ensemble
model that combines gradient boosted trees and LASSO. It takes
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TABLE I
SAMPLE SUMMARY STATISTICS

All Tested Untested

Patients 129,859 6,088 123,771
Visits 246,265 7,320 238,945
Demographics

Age (years) 42 58 42
(0.033) (0.146) (0.033)

Female 0.612 0.459 0.616
(<0.001) (0.006) (<0.001)

Black 0.262 0.216 0.264
(<0.001) (0.005) (<0.001)

Hispanic 0.237 0.145 0.24
(<0.001) (0.004) (<0.001)

White 0.436 0.588 0.431
(<0.001) (0.006) (0.001)

Heart disease risk
Past heart disease 0.122 0.393 0.114

(<0.001) (0.006) (<0.001)
Diabetes 0.142 0.294 0.137

(<0.001) (0.005) (<0.001)
Hypertension 0.253 0.517 0.245

(<0.001) (0.006) (<0.001)
Cholesterol 0.163 0.418 0.156

(<0.001) (0.006) (<0.001)
Any risk factor 0.361 0.626 0.352

(<0.001) (0.006) (<0.001)
Triage shifts

Number of shifts 3,951
Patients per shift 62.3

Notes. Numbers are fractions unless otherwise noted, reported as mean (std. err.). As a measure of heart
disease, past heart disease is the fraction with any diagnosis of heart problems (ischemia), stroke, or pe-
ripheral vascular disease prior to the visit. Frequency of individual risk factors (diabetes, hypertension, high
cholesterol) is shown, along with the fraction with any of these risk factors.

as its input vector Xij 16,405 characteristics of patient i, observ-
able at the start of visit j.19 This includes patient demographics;
diagnoses, procedures, laboratory results, and quantitative vital
signs, measured over the two years prior to the visit; and the
symptom recorded at the ED triage desk at the start of the visit.
We train estimator m̂(Xij) to predict the yield of testing Yij among

19. We carefully define Xij to contain only information known to be available
to the physician at the time of the decision. We exclude information acquired after
triage (i.e., on arrival to the ED): physician notes (which can be completed after
the visit) or any data (e.g., ECGs, labs) collected during the visit.
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TABLE II
TESTING OUTCOMES

All Tested Untested

Tested (10 days) 0.029 – –
(<0.001) – –

Catheterization 0.013 – –
(<0.001) – –

Stress testing 0.020 – –
(<0.001) – –

Yield of testing (10 days) 0.004 0.146 –
(<0.001) (0.004) –

Stenting 0.004 0.129 –
(<0.001) (0.004) –

Open-heart surgery 0.001 0.018 –
(<0.001) (0.002) –

Adverse events (30 days) 0.019 0.261 0.011
(<0.001) (0.005) (<0.001)

Diagnosed event 0.016 0.253 0.008
(<0.001) (0.005) (<0.001)

Death 0.004 0.017 0.004
(<0.001) (0.002) (<0.001)

One-year mortality 0.016 0.048 0.015
(<0.001) (0.002) (<0.001)

Physician suspicion (in-ED)
ECG done 0.294 1.0 0.275

(<0.001) (0.004) (<0.001)
Troponin done 0.131 0.792 0.111

(<0.001) (0.005) (<0.001)
Diagnosed heart damage 0.023 0.391 0.012

(<0.001) (0.006) (<0.001)
Positive troponin 0.025 0.221 0.019

(<0.001) (0.005) (<0.001)
Troponin result (ng/ml) 0.278 0.72 0.124
(if positive) (0.003) (0.005) (0.002)

Notes. Numbers are fractions unless otherwise noted, reported as mean (std. err.). ECG and troponin are
low-cost screening tests, done for even a very slight suspicion of blockage. Diagnosed heart damage reflects
codes for infarction or ischemia assigned at the end of a visit, and positive troponin indicates damage to heart
muscle; both are excluded from calculation of 30-day adverse event rates in untested patients.

the tested, as a close proxy for risk of blockage at the time of an ED
visit.20 To leverage risk information contained in the much larger
set of untested patients, we also use predictions on adverse events
Aij = 1 among untested patients as inputs to the model predicting
Yij. Training happens in a random 75% sample of patients, and

20. To streamline terminology, we refer to this quantity as predicted risk.
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all results below are shown in the remaining 25% hold-out set,
except where noted. We split our data set at the patient, not the
observation, level, so that all visits from a given patient are as-
signed to either the training or hold-out set. More details can be
found in Online Appendix A.4. Although we cannot share patient-
level information to protect privacy, our code repository is publicly
available on GitLab.21

We emphasize that Lemma 1 is valid even if the algo-
rithm is inefficient (or even inconsistent) since it applies to any
subset, however identified. Inefficient algorithms may fail to find
under- or overtested subsets if they do exist. But if they find one
that satisfies the inequalities, then it will be an inefficiency, irre-
spective of the algorithm’s accuracy. It should be added that even
a perfect algorithm where m(X) = E[Y|X] may fail to find all in-
efficiencies because it does not have access to Z and so may (for
example) miss physician errors involving Z.

IV. RESULTS

IV.A. Overtesting

Figure I, Panel A shows how well our risk model predicts
the yield of testing. In the hold-out set, we sort tested patients
into decile bins based on predicted risk. For each bin (x-axis), we
calculate the yield of testing (y-axis). Comfortingly, realized yield
rises with predicted yield. The algorithm also produces a wide
dispersion in realized yields—from 0.01 in the lowest decile to
0.55 in the highest decile.

Figure I, Panel B converts these yields into cost-effectiveness.
As in the top panel, patients are sorted by predicted risk, but this
time into quintile bins (x-axis).22 The y-axis now shows the im-
plied cost-effectiveness of testing patients in a bin, in units of
thousands of dollars per life-year. The y-axis shows a commonly
used threshold for judging cost-effectiveness, $150,000, as well
as the cost-effectiveness of selected other procedures for compar-
ison. This illustrates a great deal of inefficient testing. The bot-
tom bin of tests is extremely cost-ineffective: $1,352,466 per life-
year. For comparison, biologics for rare diseases (some of the least

21. https://www.gitlab.com/labsysmed/zolab-projects/stressed ensemble
22. We use larger bins here because the denominator depends on the yield

rate, which approaches zero in the lowest-risk patients, leading to noisy estimates
in smaller bins.
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FIGURE I

Yield and Cost-Effectiveness of Testing in Tested Patients

Realized yield of testing (Panel A) and cost-effectiveness (Panel B) of tests (y-
axis; sample mean shown with an arrow) in the tested, by decile bins of predicted
risk (x-axis). The cost-effectiveness line shows our preferred specification, and the
shaded interval shows sensitivity to a range of estimated treatment effects from
the literature. For comparison, we include cost-effectiveness estimates of several
other tests and treatments.
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cost-effective technologies that health systems sometimes pay for)
are typically estimated at around $300,000 per quality adjusted
life-year.23 Even the second-lowest bin is very cost-ineffective at
$318,603 dollars per life-year.

With these data, we can calculate a precise policy counterfac-
tual as described in Lemma 1: dropping individual tests whose
cost-effectiveness predictably falls below a threshold. For exam-
ple, at a $150,000 life-year valuation, we would drop 62.4% of the
lowest-value tests, with a combined cost-effectiveness of $265,114
per life-year.24 These results only deal with one kind of counter-
factual: eliminating the particular tests physicians decided to do
(i.e., stress tests or catheterizations) on patients in a given risk
bin. Since we have two types of tests, Online Appendix A.3 also
explores other counterfactuals. A notable finding is that stress
testing (as opposed to catheterization) is so low-value that elimi-
nating it altogether would improve welfare, as has been previously
suggested (Prasad, Cheung, and Cifu 2012). Taken together, the
results in Figure I and these policy counterfactuals suggest a great
deal of overtesting.

IV.B. Undertesting

At the same time, testing in the high-risk bins appears very
cost effective. Table III, column (2) shows that in the highest-risk
quintile bins, tests cost only $46,017 per life-year, comparable with
cost-effective interventions like dialysis. In column (3), we show
testing rate by predicted risk for all patients (for comparability,
these bins are formed using the same bin cutoffs used in the tested
set, so they are not equally sized). We see that physicians do test
higher-risk patients more. But strikingly, many high-risk patients
go untested—only 38.3% in the top bin are actually tested.

Of course, this only tells us that the physician and the model
disagree, not who is right.25 The physician has access to a host of

23. Online Appendix A.2 shows that these estimates are not sensitive to the
particular choice of parameters in our analysis, and in particular hold over wide
ranges of possible treatment effect sizes.

24. In Lemma 1, establishing that a set of patients were overtested also re-
quired that this set had lower than average yield. That condition also holds here,
as is seen in Table III, where the bottom six deciles have yield well below the
average of 0.146.

25. To some extent, any two models of risk—even very good ones—may differ
due to noise. So perhaps any discrepancies we see between the physician and the
model could simply be the consequence of comparing two well-fit models to each
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TABLE III
REALIZED YIELD, COST-EFFECTIVENESS, AND TESTING RATE

Yield rate Cost-effectiveness ($) Test rate
(std. err.) (lower–upper bound) (std. err.)

(1) (2) (3)

Full sample 0.146 89,714 0.029
(0.004) (74,152–113,543) (<0.001)

By risk bin
1 0.011 1,352,466 0.012

(0.006) (1,034,814–1,951,515) (<0.001)
2 0.036 318,603 0.017

(0.01) (257,296–418,265) (0.001)
3 0.07 192,482 0.047

(0.014) (157,552–247,314) (0.002)
4 0.168 114,146 0.088

(0.02) (94,154–144,914) (0.004)
5 0.429 46,017 0.383

(0.026) (38,178–57,907) (0.016)

N 1,784 1,784 61,965

Notes. Yield of testing (1) and cost-effectiveness of testing (2) in the tested, and test rate across all visits
(3), by quintile bins of predicted risk. Risk bin cutoffs are defined in the tested population, so bins here
are equally sized in columns (1) and (2), but not in (3) (which describes the entire population—tested and
untested). Lower–upper bounds on cost-effectiveness are defined by a range of plausible estimates of the effect
of testing on health, from randomized trials.

information unavailable to the model: how the patient looks, what
they say, or crucial data in the ED such as X-rays or ECGs. These
data elements are likely to be predictive of yield; if they are also
predictive of testing, this private information will create selection
bias: untested patients will have far lower yield than predicted
based on observables.

Because we lack test results on the untested, we have no
way to quantify the magnitude of the problem. But a simple
calculation suggests a large bias. The hold-out set has 266 pos-
itive tests. Taking model predictions at face value would imply
10 times as many positives (2,738) were we to test the predicted
high-risk untested—implausibly large. To show the role of pri-
vate information more directly, Online Appendix A.5 incorporates
data from ECGs, observed by the physician but not routinely

other. In Online Appendix Figure A.11, we compare two machine learning models
fit on separate samples of our training set and find that these correlate much
more strongly than the model and the physician do. More important, we perform a
variety of tests that directly test for error, both in the sense of welfare-enhancing
counterfactuals and specific behavioral errors.
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observable in health data sets, into risk predictions.26 For patients
with ECG data available, we show that several ECG features (e.g.,
ST-elevation, ST-depression) predict both the physician’s test de-
cision and the yield of testing, conditional on m̂(X): physicians are
using these data effectively. We then directly incorporate the ECG
waveform into new risk predictions, via a deep learning model.
This decreases model-predicted risk for 97.5% of patients, and
100% of the highest-risk untested. So the model without the ECG
was significantly overestimating the risk of the untested patients.
Of course, the ECG is just one of many critical variables we do not
(and cannot) observe.

Following Lemma 1, we look for evidence of undertesting in
the form of adverse events resulting from untreated blockages, in
the 30 days after visits. Among all eligible untested patients, the
rate of adverse events is 1.1%, well below the 2% clinical thresh-
old, implying (reassuringly) that testing all untested patients does
not make sense.27 Figure II shows these adverse-event rates (y-
axis) by decile bins of predicted risk. Again, for comparability
we use bin cutoffs defined in the tested, meaning bins are of un-
equal sizes in the untested: in particular, because the untested
are lower risk than the tested, bin size decreases in risk. Panel
A shows that patients in high-risk bins have very high 30-day
adverse-event rates. For example, the highest-risk bin contains
0.15% of the untested, 15.6% of which go on to have an adverse
event. The second-highest-risk bin contains 0.75% of the untested
and has an adverse event rate of 6.81%; together the top two bins
have an adverse event rate of 8.26%. In fact, the crossover point
where the adverse event rate becomes statistically indistinguish-
able from the 2% threshold is the sixth risk bin, which means that
the top four bins—which make up 6.9% of the untested—all have
high enough adverse event rates to merit consideration for testing
under current guidelines.

These adverse events are not simply billing codes, which
might exaggerate the incidence of actual health problems, due

26. Since not all patients have ECGs, even in our data it cannot be used in
our main algorithm.

27. In Online Appendix Figure A.2, we show that the 2% adverse event thresh-
old used here in the untested aligns (approximately) with the cost-effectiveness
thresholds we used in the tested: patients whose predicted risk gave them a cost-
effectiveness of $150,000 per life-year when tested have an adverse-event rate of
at least 3.4% when untested.
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FIGURE II

Adverse Events in Untested Patients (30 Days after Visits)

Thirty-day adverse event rates among untested patients (y-axis), by decile bins
of predicted risk (x-axis). Risk bin cutoffs are defined in the tested population, so
bins here are not equally sized: the percent in each bin is shown above the x-axis.
Panel A shows the total adverse-event rate (the top of the highest 95% confidence
interval is truncated). The horizontal line shows the 2% threshold above which
testing is recommended by clinical guidelines; the highest-risk 14% (top six bins)
have a rate significantly above 2%. The bottom panels show two subset categories
of adverse events that make up the total: (B) diagnosed adverse events (heart
damage, confirmed with laboratory biomarkers; and cardiac arrest), (C) death (via
linkage to Social Security data); bins here are quartiles of predicted risk (because
outcomes are less frequent).

to incentives to overtest or treat. Panel B shows the subset
of adverse events related to diagnosed blockage, all confirmed
with biomarker evidence of damage to the heart muscle (posi-
tive troponin laboratory results), as well as dangerous arrythmias
(ventricular fibrillation and tachycardia, or procedure codes for
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defibrillation or CPR). In the highest-risk bin, 4.9% have one of
these events. Panel C shows 30-day mortality. The highest-risk
bin experiences death at a rate of 3.3%, comprising nearly half
(45%) of all adverse events in this bin. These data alone suggest a
great deal of undertesting. However, there is a potential confound,
which we address next.

IV.C. Accounting for Differences in Treatment Benefits

These high adverse event rates establish that predicted high-
risk patients who go untested are indeed high risk. But it does
not establish that failing to test them was a mistake. Adverse
events rule out private information by physicians about risk,
but not private information about the suitability of treatment.
It is possible that physicians recognized these patients as being
high risk, but also recognized them as having lower return to
treatment and chose not to test them for that reason. In partic-
ular, we may have mismeasured Kij. In excluding patients Kij =
0 from our sample (by excluding those with prior ill health and
by excluding untested patients in whom the physician appears
to suspect heart problems), our measure Kij may have failed to
capture other elements of K that the physician observes. One fact
provides prima facie evidence that these unobservables are not
large: the average age of the untested we flag for testing is 58.5
(close to the mean age of the tested, 57.8), whereas the average
age of those with observed contraindications is 68.5. At least on
this crucial observable, the high-risk untested look more like the
tested than the too frail to test.

To address this problem more thoroughly, we use a clini-
cal fact. When physicians suspect a blockage, even if the pa-
tient is ineligible for testing or treatment, there are still impor-
tant actions they can and must take. At a minimum, everyone
the physician suspects of a blockage will be given an ECG—
a low-cost, noninvasive test. Even for treatment-ineligible pa-
tients, the ECG guides medications (e.g., blood thinners) and de-
cisions about intensity of monitoring (e.g., whether to admit to
the ICU). Similarly, the troponin blood test will also be checked,
as it provides critical information on the nature and extent of
any blockage. So if we remove patients with an ECG or tro-
ponin from our calculations, we will have removed all patients
in whom physicians had even the slightest suspicion of a heart

D
ow

nloaded from
 https://academ

ic.oup.com
/qje/article/137/2/679/6449024 by guest on 22 February 2023



702 THE QUARTERLY JOURNAL OF ECONOMICS

problem, leaving us with a pool of unsuspected patients.28 Within
the remaining unsuspected pool, we recalculate the adverse event
rate. If the high adverse event rates in the whole population
are due to physicians knowingly leaving some high-risk patients
untested, because they are unsuitable for treatment, then this
unsuspected pool should have a very low adverse event rate, and
specifically the rates should be below the clinical threshold for
testing.

The top two panels of Figure III first show the fraction of all
patients who are both untested, and did not receive an ECG (Panel
A) or troponin (Panel B), by quartile bin of predicted risk. As ex-
pected, higher-risk patients are on average perceived as such by
physicians: they are less likely to be untested and lack one of these
tests. Though decreasing, the fractions nonetheless remain sub-
stantial in the highest-risk bin: 19.1% are untested and lack an
ECG (versus 77.7% in the lowest-risk bin), and 41.2% are untested
and lack a troponin result (versus 93.3% in the lowest-risk bin).
The bottom two panels show the adverse event rates in only these
untested patients without an ECG or without troponin. For the
highest-risk untested patients without such suspicion for heart
attack, adverse-event rates remain high: 4.3% in those without
an ECG, and 6.6% in those without a troponin. These rates are
3.2 percentage points (std. err. 1.3) and 1.2 percentage points (std.
err. 1.1) lower than the 7.5% rate in the full population above, re-
spectively; but they still significantly exceed the clinical threshold
for testing of 2%.29 Together, these results suggest that physicians
do have private information both about the risk of blockage and
about suitability for treatment—but that even after accounting
for them, there is still substantial undertesting.

28. Because some patients are given ECGs and troponins for other reasons,
this approach produces a lower bound on the extent of undertesting (it removes
treatment-ineligible patients but also others).

29. Online Appendix A.6.C describes another sensitivity analysis, in which we
eliminate patients who were admitted to the hospital with an uncertain diagnosis
(e.g., those with a symptom-based diagnosis code like chest pain, as opposed to a
specific disease), in whom physicians may have latent concern for blockage. When
we calculate adverse event rates in the remaining patients—those in whom the
physician felt sure enough to assign an alternative diagnosis other than blockage,
and those discharged home from the ED and thus at very low risk of serious
problems—we find similar results: a rate of adverse events equal to 8.43% in the
highest-risk bin, as opposed to 8.26% in the full population.
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FIGURE III

Adverse Events in Untested and Unsuspected Patients

Top panels: fraction of patients in whom physicians do not appear to suspect
blockage. Panel A shows the fraction untested and lacking an electrocardiogram
(ECG); Panel B shows the fraction untested and lacking a troponin laboratory
test. Both ECG and troponin are low-cost tests used to screen for blockage; they
are done even in patients who may be ineligible for invasive treatment. Fractions
are shown by quartile risk bins, with bin cutoffs defined in the tested population
(so bins here are not equally sized). Bottom panels: rate of 30-day adverse events
(diagnosed events and death) after visits (y-axis), by bin of predicted risk (x-axis),
among untested patients lacking (C) an ECG, and (D) a troponin. The horizontal
line shows the clinical threshold above which testing is recommended by clinical
guidelines.

IV.D. Natural Experiment

Although these data provide clear evidence of undertesting,
this evidence is indirect, based on clinical thresholds. It would
be reassuring to have more direct evidence that testing these
untested high-risk patients would affect their health. Ideally, we
would measure the effect of testing some high-risk patients at
random, and see if in fact mortality and long-term adverse event
rates decrease significantly. While such an experiment is beyond
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the scope of this article, we can exploit natural variation in our
data that might serve as a (limited) proxy for it.30

When a patient arrives at the ED, they are seen by a team of
providers, largely nurses, at the triage desk. As Chan and Gruber
(2020) note, the triage process can influence many downstream
decisions by physicians, including testing. For example, a nurse
can notice that a patient with chest pain is sweaty or not; he can
ascribe it to the hot and humid weather or not; and he can share
his impressions with the physician when he brings the patient
back into the room or not. As a result, we hypothesized that the
testing rate, while ultimately determined by the physician, could
be affected by the particular make-up of the team working the
triage desk. Because who is present varies over time, this creates
a natural experiment based on the exact time a patient showed up.
Because shifts are not perfectly synchronized with the calendar,
we can also control for day of week and hour of day.

Our data do not track the exact identity of the triage team,
but we know the times at which shifts begin and end. This lets us
calculate the average testing rate of all other patients seen on a
shift, T̄− j , to instrument for whether patient-visit j is tested. For
this to be a valid instrument, we assume that (i) the triage shift
affects long-term health outcomes only through testing, and (ii)
patients are balanced on unobservables across shifts; we discuss
both assumptions below. We perform this analysis on a slightly
different sample than used so far. To maximize power, we use the
full data set, not just the hold-out. To avoid overfitting, we use
fivefold cross-validation to predict risk. In addition, to address
nonindependence of health outcomes across visits, we restrict the
sample to each patient’s first visit.31

Overall, there is reasonable variation in likelihood of test-
ing across shifts: for example, a patient in the highest-risk
bin arriving on a Monday evening is 18% more likely to be
tested by the highest- (19.9%) versus lowest-decile (16.8%) shifts.
Regressing a visit’s test (Tj) on the leave-one-out shift testing rate

30. In the context of the framework, the natural experiment measures the
health effect of testing due to the treatments that result from that testing. As such,
it measures the joint effect of the increased propensity to test and the treatment
effect conditional on a positive test. This will tell us whether the resulting health
benefits are above or below what would merit testing.

31. Results restricted to the hold-out are very similar, just less precise as we
would expect given the sample size. We also check that results are similar if we
include all visits and cluster standard errors, but prefer this first-visit specification
for its transparency.
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(T̄− j), controlling for time fixed effects (year, week of year, day
of week, and hour of day) and patient risk, we find that a one
standard deviation increase in shift testing rate (2.3 percentage
points) increases individual testing probability by 0.19 percent-
age points (std. err. 0.06), or 6.7% of the base test rate (see Online
Appendix Table A.12).32

Figure IV shows how patient observables compare across
shifts. The top panel shows the results of regressing a pretriage
variable Xj on the shift testing rate. We do find statistically sig-
nificant differences in predicted risk across triage testing rates
(p = .051), but they are very small in magnitude: a 1 standard
deviation increase in T̄− j implies a 0.007 standard deviation dif-
ference in predicted risk. But reassuringly, we find no statistically
significant difference when we test for differences in predicted
risk nonlinearly (by risk bin), nor in age, sex, self-reported race,
income, or risk factors for heart disease. Together, these results
suggest that observables are (largely) balanced across shifts. In
the bottom panel, we plot for each shift the average testing rate
for all patients who arrive in that shift (in percentile terms, x-
axis) and the average predicted risk of those patients (y-axis). We
see that at every level of testing rate, there is large variability in
predicted risk.

In Online Appendix Table A.12, as another test for balance,
we regress test Tj on predicted risk and its interaction with T̄− j . If
patients in high-testing shifts are riskier on unobservables, they
should have higher yield than expected based on risk, leading
the interaction term to be positive. In fact, there is no significant
interaction. While estimates are imprecise, they do argue against
large imbalance on unobservables.

We then measure the overall effect of testing on health, as
measured by long-term adverse events A�

j , by estimating:33

(1) A�
j = β0 + T̄− jβ1 + m̂(Xij)β2 + Time Controls jβ3 + ε j .

32. In Online Appendix Table A.11, we also rule out that hospital capacity
constraints on testing facilities might be reducing the likelihood of testing, by
showing that a visit’s likelihood of testing is not affected by the number of tests
done in the 12–28 hours before the visit.

33. We measure some outcomes over the 31–365 days after ED visits because
tested patients are mechanically more likely to be diagnosed with heart problems
than untested patients, simply by virtue of being in the hospital for testing. By
contrast, our mortality data come from linkage to Social Security data, and so do
not suffer from this difference in ascertainment.
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FIGURE IV

Balance and Risk Variation across Triage Shifts

Panel A shows balance checks in a quasi-experiment, in which patients arriving
during different triage shifts are tested at higher or lower rates. Each point shows
the coefficient and confidence interval on the leave-one-out shift testing rate (T̄− j ),
from a regression of a given pretriage variable on T̄− j . Panel B plots, for each shift,
the average testing rate for all patients who arrive in that shift (in percentile
terms, x-axis) and the average predicted risk of those patients (y-axis). Each point
represents one of 3,951 shifts in our data set, and the density plot on the right
shows the overall distribution of mean risk. *Age is divided by 100 for scale.
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TABLE IV
EFFECT OF TESTING ON HEALTH, USING SHIFT TESTING VARIATION

Diagnosed event Death Death
(31–365) (31–365) (0–365)

(1) (2) (3)

Panel A: Average effect
Predicted risk 0.05∗∗∗ 0.15∗∗∗ 0.25∗∗∗

(0.005) (0.01) (0.01)
Shift test rate 0.02 0.005 0.005

(0.01) (0.01) (0.02)

Observations 123,289 123,289 123,289

Panel B: Heterogeneous effect by risk
Predicted risk 0.06∗∗∗ 0.17∗∗∗ 0.27∗∗∗

(0.01) (0.01) (0.01)
Shift test rate 0.04∗∗ 0.04∗∗ 0.04∗

(0.02) (0.02) (0.02)
Predicted risk − 0.25∗ − 0.49∗∗∗ − 0.43∗∗
× Shift test rate (0.15) (0.17) (0.20)

Observations 123,289 123,289 123,289
Outcome rate 0.018 0.012 0.016
Outcome rate, top risk bin 0.027 0.046 0.077

Notes. Panel A: Regression of diagnosed adverse events (column (1)) and death over days 31–365 after visits
(column (2)) on leave-one-out shift testing rate. We use 31–365 days because tested patients are mechanically
more likely to be diagnosed with heart problems than untested patients in the first 30 days. Our mortality
data, by contrast, do not suffer from this difference in ascertainment, so death over the full year after visits
is also shown (column (3)). Panel B: The same regression, but with an additional interaction term that allows
the effect of testing to vary by predicted risk. Outcome rates, overall and in the top risk quintile, are shown
below. Controls for time (fixed effects: year, week of year, day of week, and hour of day) and patient risk
are included but not shown. This sample includes only patient i’s first visit j, to address nonindependence of
outcomes across visits, so the sample size is reduced. ∗ p < .1; ∗∗ p < .05; ∗∗∗ p < .01.

That is, we regress adverse events in the year after visits on shift
testing rates, controlling for time fixed effects (year, week of year,
day of week, and hour of day) and patient risk. Table IV, Panel A
shows that on average, we find no statistically significant effects
on health outcomes. Neither diagnosed adverse events from day
31–365 after visits (column (1)) nor death, whether measured over
the same period as diagnosed events (column (2)) or over the full
year after visits (column (3)), are affected.

As before, the average effect may conceal a great deal of het-
erogeneity: undertesting is not universal but only in high-risk
patients. So we reestimate equation (1), but include an interac-
tion term T̄− j × m̂(Xj), which allows the effect of testing to vary
by predicted risk. Table IV, Panel B shows this interaction term
to be large, negative, and significant, indicating lower rates of
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diagnosed events and death in higher-risk patients. To scale this
coefficient, the implied reduction in one-year mortality for the
highest-risk quintile is 2.6 percentage points (34%) if they ar-
rive on the highest- versus lowest-testing shifts. This confirms
that physician private information about treatment heterogeneity
cannot account for our findings: increased testing improves health
in high-risk patients. It also provides some reassurance regard-
ing the exclusion restriction in our experiment: if triage affected
long-term outcomes in ways unrelated to testing for blockage, we
would expect to see broader effects, not just among the predicted
high-risk for blockage. We emphasize that this does not imply
that all high-risk untested patients would benefit from testing:
we are constrained by the extent of variation in testing rates in
our quasi-experiment and can say nothing about patients who are
never tested (i.e., even in the highest-testing shifts).

We use these estimates to simulate counterfactuals that
bound the extent of undertesting. We first estimate a random
effects model of a shift’s testing rates and group shifts into
quartiles based on its random effect.34 Suppose we know a pre-
dicted risk bin has positive benefits from testing. Our counterfac-
tual assumes all such patients are assigned to the highest-testing
shifts: so the difference between a patient’s actual shift testing
rate and highest-quartile shift test rate is counted as undertest-
ing. The key assumption is which risk bins have positive benefits
from testing.

We take two approaches. First and most conservative, we as-
sume only those with significant one-year mortality reductions
from testing qualify, which based on Table IV includes only the
top risk quintile. (Recall that bins are defined using bins in the
tested, so the top quintile is far less than 20% of the whole popu-
lation.) Reassigning all patients in this bin from their actual shift
(mean 18.1% test rate) to the highest-quartile shift (32.3% test
rate), generates additional tests equal to 0.48% of all untested
patients or 15.6% of the tested set. A second approach allows for
other testing benefits beyond decreasing one-year mortality, for
example, reductions in immediate heart attack (size and extent),
as well as longer-term outcomes. To simulate this, for each risk

34. The leave-one-out shift testing rate, while useful for identification of the
effect of testing, does not capture the full variation in observed testing rate across
shifts. Online Appendix A.7.C contains more details on the model, which controls
for the same vector of time variables and patients’ predicted risk as above.
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bin, we take the cost-effectiveness estimates from the tested and
(naively) apply them to the untested. By testing patients who ap-
pear to be cost-effective based on risk, we would add new tests
equal to 3.0% of the set of all untested, and 99.5% of the current
tested set.35

Taken together, the evidence tells us three facts about high-
risk untested patients, all suggesting they ought to have been
tested. First, they go on to have high adverse-event rates of the
kind that suggest undiagnosed blockage. Second, physicians do
not appear to have recognized their risk: many were not screened
with simple tests given to everyone suspected of any heart prob-
lems (ECG or troponin), but nonetheless had high adverse event
rates. Finally, plausibly exogenous increases in testing improve
their health, but not the health of lower-risk patients. Each
finding has its limitations, but together, they make the case that
testing high-risk untested patients would increase welfare as
strongly as possible without a randomized trial.

IV.E. Nationally Representative Data

These results come from a single hospital. To check their
generality, we replicate them in a nationally representative 20%
sample of Medicare fee-for-service patients, from January 2009
through June 2013. These data are limited in several important
ways. Because they are based on insurance claims, not EHR data,
they contain very limited patient information. For example, we do
not have ECGs, lab values, or other biomarkers, nor do we have
arrival time and shift timing data that would let us re-create
our natural experiment. These caveats aside, these data do let
us replicate our estimates of over- and undertesting from Sec-
tions IV.A and IV.B. Applying similar exclusions to those used in
the single-hospital data, we arrive at a final sample of 4,425,247
Medicare visits by 1,602,501 patients, of whom 4.4% were tested.
Of the tested, 12.4% received treatments. Of the untested, 5.3%
had 30-day adverse events. This higher rate reflects the older and
sicker Medicare population, but also our inability to confirm diag-
nosis codes with biomarker evidence of heart attack as above.

35. Note that irrespective of the risk threshold we choose, this strategy still
respects the large amount of physician private information we document: we do
not propose that 100% of patients in a high-benefit risk bin should be tested. The
never-tested—even those in high-risk bins—may have unobservables that lead
them to be lower risk. Our strategy simply shifts the testing rate from the current
rate to the maximum rate we observe for a given risk bin.
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Online Appendix Figure A.7 shows that yield of testing and
cost-effectiveness both increase in predicted risk (as in Figure I),
with many tests being predictably cost-ineffective. We also find
many high-risk untested patients with adverse-event rates above
clinical thresholds. Online Appendix Figure A.8 shows that 3.8%
of the highest-risk patients are diagnosed with an adverse event,
and an additional 1.5% die (as in Figure II). In summary, we find
both overtesting (52.6% of all tests) and undertesting (at least
17.9% of the tested).36

V. WHY DO PHYSICIANS MAKE TESTING ERRORS?

We have shown that physicians mispredict: they test pre-
dictably low-risk patients and fail to test predictably high-risk
patients. In this section, we try to better understand the na-
ture of physician misprediction. To do so, we examine how physi-
cian testing decisions deviate from predicted risk. Our approach
builds on a long tradition of research comparing clinical judg-
ment to statistical models as a way to gain insights into decision-
making, often among physicians (Dawes, Faust, and Meehl 1989;
Elstein 1999; Redelmeier et al. 2001; Ægisdóttir et al. 2006), as
well as the clinical literature on diagnostic error (Croskerry 2002;
Graber, Franklin, and Gordon 2005; IOM 2015). We view this as
exploratory: a way to shed light on potential psychology at work,
rather than to structurally estimate a specific model of physician
decisions.

V.A. Boundedness in Physician Judgments

One reason physicians may make errors is that the optimal
risk model is quite complex: our own machine learning model uses
16,405 variables. Bounded rationality may lead them to use a

36. Lacking a credible quasi-experiment in these data, we instead rely on a
conservative lower bound for undertesting: we assume that the realized adverse
events in predictably high-risk untested patients lower bounds the undertested
population. We consider this conservative because it assumes that undertesting
is concentrated in the smallest possible number of patients, all of whom would
have ex ante probability 1 of an event. This may be one reason that the level of
undertesting here is closer to the lower bound estimated in the hospital data. An-
other may be the nature of claims data: low-risk tests may be easy to identify with
claims, while high-risk misses may require the richer EHR data. An important
caveat to all these results is that we do not observe ECG or troponin testing, so
we do not have the same ability to identify contraindicated patients on the basis
of observables.
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simpler approximation. Such simplification is analogous to regu-
larization in machine learning (Camerer 2019). To avoid overfit-
ting, algorithms do not pick the model that fits best in sample.
Instead they estimate a best-fit model for each level of complexity,
then choose a complexity level by asking which of these best-
fit models produces best out-of-sample fit. To study physicians,
we use this same set of best-fit models for each complexity. But
we ask which model complexity best predicts physician choices,
not out-of-sample risk. If physicians are boundedly rational, the
model that best predicts their choices should be simpler than the
one that best predicts actual risk, measured by yield of testing.

We implement this procedure using the LASSO model of
risk, one component of our full ensemble model, because it has
a straightforward measure of complexity: the number of nonzero
coefficients included in its linear model.37 For k ∈ [0, 1,500]
we train and retain the set of best-fit LASSO models that has
exactly k nonzero coefficients.38 In our hold-out set, we correlate
each model with test outcomes and testing decisions. Two caveats
are worth noting. First, we do not assume anything about the
model selection properties of LASSO: the particular variables the
LASSO chooses is somewhat arbitrary in the setting of corre-
lated, noisy input variables. We are interested only in the com-
plexity of these models, which is likely a more stable quantity
(Mullainathan and Spiess 2017). Second, we can only focus on the
variables in our data: so we only test hypotheses related to bound-
edness on observables, not on the variables physicians may use
that are unobservable to us.

Figure V visually displays the results of this exercise. On
the x-axis is k, the measure of complexity. On the y-axis is R2,
a measure of goodness of fit (though our results are not specific
to this setup: Online Appendix Figure A.12 shows similar results
with AUC instead of R2, trees instead of LASSO, and the Medicare
population). The gray line shows, at each level of complexity, how
well a model predicts out-of-sample risk: R2 increases at first, then
decreases as additional variables lead to overfitting. The yellow
line shows how well the same model predicts physician testing

37. Though this is a suitable ex post measure, ex ante this is produced by
using L1 regularization.

38. We chose this range because the training set contains only 5,188 tested
visits, so we cannot estimate models that use anywhere near the full set of k =
16,405 variables.
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FIGURE V

Explanatory Power of Simple versus Complex Models of Risk

Using a LASSO model of predicted risk (part of our full ensemble risk model), we
preserve all risk models along the regularization path for k ∈ [0, 1500]: the best-
fit linear model that uses at most k nonzero coefficients. The x-axis shows k, the
number of variables retained as the regularization penalty is decreased, moving
from left to right. The y-axis shows the explanatory power of these risk models
of varying complexity for physician testing decisions (dark gray line), and patient
risk (yield of testing: yellow line), measured by R2. The 95% confidence intervals
are the shaded intervals, calculated by bootstrapping. The two vertical lines show
the complexity of the model that explains the most variance in physician decisions
(left, at k = 49) and risk (right, at k = 224).

decisions. Here we see in part a similar pattern: R2 increases
with complexity, then decreases. Importantly, the two curves hit
their peaks at very different levels. For physicians, the empirical
optimum is at 49 variables, and for risk it is at 224 variables. The
model that best predicts actual risk is much more complex than
the one that best predicts test decisions.

This figure motivates a statistical test. We define two risk
predictors: m̂simple(Xij), which uses the 49 variables above, and
m̂complex(Xij), which uses the 224. We focus on [m̂complex(Xij) −
m̂simple(Xij)], the additional risk information provided by the com-
plex model, which we will call complex risk. We estimate:
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TABLE V
EVIDENCE FOR PHYSICIAN BOUNDEDNESS

Test Yield

(1) (2) (3) (4)

Predicted risk, simple 1.357∗∗∗ 1.358∗∗∗ 1.528∗∗∗ 1.319∗∗∗
(k = 49) (0.015) (0.016) (0.068) (0.081)

Incremental risk, complex − 0.005 1.099∗∗∗
(k = 224) (0.033) (0.236)

Observations 61,821 61,821 1,834 1,834
R2 0.111 0.111 0.218 0.227

Notes. Tests of the explanatory power of two versions of predicted risk, for physician testing decisions and
patient risk (yield of testing). We first identify the simple risk model of complexity that explains the most
variance in physician decisions (with k = 49, here labeled Predicted risk, simple). We then subtract this
prediction from the risk model of complexity that explains the most variance in patient risk (with k = 224,
here labeled Incremental risk, complex). Columns (1) and (3) show how the simple risk model predicts both
test and yield alone. Columns (2) and (4) then add the complex model’s incremental contribution to predicted
risk. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

Tij = β0 + β1m̂simple(Xij) + β2[m̂complex(Xij) − m̂simple(Xij)] + εi j,

(2)

Yij = γ0 + γ1m̂simple(Xij) + γ2[m̂complex(Xij) − m̂simple(Xij)] + εi j .(3)

If physicians rely only on a simple model of risk, we expect two
things to be true. First, β2 = 0: complex risk should not predict
testing decisions. Second, γ 2 > 0: complex risk should predict
yield. Table V, columns (1) and (3), show how the simple risk
model alone predicts both test and yield; columns (2) and (4) show
the addition of complex risk. In column (2), as expected, complex
risk is not predictive of testing conditional on simple risk—the
coefficient is both very small and statistically insignificant. In
column (4), by contrast, complex risk is predictive of yield and
highly significant. So physicians do in fact appear to rely on too
simple a model of risk.39

These results provide suggestive evidence that physicians
are boundedly attentive: they only pay attention to some vari-
ables. But how accurately do they weigh the variables they at-
tend to? Figure VI shows, for the 49 variables in m̂simple(Xij), their

39. Online Appendix Figure A.12 shows similar results with decision tree
models of risk rather than LASSO models, as well as showing the same result in
the nationally representative Medicare claims data.
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FIGURE VI

Simple Risk Variables: Correlation with Testing and Predicted Risk

For the simple risk model (with complexity k = 49) that best predicts physicians’
testing decisions, we show univariate correlations of each included variable with
the physician’s testing decision (y-axis) and patient risk (x-axis). Each point is one
of the 49 included variables, with separate shapes denoting different categories of
inputs. Some outlier points of interest are labeled.

correlation with test outcome (x-axis) and test decision (y-axis).40

We see a tight, strongly positive relationship (R2 = 0.433). While
far from proof of rationality, this does suggest that physicians
(mostly) correctly weight the variables they do use.

To assess how important boundedness is in explaining under-
and overtesting, we look at how much riskier (or less risky) a
patient appears if only simple risk is accounted for. We mea-
sure this with m̂simple(Xij) − m̂(Xij) and inspect its distribution
for both low-risk tested patients (the overtested) and high-risk
untested patients (the undertested). As shown in Online Appendix
Figure A.13, a full 35.5% of the overtested come from the top
quintile of m̂simple(Xij) − m̂(Xij), meaning their simple risk is much
larger than their actual risk (compared with 14.5% in the lowest

40. We standardize test, yield, and predictor variables, and run test and yield
on predictors via univariate regressions. So each regression coefficient gives us
the correlation and its standard error.
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quintile). Likewise, among the undertested, 74.2% come from the
bottom quintile, meaning their simple risk is much smaller than
their actual risk (compared with 7.4% in the top quintile). Bound-
edness thus appears to be quantitatively important as well for
misprediction. Physicians identify a handful of good risk predic-
tors that they use, if not perfectly, at least modestly well; at the
same time, they neglect many other variables which, while indi-
vidually small, together provide much explanatory power.

Our evidence on boundedness deviates from the traditional
perspective of Dawes, Faust, and Meehl (1989), who suggest that
people use too complex a model: a statistical model does better
by being simpler. In contrast, we find physicians use too simple a
model: a statistical model does better by being more complex. The
difference may arise because modern statistical tools can better fit
complex natural phenomena, echoing recent findings that sparse
models, despite their appeal (to humans), fit economic phenomena
poorly (Gabaix 2014; Giannone, Lenza, and Primiceri 2021). In
both cases, reality is complicated, while human judgments are
simple.

V.B. Biases in Physician Judgments

Figure VI, while largely consistent with bounded rationality,
also hints at another phenomenon: physicians might over- or un-
derweight specific variables. In particular, a suggestive example is
“Reason for visit: chest pain,” a clear outlier. A complaint of chest
pain does correlate with risk, but it correlates even more with
testing. This indicates that those with chest pain may be tested
at rates above and beyond what is justified by their (heightened)
risk.41

Chest pain has two features that make it particularly
interesting from a behavioral point of view, suggesting two
broader behavioral hypotheses for why an input might be over-
weighted. First, it is highly salient (Tversky and Kahneman 1974;
Bordalo, Gennaioli, and Shleifer 2012). Second, it is highly repre-
sentative of blockage: it is a (perhaps the) stereotypical symp-
tom in textbooks and in public understanding (Bordalo et al.

41. Conditional on predicted risk, patients with chest pain are 16 percentage
points (578%) more likely to be tested. Online Appendix Table A.15 shows that for
the 10 most common symptoms, 9 significantly predict testing after conditioning
on predicted risk, including chest pain and shortness of breath (large and positive),
and several other smaller negative predictors (e.g., abdominal pain).
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2016). This motivates our exploration of bias: we ask whether
variables that are either salient or representative are generally
overweighted.

We study these hypotheses in turn, using a similar empir-
ical approach. To assess whether physicians are biased in their
use of some subset of variables W, we create a new risk pre-
dictor that uses only those variables in W. Except for the re-
striction on input variables, this estimator, m̂W , is built in the
training set exactly the same as the original risk predictor, and
for simplicity of notation takes the same input Xij but ignores
the variables not in W. In the hold-out set, we first regress yield
on full risk (our usual risk predictor m̂(Xij)) as well as this lim-
ited risk model m̂W (Xij), analogous to equation (2).42 We do this
to verify that, as expected, conditional on full risk, m̂W does not
provide additional information. Then, as our test of whether W
is misused, we regress the test decision Tij on full risk m̂(Xij)
and m̂W (Xij). If physicians overweight the variables in W, the
coefficient on m̂W (Xij) should be positive; if they underweight, it
should be negative.43

1. Symptom Salience. Building on the chest pain insight
above, we implement this procedure first for symptoms: the most
salient and immediate thing the physician sees about a patient,
often stressed in medical education and vignettes. Table VI, col-
umn (1) shows the results of regressing testing on the full risk
predictor; column (2) then adds the new symptom-only risk pre-
dictor.44 We see here that the risk from symptoms is additionally
predictive of testing, suggesting that symptoms as a category are
overweighted.45

42. All regressions control for a vector of risk bins, as well as linear risk, to
account for nonlinearity of risk in predicted risk. We show the linear coefficient
but omit the others for simplicity.

43. In this exercise, by “risk” we mean predicted risk. So a bias occurs when
an observed variable predicts physician deviations from algorithmic predictions.
Because the focus is on observed variables, we are less prone to confounding. But
still, given the potential for complex relationship between observed and unob-
served variables, these results must be taken as suggestive.

44. For space, we have left out the yield regressions. These are in Online
Appendix Table A.18 and verify that the symptom-only risk predictor does not
predict yield, conditional on full risk.

45. Abaluck et al. (2016), although they lacked data on symptoms at the visit
itself, found that patients with past symptom-based diagnoses were overtested,
consistent with a similar bias.
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TABLE VI
SYMPTOM SALIENCE AND REPRESENTATIVENESS

Test

(1) (2) (3) (4) (5)

Predicted risk, full 0.872∗∗∗ 0.715∗∗∗ 0.756∗∗∗ 0.619∗∗∗ 0.755∗∗∗
(0.053) (0.049) (0.061) (0.045) (0.066)

Predicted risk, subsets
All symptoms 0.888∗∗∗ 0.860∗∗∗ 0.273∗∗∗

(0.052) (0.057) (0.061)
Representative 1.283∗∗∗

symptoms (0.121)
Demographics 0.139∗∗∗

(0.031)
Prior diagnoses 0.046∗∗

(0.021)
Prior procedures − 0.053∗

(0.030)
Prior lab results − 0.209∗∗∗

and vital signs (0.019)
Physician experience

Experience (years) − 0.0005∗∗
(<0.001)

Experience × risk 0.011∗∗∗
(0.005)

Observations 61,938 61,938 61,938 61,938 55,777
R2 0.084 0.106 0.113 0.118 0.082

Notes. Column (1) regresses testing on our usual predicted risk measure m̂(Xij ). Column (2) adds a risk
predictor formed using only symptom inputs. Column (3) adds risk predictors to column (2), formed using other
input categories. Column (4) adds another risk predictor to column (2), formed from only nine representative
symptoms. Column (5) regresses testing on predicted risk and physician experience (linear and interacted
with risk). All models also control for nonlinear risk terms (not shown). Similar regressions with yield of
testing as the dependent variable are shown in Online Appendix Table A.18, confirming that none of these
variables are predictive over and above m̂(Xij ). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

We expand this exercise to the entire universe of inputs. We
form a set of risk predictors, one for each subset of variables,
grouped into the following categories: demographics, prior diag-
noses, past procedures done on the patient, and prior labs and
vital signs. The categories are formed to reflect coherent types of
inputs physicians may treat differently. For example, medical case
reports and pedagogy use a standard structure, stressing age, sex,
and symptoms (e.g., “A 43-year-old man with chest pain,” as in the
NEJM’s Case Records). So we conjectured that demographics and
symptoms would be highly salient and thus overweighted. By con-
trast, the complex, quantitative time series contained in previous
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laboratory studies and vital signs are harder to process and likely
less salient. Finally, while some prior diagnoses (e.g., diabetes,
prior blockage) and procedures (e.g., prior stenting) relevant to
blockages may be salient, these categories are far broader, includ-
ing hundreds of other types of information that we also expect to
be less salient.

Column (3) shows how these risk predictors correlate with the
testing decision. Even after including risk from all other variable
subsets, risk from symptoms stays positive (i.e., overweighted), as
is risk from demographic information: a patient in the top quartile
of symptom risk is 5.26 percentage points more likely to be tested,
relative to other patients, and 0.78 percentage points for demo-
graphic risk.46 This is equivalent to a patient moving from the
50th percentile of true (full) risk to the 89th and 62nd percentile,
respectively. Prior quantitative information from laboratory
studies and vital signs, though, has a negative sign, suggesting
that physicians underweight or neglect this information. Finally,
diagnoses are slightly overweighted while procedures are slightly
underweighted. Taken together, these results are generally sup-
portive of the salience model: risk signals from clearly salient
inputs—demographics and symptoms—are attended to more than
they should be, while more complex, less salient information—
past quantitative vital signs and labs—are neglected.

2. Representativeness. We use the same method to explore
representativeness (Tversky and Kahneman 1974), as formalized
in the model of stereotyping of Bordalo et al. (2016). This predicts
that in estimating the probability of blockage for a patient with
symptom M, physicians will not use Pr(B = 1|M = 1). Instead they
will estimate

Pr(B = 1|M = 1) × g
(

Pr(M = 1|B = 1)
Pr(M = 1|B = 0)

)
,

where g(·) is monotone. Symptoms more common in patients with
blockage, relative to others, will be weighted more heavily than
they ought to be.

This model has a crisp empirical prediction: at the same pre-
dicted risk, patients with more (less) representative symptoms
are more (less) likely to be tested. We investigate this by first

46. Online Appendix Table A.14 further investigates patient demographics
and finds small but significant relationships of specific demographic factors with
testing: older patients and women appear to be tested more than their risk merits,
while self-reported Hispanic patients are undertested.
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identifying the set of symptoms that are potentially represen-
tative of blockage. To make this list, we identify those tested
patients ultimately found to have blockages after testing and
look back at their presenting symptom (limiting to 16 symptoms
with frequency over 0.5% in this population; see Online Appendix
Table A.16). For each symptom M, we calculate its representative-
ness for blockage: Pr(M=1|B=1)

Pr(M=1|B=0) . Nine symptoms have a ratio over
1, which we consider representative of blockage. Some are very
common in the general population (e.g., chest pain, shortness of
breath) and others are quite rare (e.g., presenting to the ER af-
ter a referral for a concern of possible blockage or because they
were found unresponsive or in cardiac arrest by paramedics). The
remaining seven symptoms are more common in the general pop-
ulation than in those with blockage (e.g., dizziness, nausea).

This allows us to build yet another risk predictor, restrict-
ing to representative symptoms. Table VI, column (4) shows the
results of adding this to the regression we described previously
(column (2)) with the predictor formed from all symptoms. With
representative symptoms included, the all-symptom-based predic-
tor becomes small and insignificant. The coefficient on the repre-
sentative symptom-based predictor in column (4) is nearly double
the magnitude of the all-symptom-based predictor in column (3).47

This argues that while symptoms as a whole may be salient, rep-
resentative symptoms drive physicians to test far more: they ef-
fectively cue the physician’s mind to consider blockage. This effect
is quantitatively large: the 7% in the highest quintile of repre-
sentative symptom risk are 16.2 percentage points more likely to
be tested, corresponding to an increase from the 50th to the 98th
percentile of true risk.

Further, as shown in Online Appendix Figure A.14, pa-
tients whose risk comes disproportionately from representative
symptoms (i.e., large [m̂represent(Xij) − m̂(Xij)]) are overrepresented
in testing errors. Those in the top quintile of representative-
ness risk (relative to true risk) make up 34.3% of the low-risk
tested; while the bottom quintile makes up 99.4% of the high-risk
untested.48

47. Online Appendix Table A.18 confirms this new predictor has no incremen-
tal value for predicting yield.

48. An important caveat is that the representative risk is built only on nine
indicator variables and thus does not have a wide range, so we view these results
as limited.
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V.C. Implications for Incentive Policies

The simultaneous presence of over- and underuse suggests
that simple views of health care like “less is more” or “more is
more” are insufficiently nuanced. Our results thus add to the
growing body of work in health economics arguing for richer mod-
els of physician behavior (Kolstad 2013; Abaluck et al. 2016; Chan-
dra and Staiger 2020; Chan, Gentzkow, and Yu 2022). Policy mak-
ers have long viewed health care through the lens of misaligned
incentives that make physicians too eager to test. Implicit in this
model is that physicians estimate risk correctly but simply set
too low a threshold. This “less is more” model, which suggests
that high-testing providers are wasteful relative to low-testing
ones, has a clear practical implication that drives much of health
policy in the United States and internationally: create incentives
to test less, for example, via reimbursement schemes or capac-
ity constraints. Yet our finding of systematic biases by physicians
calls this approach into question: if physicians mispredict risk,
incentives to cut care may do harm as well as good.

We empirically examine these potentially perverse conse-
quences by asking, when physicians test less, which tests do
they cut? The view of traditional models—and the hope of health
policy—is that they cut the low-value tests. The top panel of
Figure VII shows that this is not the case. Here we graph the
probability of testing against predicted risk separately for each of
the testing quartiles in our quasi-experiment (using the random
effects model described above). Low-testing shifts do cut back on
low-value tests: the lowest-risk patients are tested only 0.4% of
the time, versus 3.0% on the highest-testing shifts. But they also
cut back on high-value tests: the highest-risk patients are tested
5.8% of the time, versus 32.3% on the highest-testing shifts. In ab-
solute terms, high-value tests suffer the biggest decline—26.5%
fewer in low- versus high-testing regimes. In relative terms, low-
and high-value tests fall by similar amounts: 87% versus 82%,
respectively. In other words, less testing means less testing for
everyone, regardless of risk. The bottom panel replicates these re-
sults in our nationally representative Medicare sample, where we
sort hospitals into quintiles based on their testing rate, and again
graph testing versus predicted risk for each quintile. We see the
same result: hospitals that test more test everyone more.49

49. This exercise uses hospital referral regions to group hospitals, mirror-
ing a large health policy literature that makes such cross-sectional comparisons.
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FIGURE VII

Variation in Testing Rates by Predicted Risk

Panel A shows variation in testing rates by predicted risk, in our quasi-
experiment where patients are tested at higher or lower rates based on the triage
staff working when they arrive. Panel B shows variation in testing rate by pre-
dicted risk, across all hospitals in the United States. Hospitals are binned into
quartiles based on the overall testing rate of the hospital referral region in which
they are located, to mirror cross-sectional analyses in the literature.
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These data provide a reminder that reducing care leads to
cutbacks in what is perceived to be low value. But when there are
prediction errors, what is perceived to be low value might in fact
be extremely valuable. The problem is analogous to behavioral
hazard in patient decision making, where copays lead patients to
cut back on both low- and high-value care (Chandra, Gruber, and
McKnight 2010; Baicker, Mullainathan, and Schwartzstein 2015;
Handel and Kolstad 2015; Brot-Goldberg et al. 2017; Chandra,
Flack, and Obermeyer 2021). Incentives to reduce care can have
perverse consequences throughout the health care system.

V.D. The Role of Physician Experience

If incentives do not reduce inefficiency, what does? A natu-
ral candidate is physician experience, which we observe in our
data. Though we cannot causally identify the effect of experience,
correlations can be suggestive. In particular, we study how the cor-
relation between physician decisions and patient risk varies with
physician experience (as measured by years since residency). In
Table VI, we regress testing on predicted risk, experience, and
an interaction term between experience and patient risk. Column
(5) shows that more experienced physicians test less on average:
1.68 percentage points or 0.05% for every year since residency. At
the same time, experienced physicians are better able to match
testing decisions to risk: with every year of experience, they test
the lowest-risk patients 0.04 percentage points (2.81%) less, and
the highest-risk 0.58 percentage points (1.06%) more.50 These cor-
relations provide suggestive evidence that physicians may learn
over time, becoming more accurate with experience.

The results on experience in this section and the results on
high- versus low-testing regimes tell distinct stories. On one hand,
experienced physicians both test less and are more accurate. This

Naturally, these comparisons can be confounded. Although we lack the data to
replicate the shift variation experiment, we do have an (albeit weaker) alterna-
tive, described in Online Appendix A.8.C. Testing typically requires an overnight
stay after ED visits, but since hospital staffing is limited on weekends, patients
who come in the day before a weekend are tested less. Online Appendix Figure A.10
shows that these reductions in testing reduce testing for all patients, irrespective
of their actual risk.

50. We do not have experience data available for all physicians, so the sample
size in this regression decreases from 61,965 to 55,777. As usual, we verify that
experience does not additionally predict the yield of testing in Online Appendix
Table A.18.
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echoes Chan, Gentzkow, and Yu (2022), who show a negative re-
lationship between skill and testing levels. On the other hand,
in Section V.C, we saw that less testing was uncorrelated with
accuracy: testing fell across the risk distribution, including high-
risk patients. This suggests that the relationship between testing
level and accuracy is complex, and that care is needed to charac-
terize it accurately. Understanding what leads physicians to be
more or less accurate—and how that relates to testing level—is
an important and open question.

VI. CONCLUSIONS

Much of machine learning applied to health care focuses on
building tools to aid or substitute for humans: for example, algo-
rithms that can match radiologists’ performance on X-rays. Our
work suggests a very different use for machine learning in health
care: as a tool to understand humans and the health systems they
work in.

This approach allows us to precisely characterize inefficien-
cies. Current empirical approaches in health policy rely largely on
aggregates: for example, do tests on average yield enough positives
to justify their costs (Weinstein et al. 1996; Sanders et al. 2016)?
By that metric, testing appears highly efficient, at only $89,714
per life-year in our data. The granularity of algorithmic predic-
tions, by contrast, reveals both under- and overuse. This reframes
the discussion away from how many people get tested—too many,
or too few?—to one about who gets tested. In a very conservative
simulation of optimal testing, total testing would drop by 47%, but
the composition of the tested would change radically: 29% of effi-
cient tests would be new, in patients physicians do not currently
test; and tests would go from costing $89,714 to $59,390 per life-
year. The importance of composition in turn calls into question
the central role of incentives in policy. By changing the level of
testing alone, they may improve one inefficiency (overuse) while
aggravating another (underuse).

Despite the great promise of algorithms for diagnosing and
improving human inefficiencies, great care is needed when com-
paring human decisions and algorithmic predictions. As we saw,
when physician and algorithm disagree, we cannot just assume
the algorithm is correct: unobserved variables confound algo-
rithmic predictions. This selection bias pervades machine learn-
ing applications in health and elsewhere, appearing whenever
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algorithms are trained on data produced by the humans they seek
to influence.51 Once acknowledged, we show these problems can be
tackled: by developing new labels grounded in domain expertise,
and via quasi-experimental methods from the causal inference
toolkit. But ignoring this bias risks stacking the deck in favor of
algorithms: assuming away physician private information means
algorithms can, by construction, never do worse than the human—
a misleading comparison.

Finally, our findings suggest a role for algorithmic predictions
in interventions to increase efficiency. Most obviously, because
they are built on EHR data, our predictions can be delivered to
physicians in real time. Rather than replacing their judgment,
they can be combined with physician private information. At the
payment level, a system of precision pricing could tie incentives
and reimbursements for testing to patient-level predicted risk and
testing outcomes. Or predictions could be used as an educational
tool, during physician training or as continuing medical educa-
tion. We found accuracy improves with experience, but using al-
gorithms to hasten the learning process would be valuable: human
trial and error is a costly way to learn in medicine.

UNIVERSITY OF CHICAGO, UNITED STATES

UNIVERSITY OF CALIFORNIA, BERKELEY, UNITED STATES

SUPPLEMENTARY MATERIAL

An Online Appendix for this article can be found at The
Quarterly Journal of Economics online.

DATA AVAILABILITY

Code replicating the tables and figures in this article can
be found in Mullainathan and Obermeyer (2021) in the Harvard
Dataverse, https://doi.org/10.7910/DVN/IUMIO6.

51. In testing decisions, decisions dictate whom we have data for. Our results
highlight the importance of taking the selective labels problem seriously (Klein-
berg et al. 2018; Kallus and Zhou 2018; Rambachan 2021). For treatment decisions,
outcomes are treatment polluted; see Paxton, Niculescu-Mizil, and Saria 2013 for
a discussion.
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