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Abstract

A common challenge in estimating the long-term impacts of treatments (e.g., job training
programs) is that the outcomes of interest (e.g., lifetime earnings) are observed with a long
delay. We address this problem by combining several short-term outcomes (e.g., short-run
earnings) into a “surrogate index,” the predicted value of the long-term outcome given
the short-term outcomes. We show that the average treatment effect on the surrogate
index equals the treatment effect on the long-term outcome under the assumption that
the long-term outcome is independent of the treatment conditional on the surrogate index.
We then characterize the bias that arises from violations of this assumption, deriving
feasible bounds on the degree of bias and providing simple methods to validate the key
assumption using additional outcomes. Finally, we develop efficient estimators for the
surrogate index and show that even in settings where the long-term outcome is observed,
using a surrogate index can increase precision. We apply our method to analyze the
long-term impacts of a multi-site job training experiment in California. Using short-term
employment rates as surrogates, one could have estimated the program’s impacts on mean
employment rates over a 9 year horizon within 1.5 years, with a 35% reduction in standard
errors. Our empirical results suggest that the long-term impacts of programs on labor
market outcomes can be predicted accurately by combining their short-term treatment
effects into a surrogate index.
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1 Introduction

Estimating the long-term effects of treatments is of interest in many fields, from economics (e.g.,

the effects of early childhood interventions on lifetime earnings), to marketing (e.g., the effects of

incentives on long-term purchasing behavior), to medicine (e.g., the effects of drugs on mortality

rates). A central challenge in estimating such treatment effects is that long-term outcomes are

often observed with a delay of many years or even decades, well beyond the time frame needed

to make policy decisions.

One common approach to overcome this missing data problem is to analyze treatments

effects on a short-term proxy variable, termed a “statistical surrogate” (Prentice 1989). The key

assumption for a variable to be a valid surrogate is that the long-term outcome is independent of

treatment conditional on the surrogate, which we term the “surrogacy assumption” (Begg and

Leung 2000; Frangakis and Rubin 2002). For example, in studies of the effect of early childhood

interventions (e.g., a class size reduction) on earnings, test scores serve as a statistical surrogate

for earnings if earnings are independent of class size conditional on test scores, i.e., if any causal

effect of class size on earnings is reflected in test scores. Under this assumption, the treatment

effect on earnings can be identified from the causal effect of class size on test scores and the

observational relationship between test scores and earnings. Intuitively, in a linear model, one

can simply multiply the treatment effect of class size on test scores by the regression coefficient

for the effect of test scores on earnings in an observational sample, a common practice in the

education literature.

Unfortunately, the validity of the surrogacy assumption is difficult to verify and often debated

in empirical applications. Freedman, Graubard and Schatzkin (1992) argue that the surrogate

may not mediate the full effect of the treatment in many settings. For example, reductions in

class size appear to affect earnings through changes in non-cognitive skills that are not fully

captured by standardized test scores (Heckman, Stixrud and Urzua 2006; Chetty et al. 2011).

Furthermore, any unmeasured confounding between the surrogate and long-term outcome would

invalidate the surrogacy assumption, even if the treatment has no direct effect on the long-term

outcome (Frangakis and Rubin 2002; Rosenbaum 1984; Joffe and Greene 2009; VanderWeele

2015). Because of these issues, the use of intermediate outcomes as surrogates for long-term

outcomes is often viewed with skepticism.
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In this paper, we revisit the use of intermediate outcomes as surrogates from a different

perspective. Rather than attempting to determine whether the surrogacy condition holds for

any one intermediate outcome, we combine several intermediate outcomes into a “surrogate

index”. In a linear model, the surrogate index is simply the predicted value from a regression

of the long-term outcome on the intermediate outcomes; more generally, the surrogate index

is the conditional expectation of the long-term outcome given the intermediate outcomes (and

any pre-treatment covariates). We show that the treatment effect on the long-term outcome

can be identified as the treatment effect on the surrogate index under the assumption that the

long-term outcome is independent of the treatment conditional on the full set of surrogates.

This assumption weakens the standard surrogacy condition for a single variable: even if no one

intermediate outcome satisfies the surrogacy assumption by itself, a set of intermediate outcomes

together may together span the causal chain between the treatment and the long-term outcome.

Of course, there is no guarantee that a large set of intermediate outcomes will together satisfy

the surrogacy condition either; however, there is a greater likelihood that a set of outcomes

will together satisfy the surrogacy assumption. We demonstrate the empirical relevance of this

point using an application involving the estimation of long-term earnings impacts, in which any

single short-term measure is not a valid surrogate, but a combination of short-term measures

does turn out to satisfy surrogacy.

The approach of combining intermediate outcomes that we propose here is straightforward

and intuitive, but virtually all existing empirical studies use a single predictive variable as a

surrogate. Moreover, in the formal statistical literature on surrogacy, the relationship between

the surrogate and the final outcome is simply postulated, and the statistical analysis focuses

exclusively on the relationship between the treatment and the surrogate. The principal con-

tributions of this paper are to (1) formalize how intermediate outcomes can be combined to

efficiently estimate long-term impacts, making precise the assumptions under which such an

approach yields unbiased estimates and formally incorporating estimation of the relationship

between the surrogates and long-term outcome based on a secondary dataset; (2) develop feasi-

ble bounds on the degree of bias that can arise from violations of these assumptions as well as

methods to validate the assumptions out-of-sample; (3) show how the use of a surrogate index

can yield gains in efficiency even when long-term treatment effects can be estimated directly;

and (4) present an empirical application showing that the use of multiple intermediate outcomes
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rather than a single predictor can expedite the prediction of long-term treatment effects in the

labor market by several years and increase precision significantly.

Formally, we study a setting with two samples, an “experimental sample” and an “obser-

vational sample.” The experimental sample contains data about the treatment indicator and

the surrogates but not the long-term outcome, which we term the primary outcome. The obser-

vational sample contains information about the surrogates and the primary outcome, but not

the treatment indicator. Both samples may also contain pre-treatment variables. As an exam-

ple, consider evaluating the effects of reductions in class size in elementary school on earnings in

adulthood. Chetty et al. (2011) estimated the effect of class size and quality on earnings by link-

ing data from the STAR experiment, which randomized class size in grades kindergarten to third

grade in the 1980s, to information on earnings when children were in their mid-twenties. They

extrapolated from these estimates to predict impacts on total lifetime earnings, assuming that

the impacts on earnings in children’s twenties would persist (in percentage terms) throughout

their lives. Our goal is to develop methods to estimate lifetime earnings impacts without making

such a strong assumption or waiting decades to observe lifetime earnings. In our framework,

the experimental sample in this application would include data about class size (the treatment)

and intermediate outcomes, such as test scores, college attendance rates, and earnings in early

adulthood. The observational sample would be a large panel dataset that would include the

same intermediate outcomes as well as earnings throughout adulthood, but not necessarily the

treatment (class size).1

We study four questions. First, under what assumptions can the average treatment effect

(ATE) on the long-term outcome be identified using surrogates? Second, what is the bias from

violations of these assumptions and how can the assumptions be validated? Third, how can

the average effect on the outcome be efficiently estimated using a vector of surrogates that

collectively satisfy the surrogacy assumption? Fourth, if the primary outcome is also observed

in the experimental sample, what information is gained by using surrogates?

To answer the first question, we introduce the surrogate index, defined as the expectation of

the primary outcome conditional on the surrogates. We show that the difference in the mean

1As another example, an internet company may be interested in the causal effect of a change in the user
experience on long-term engagement with a specific website, e.g., overall time spent on the website. Surrogates
in that case could include detailed measures of medium-term engagement, including which of many webpages
were visited and how long a user spent on each one.
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surrogate index identifies the ATE on the primary (long-term) outcome when three assump-

tions hold: unconfoundedness, surrogacy, and comparability. Unconfoundedness is the familiar

requirement that treatment is orthogonal to potential outcomes in the experimental sample

(e.g., via random assignment of treatment). Surrogacy requires that the long-term outcome is

independent of the treatment, conditional on the full set of surrogates. In the class size applica-

tion discussed above, the surrogacy requirement is that the surrogates (e.g., test scores, college

attendance, or earnings in early adulthood) together capture all of the effects of the class size

intervention on the primary outcome (total lifetime earnings). Comparability requires that the

conditional distribution of the primary outcome given the surrogates is the same in the obser-

vational and experimental samples. In the class size example, we require that the relationship

between short-term earnings and lifetime earnings in the observational sample is the same as

what one would have estimated in the experimental sample, were lifetime earnings observed

there. Under these three assumptions, the ATE on the primary outcome is just identified and

hence the assumptions jointly do not have any testable implications.

Next, we evaluate the degree of bias from the use of surrogates when the surrogacy con-

dition fails.2 In this case, our approach estimates the average causal effect on the conditional

expectation of the primary outcome given the surrogate outcomes in the observational sample.

We characterize the difference between this functional and the average treatment effect on the

primary outcome itself. We then derive empirically estimable bounds on the degree of bias that

are a function of the residual variances of the primary outcome and the treatment assignment

indicator conditional on the surrogates, similar in spirit to recent expressions derived in stan-

dard treatment effect settings (e.g., Oster 2019, Andrews and Oster 2019). The bounds can

be sharpened if one has information about the variance of the primary outcome conditional on

treatment assignment, which cannot be directly estimated in sample but could be gauged from

previous studies or other external evidence.

The analysis of the degree of bias shows why using many intermediate outcomes generally

reduces the degree of bias. Intuitively, following the logic of directed acyclical graphs (DAGs,

Pearl (1995, 2000)), the degree of bias is determined by the extent to which the intermediate

2We focus on the validity of the surrogacy assumption, as unconfoundedness is a widely-studied assumption in
the literature on causal inference and comparability can typically be obtained by using an observational dataset
that is well aligned with the experimental sample.
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outcomes span the causal pathways from the treatment to the primary outcome. With a large

and diverse set of intermediate outcomes, one is more likely to span all, or at least most of,

these causal pathways. In the limiting case where the intermediate outcomes perfectly predict

either the primary outcome or the treatment, the bias vanishes.

We also show how one can assess the validity of the surrogacy condition by treating one of

the surrogates as a primary outcome and comparing the experimental estimate of the treatment

effect on that outcome to the estimate based on the surrogate index. This out-of-sample valida-

tion approach is especially effective when the surrogates are the same as the long-term outcome

but are measured earlier in time (e.g., short-term vs. long-term earnings). In such temporal

settings, one can evaluate the surrogacy assumptions as time progresses by testing whether a

surrogate index constructed based on early indicators tracks experimental outcomes well as time

elapses, and then make longer-term predictions with greater confidence.

Third, we propose simple methods for estimating the average treatment effect under our

identification assumptions. We show that the ATE on the primary outcome can also be esti-

mated as the effect of the treatment on the surrogate index in the experimental sample. Thus,

the surrogate index provides a simple way to collapse a high-dimensional vector of interme-

diate outcomes into a single index that can be used to estimate treatment effects. We also

present alternative reweighting estimators that are based on a surrogate score, which have an

interpretation analogous to propensity scores (Rosenbaum and Rubin 1983).

Fourth, we consider the case in which the researcher observes the primary outcome in the

experimental sample itself so that one can directly identify the ATE on the primary outcome

without making use of surrogates. Surrogates are helpful even in this setting: using the surrogate

index, one can estimate the average effect of interest more precisely. Intuitively, the surrogate

index reduces the residual variance of the outcome by eliminating variation that is orthogonal to

the treatment. Building on the literature on semi-parametric estimation (e.g., Bickel et al. 1993),

we characterize the efficiency gain from the use of the surrogate index. Surrogate indices increase

precision the most in applications where the final outcome is a rare event (e.g., mortality) or

where substantial noise is introduced after intermediate outcomes are measured. A somewhat

surprising implication of these results is that it is typically preferable to use fewer surrogates

to predict the long-term outcome in order to maximize precision (provided that the surrogacy

assumption is satisfied).
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In the final section of the paper, we apply our methods to re-analyze the impacts of a

randomized trial of the GAIN job assistance program conducted by MDRC in the late 1980s,

which provided job training and search services to unemployed individuals in California. We

use experimental data from Hotz, Imbens and Klerman (2006) with nine years of post-program

earnings from four urban counties: Alameda (Oakland), Los Angeles, Riverside, and San Diego.

These sites implemented different types of programs, with Riverside focusing on a “jobs first”

approach while other sites prioritized the development of human capital.

We begin by analyzing the Riverside program, which previous work has shown led to the

largest impacts on employment and earnings over nine years. We investigate the amount of time

required to estimate the long-term (nine-year) average effect of the program on employment using

short-term employment rates as surrogates. We find that constructing a surrogate index based

on employment rates in the first six quarters after the experiment yields a predicted impact on

mean employment over nine years that is very similar to the actual estimated impact over nine

years in Riverside. In contrast, the conventional approach of estimating treatment effects on

mean employment rates requires waiting 6.25 years to obtain an estimate that falls within the

95% confidence interval of the mean impact over nine years. Using employment rates in any

one quarter by itself as a surrogate also yields a highly biased estimate of the long-term impact.

Intuitively, there are highly non-linear dynamics in employment rates over time, making it very

useful to combine employment rates over multiple quarters to forecast long-term employment

impacts accurately.

Next, we apply our methods to evaluate potential biases from violations of surrogacy. The

point estimate of the treatment effect on mean employment rates over nine years can be bounded

to be strictly positive within 5 quarters under plausible assumptions about the explanatory power

of treatment assignment for the long-term outcome. Moreover, the estimates using a surrogate

index based on the first six quarters of employment rates closely track actual observed mean

employment impacts year-by-year, showing how the surrogacy condition could be validated as

time elapses. Within 3-4 years after the experiment, researchers could have confidence in the

validity of the surrogacy condition and thereby make extrapolations to longer-term impacts

more confidently.

The surrogate index also yields a substantial increase in precision: even if one waits to

observe outcomes over nine years, using employment rates in the first six quarters to create
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a surrogate index yields a 35% reduction in the standard error of the estimate. Hence, it is

actually preferable to discard the long-term employment data even if those data are available

when the program is being evaluated. Intuitively, under the surrogacy assumption, variation in

mean nine-year employment rates beyond that captured by the surrogate index is noise that is

orthogonal to the treatment and reduces the precision of the estimate.

Finally, we show that the surrogate index we estimated using data from Riverside predicts

the long-term treatment effects on employment and earnings in other sites accurately. The

GAIN program implemented in Los Angeles had small effects on earnings over nine years; the

programs in Alameda and San Diego had mid-sized effects; and the program in Riverside had

the largest effect. Our six-quarter surrogate-index estimates closely match this pattern. This

cross-site validation shows that surrogate indices estimated in a given application can provide

reliable predictions in other settings as well.

In sum, a surrogate index based on six quarters of employment data allows us to estimate

the long-term employment impacts of the GAIN program much more rapidly and precisely.

This empirical finding, which we view as a central result of the paper, is useful not just in

the context of the GAIN program itself, but more broadly for a large set of studies that seek

to estimate long-term earnings and employment impacts, but only have the data to estimate

shorter-term impacts. In particular, it suggests that short-term treatment effects of programs

on labor market outcomes can provide accurate predictions of their long-term impacts if they

are suitably combined. As noted above, existing studies typically make assumptions such as a

constant percentage impact on earnings to predict lifetime earnings impacts (e.g., Krueger 1999;

Chetty et al. 2011; Chetty, Hendren and Katz 2016; Hendren and Sprung-Keyser 2019). The

surrogate index we construct provides a more disciplined and precise approach to constructing

such forecasts.3

We recognize that the credibility of the surrogacy assumption may be questioned in any given

application, especially when viewed in isolation. We therefore view the best path forward as

building a “library” of surrogate indices in which researchers systematically catalog the smallest

3More ambitiously, our method could be applied to forecast earnings impacts of childhood interventions
purely from pre-labor-market outcomes such as test scores and other data in childhood, further expediting the
detection of long-term impacts. This would require finding a set of pre-labor-market indicators that satisfy the
surrogacy condition. Our empirical results suggest that labor market outcomes in a short interval can serve as
valid surrogates for long-term labor market trajectories; whether one can construct valid surrogates for earnings
purely using pre-labor-market variables is an open question for future work.
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set of surrogates that successfully match long-term outcomes of interest across several studies

(e.g., earnings, mortality, educational attainment). If one establishes, for instance, that six

quarters of employment data are sufficient to predict the impacts of many different job training

programs – as our cross-site comparisons of the GAIN program suggest – then the long-term

impacts of future job training programs could be credibly estimated using the established six-

quarter surrogate index. We view the empirical application in this paper as providing one

element of such a library and hope future work will expand upon it by identifying surrogate

indices that match estimated long-term impacts in other applications.

Related Literature. In addition to the literature on surrogacy (Prentice 1989; Fleming and

DeMets 1996; Begg and Leung 2000; Gilbert and Hudgens 2008; Weir and Walley 2006; Xu and

Zeger 2001; D’Agostino, Campbell and Greenhouse 2006; Qu and Case 2006; Alonso et al. 2006;

Lauritzen 2004; Day and Duffy 1996), this study also builds on and relates to the literatures

on mediation and missing data. The mediation literature (Baron and Kenny 1986; van der

Laan and Petersen 2004; Imai, Keele and Tingley 2010; VanderWeele 2015; Tchetgen Tchetgen

and Shpitser 2014; Zheng and van der Laan 2012) considers the decomposition of an average

treatment effect into the direct effect of a treatment on an outcome and indirect effects that

flow through a mediator. In the mediation setup, all three key variables – the outcome, the

treatment, and the mediator – are observed for the same units. The goal is to determine the

relative magnitudes of the direct and indirect effects. In our surrogacy analysis, the mediator

plays the role of the surrogate, and we focus on the case in which the direct effect is absent. The

methods proposed in the mediation literature for estimating the indirect effect are not directly

applicable to our two-sample case because we do not observe the outcome and the treatment

for the same units, but they can be adapted to the one-sample setting as we discuss below.

This paper is related to the missing data literature (Little and Rubin 2014) in the sense that

it addresses a situation in which the key variable of interest – the primary outcome – is missing

in the experimental sample. Our analysis can be viewed as a special case of studies on combining

data sets, e.g., Ridder and Moffitt (2007); Chen et al. (2008). In particular Rässler (2012, 2004)

refer to this setting with one variable missing in one part of the sample and a second variable

missing in the remainder of the sample as a “data fusion” setting. Graham, Pinto and Egel

(2016) discuss efficient estimation for a particular set of models defined by moment conditions

in such a data fusion setting, where they allow Wi to be a general random variable, rather than
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a binary indicator as in our setup. We present a more formal discussion of how our assumptions

and results relate to those in the mediation and missing data literatures in Appendix A.

The paper is organized as follows. The next section sets up the problem. Section 3 defines

the surrogate index and establishes the conditions under which it yields unbiased estimates

of treatment effects on the primary outcome. Section 4 presents formulas for bias when the

surrogacy assumption fails, derives bounds on the degree of bias, and discusses how the surrogacy

condition can be validated. Section 5 discusses estimation, while Section 6 presents results on

the efficiency gain from using the surrogate index. Section 7 presents the empirical application.

Section 8 concludes.

2 Setup

Consider a setting with two samples: an Experimental (E) sample and an Observational (O)

sample. The experimental and observational sample contain observations on NE and NO units,

respectively. It is convenient to view the data as consisting of a single sample of size N =

NE +NO, with Pi ∈ {O,E} a binary indicator for the group to which unit i belongs.

For the NE individuals in the experimental group, there is a single binary treatment of

interest, Wi ∈ {0, 1}, and a primary outcome, denoted by Yi. This outcome is not observed

for individuals in the experimental sample. However, we do measure intermediate outcomes,

which we refer to as surrogates (to be defined precisely in Section 3.2), denoted by Si for each

individual. Typically, the surrogate outcomes are vector-valued in order to make the properties

we define plausible. Finally, we measure pre-treatment covariates Xi for each individual. These

variables are known not to be affected by the treatment.

Following the potential outcomes framework or Rubin Causal Model (Rubin 1974; Holland

1986; Imbens and Rubin 2015), individuals in this group have two pairs of potential outcomes:

(Yi(0), Yi(1)) and (Si(0), Si(1)). The realized outcomes are related to their respective potential

outcomes as follows.

Yi =

{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1,

and Si =

{
Si(0) if Wi = 0,
Si(1) if Wi = 1.

Overall, the units are characterized by the values of the sextuple (Yi(0), Yi(1), Si(0), Si(1), Xi,Wi).

We do not observe the full sextuple for any units. Rather, for units in the experimental sample
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we observe only the triple (Xi,Wi, Si) with support X, W = {0, 1}, and S respectively. In the

observational sample, we do not observe to which treatment the NO individuals were assigned.

We observe the triple (Xi, Si, Yi), with support X, S, and Y respectively. We summarize this

data setup and our notation in Table 1.

We are interested in the average effect of the treatment on the primary outcome in the

population from which the experimental sample is drawn:

τ = E[Yi(1)− Yi(0)|Pi = E],

or similar estimands, such as the average primary outcome for the treated units, or for some other

subpopulation. For ease of exposition, we focus on estimating the ATE τ here. The fundamental

problem in estimating τ in the experimental group is that the outcome Yi is missing for all units

in the experimental sample. To address this missing data problem, we exploit the observational

sample and its link to the experimental sample through the presence of the surrogate outcomes

Si. Note that the surrogates, like the pre-treatment variables, are not of intrinsic interest. The

average causal effect of the treatment on the surrogates, τS = E[Si(1) − Si(0)|Pi = E], is of

interest only insofar as it aids in estimation of τ .

3 Identification

In this section, we discuss three assumptions that together allow us to combine the observational

and experimental samples and estimate the causal effect of the treatment on the primary outcome

using a set of intermediate outcomes. The first assumption is unconfoundedness or ignorability,

common in the program evaluation literature, which ensures that adjusting for pre-treatment

variables leads to valid causal effects. The second assumption is the surrogacy condition, which

we define more precisely below, and is the key condition that allows to use the surrogate variables

to proxy for the primary outcome. The third assumption is comparability, which ensures that

we can learn about relationships in the experimental sample from the observational sample.

After stating these three assumptions, we present our main identification result, showing how

the ATE on the primary outcome can be identified by combining intermediate outcomes under

these assumptions.
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3.1 Unconfoundedness

For the individuals in the experimental group, define the propensity score as the conditional

probability of receiving the treatment: e(x) = pr(Wi = 1|Xi = x, Pi = E). We assume that

for individuals in the experimental group, treatment assignment is unconfounded and we have

overlap in the distribution of pre-treatment variables between the treatment and control groups

(Rosenbaum and Rubin 1983):

Assumption 1. (Unconfounded Treatment Assignment / Strong Ignorability)

(i) Wi ⊥⊥
(
Yi(0), Yi(1), Si(0), Si(1)

) ∣∣∣ Xi, Pi = E

(ii) 0 < e(x) < 1 for all x ∈ X.

This assumption implies that in the experimental group, we could estimate the average causal

effect of the treatment on the outcome Yi by adjusting for pre-treatment variables, if the Yi were

measured.

3.2 Surrogacy and the Surrogate Index

Because the primary outcome is not measured in the experimental group, we exploit surrogates

to identify the treatment effect of W on Y . The defining property of these surrogates Si is the

following condition:

Assumption 2. (Surrogacy)

Wi ⊥⊥ Yi

∣∣∣ Si, Xi, Pi = E.

Intuitively, the surrogacy condition requires that the surrogates fully capture the causal

link between the treatment and the primary outcome. Figure 1 illustrates the content of this

assumption using directed acyclical graphs to represent the causal chain from the treatment to

the surrogate to the long-term outcome, as in Pearl (1995).4 Panel A shows a DAG where the

surrogacy assumption is satisfied by a single intermediate outcome S that lies on the causal

chain between W and Y . Panel B shows an example where Assumption 2 is violated because

there is a direct effect of the treatment on the outcome that does not pass through the surrogate.

4In Appendix A, we present an analogous discussion of how our assumptions relate to assumptions made in
the mediation and missing data literatures.
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Panel C shows our approach to addressing this problem: introducing multiple intermediate

outcomes that together span the causal chain from W to Y . In this example, the three inter-

mediate outcomes together span the causal chain from W to Y and hence can be combined to

construct a surrogate index that captures long-term treatment effects. Importantly, one does

not necessarily have to observe every intermediate outcome that lies on the causal chain between

W and Y . For example, if a treatment (e.g., smaller class sizes) affects earnings by increasing

both math and science aptitude, math scores by themselves could serve as a valid surrogate if

math and science scores are perfectly correlated. The key requirement is that the set of inter-

mediate outcomes together span the set of causal pathways, either because they themselves are

the causal factors or because they are correlated with the causal factors.

It is instructive to compare the surrogacy assumption to the exclusion restriction assumption

familiar to economists in instrumental variables settings. Figure 1d shows a DAG representation

of the standard instrumental variables (IV) model, where there is an unobserved confounder

between W and Y . In the standard IV approach, this confound is addressed by introducing

an instrument Z that affects W but does not affect Y directly (the exclusion restriction). In

the surrogacy case, we are interested in the effect of W on Y , where we assume there is no

confounder between W and Y (or, equivalently, we find an instrument for W that eliminates

such confounds). This is analogous to the (reduced-form) effect of Z on Y in the IV case. The

reduced-form effect can be estimated directly in the IV case because Z and Y are both observed

in the same dataset. The problem we address here is how to estimate the effect of Z (or W ,

assuming unconfoundedness) on Y when they are not observed in the same dataset. The analog

to the exclusion restriction here is that there is no direct effect of W on Y that does not run

through S.

We exploit the availability of multiple intermediate outcomes by defining two concepts: the

surrogate index and surrogate score.

Definition 1. (The Surrogate Index) The surrogate index is the conditional expectation

of the primary outcome given the surrogate outcomes and the pre-treatment variables in the

observational sample:

hO(s, x) = E [Yi|Si = s,Xi = x, Pi = O] .

The surrogate index hO(s, x) is estimable because we observe the triple (Yi, Si, Xi) in the
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observational sample.5 In a linear model, the surrogate index is simply a linear combination

of the individual intermediate outcomes – the predicted value from a regression of the primary

outcome on the intermediate outcomes.

Definition 2. (The Surrogate Score) The surrogate score is the conditional probability of

having received the treatment given the value for the surrogate outcomes and the covariates:

r(s, x) = pr(Wi = 1|Si = s,Xi = x, Pi = E).

Like the propensity score, the surrogate score facilitates statistical procedures that adjust

only for scalar differences in other variables, irrespective of the dimension of the statistical

surrogates.6

Proposition 1. (Surrogate Score) Suppose Assumption 2 holds. Then:

Wi ⊥⊥ Yi

∣∣∣ r(Si, Xi), Pi = E.

All proofs are given in Appendix B.

3.3 Comparability

Surrogacy and unconfoundedness by themselves are not sufficient for consistent estimation of τ

by itself because they do not place restrictions on how the relationship between Y and S in the

observational sample compares to that in the experimental sample. The final assumption we

make is that the conditional distribution of Yi given (Si, Xi) in the observational sample is the

same as the conditional distribution of Yi given (Si, Xi) in the experimental sample. Formally,

Assumption 3. (Comparability of Samples)

Yi

∣∣∣ Si, Xi, Pi = O ∼ Yi

∣∣∣ Si, Xi, Pi = E.

5The conditional means we define in the surrogate index are related to what Hansen (2008) calls the prognostic
score, although in the setting Hansen considers there is no surrogate variable, and the conditional expectation
is only a function of the pre-treatment variables.

6In contrast to the familiar definition of the propensity score, we write the probability of “having received the
treatment” rather than “receiving the treatment” because the surrogate score is conditional on a post-treatment
outcome, whereas the propensity score conditions solely on pre-treatment variables.
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We can state this assumption equivalently as:

Pi ⊥⊥ Yi

∣∣∣ Si, Xi.

To understand the role of the comparability assumption, note that there are two conditional

expectations that are closely related to the conditional expectation in the definition of the

surrogate index above, but which we cannot directly estimate because we do not observe Y in

the experimental sample. The first is the conditional expectation corresponding to the definition

of the surrogate index above within the experimental sample:

hE(s, x) = E [Yi|Si = s,Xi = x, Pi = E] .

The second is the conditional expectation of the potential outcomes given pre-treatment variables

and the surrogates:

µE(s, x, w) = E [Yi|Si = s,Xi = x,Wi = w,Pi = E] . (3.1)

These conditional expectations are all equivalent under comparability and surrogacy, allowing us

to take the relationship between Y and S estimated in the observational sample and apply it in

the experimental sample. In effect, comparability and surrogacy together allow us to impute the

missing primary outcomes in the experimental sample, as shown by the following proposition.

Proposition 2. (Surrogate Index) (i) Suppose Assumption 2 holds. Then:

µE(s, x, w) = hE(s, x), for all s ∈ S, x ∈ X, and w ∈W.

(ii) Suppose Assumption 3 holds. Then:

hE(s, x) = hO(s, x) for all s ∈ S, and x ∈ X.

(iii) Suppose Assumptions 2 and 3 hold. Then:

µE(s, x, w) = hO(s, x) for all s ∈ S, x ∈ X, and w ∈W.

[14]



Part (iii) of Proposition 2 relates the conditional expectation of interest, µE(s, x, w), to a

conditional expectation that is directly estimable, hO(s, x).

Finally, we define weights that make the observational and experimental samples comparable.

Let q = NE/(NE + NO) denote the sampling weight of being in the experimental sample and

(1 − q) be the sampling weight of being in the observational sample. Define the propensity to

be in the experimental sample Pi = E as follows:

Definition 3. (Sampling Score)

t(s, x) = pr(Pi = E|Si = s,Xi = x) =
pr(Si = s,Xi = x|Pi = E)q

pr(Si = s,Xi = x|Pi = E)q + pr(Si = s,Xi = x|Pi = O)(1− q)
.

We also make the assumption:

Assumption 4. Overlap in Sampling Score

t(s, x) < 1 for all s ∈ S and x ∈ X.

3.4 Identification

We now present our central identification result. We present three different representations of the

average treatment effect that lead to three estimation strategies. The motivation for developing

the different representations is that estimators corresponding to those different representations

can have different properties in finite samples. The first representation requires estimation of

the surrogate index, but not the surrogate score. The second representation instead requires

estimation of the surrogate score, but not the surrogate index. The third representation requires

estimation of both.

We define the following three objects, all functionals of distributions that are directly es-

timable from the data, starting with a surrogate index representation:

τE = E
[
hO(Si, Xi) ·

Wi

e(Xi)
− hO(Si, Xi) ·

1−Wi

1− e(Xi)

∣∣∣∣Pi = E

]
, (3.2)

then a surrogate score representation,

τO = E
[
Yi ·

r(Si, Xi) · t(Si, Xi) · (1− q)
e(Xi) · (1− t(Si, Xi)) · q

(3.3)
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−Yi ·
(1− r(Si, Xi)) · t(Si, Xi) · (1− q)

(1− e(Xi)) · (1− t(Si, Xi)) · q

∣∣∣∣Pi = O

]
,

and finally an influence function representation:

τO,E = E [ψ(Pi, Yi, Si,Wi, Xi)] , (3.4)

where

ψ(p, y, s, w, x) =
1p=E

q

(
hO(s, x)w

e(x)
− hO(s, x)(1− w)

1− e(x)

)
(3.5)

+
1p=O

1− q

(
t(s, x)

1− t(s, x)

1− q
q

)
(y − hO(s, x)) (r(s, x)− e(x))

e(x)(1− e(x))
.

Theorem 1. (Identification) Suppose Assumptions 1–4 hold. Then the average treatment

effect is equal to the following three estimable functions of the data:

τ ≡ E[Yi(1)− Yi(0)|Pi = E] = τE = τO = τO,E.

The first representation, τE, shows how τ can be written as the expected value of the

propensity-score-adjusted difference between treated and controls of the surrogate index in the

experimental sample. This will lead to an estimation strategy in which the missing Yi in the ex-

perimental sample are imputed by ĥ(Si, Xi) estimated on the observational sample. The second

representation, τO, shows how τ can be written as the expected value of the difference in two

weighted averages of the outcome in the observational sample, with the weights a function of

the surrogate score estimated on the experimental sample and the sampling score. This will lead

to an estimation strategy in which the Yi in the observational sample are weighted proportional

to the estimated surrogate score to estimate E[Yi(1)|Pi = E], and weighted proportional to

one minus the estimated surrogate score to estimate E[Yi(0)|Pi = E]. The third representation

uses the score function representation, requiring estimation of both the surrogate score and the

surrogate index.7

7In the standard unconfoundedness setting with observations on (Wi, Yi, Xi), we can estimate the average
treatment effect by estimating the propensity score, the conditional expectations of the potential outcomes, and
the influence function. In that setting, the influence function approach has the attractive property that it is
doubly robust in the sense that either the propensity score, or the conditional potential outcome expectations,
can be completely misspecified without compromising consistency (Newey (1994); Chernozhukov et al. (2016)).
Unfortunately, that is not the case here. If we use an estimator based on the influence function it will be
inconsistent if either the surrogate score or the surrogate index is inconsistently estimated.
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Under smoothness assumptions, we can derive the semi-parametric efficiency bound for τ

(e.g., Bickel et al. 1993; Newey 1990). Because the model is just identified (the model has no

testable implications), it follows that the semi-parametric efficiency bound is the square of the

influence function ψ(·)− τ :

Vs = E
[
(ψ(Pi, Yi, Xi, Si,Wi)− τ)2

]
= E

[
σ2(Si)

1− t(Si, Xi)
·
(
r(Si, Xi)

e(Xi)2
+

1− r(Si, Xi)

(1− e(Xi))2
− 2 · r(Si, Xi) · (1− r(Si, Xi))

e(Xi)2 · (1− e(Xi))2

)
+

1

t(Si, Xi)
·
{
r(Si, Xi)

e(Xi)
· (µ(Si, Xi)− µ1)

2 +
1− r(Si, Xi)

1− e(Xi)
· (µ(Si, Xi)− µ0)

2

}]
.

Again because of the just-identified nature of this model, the results in Newey (1994) also imply

that nonparametric estimators of the surrogacy score, the surrogacy index, and the propensity

score can be used to obtain efficient estimators for τ .

4 The Surrogacy Assumption: Bias, Bounds, and Vali-

dation

In this section, we examine the biases that arise from violations of the surrogacy assumption.

We first characterize the bias and then derive estimable bounds on the degree of the bias that

can arise from such violations. Finally, we present a simple approach for validating the surrogacy

assumption out-of-sample using a “hold out” intermediate outcome.

4.1 Bias from Violations of Surrogacy

We begin by characterizing the probability limit of estimators based on the characterizations of

the estimand in Theorem 1 when the surrogacy and comparability assumptions are violated, as

well as in cases where the surrogate index is misspecified. Throughout the section, we maintain

unconfoundedness in the experimental sample.

Theorem 2. (i) Suppose Assumptions 1 (unconfoundedness) and 4 (overlap) hold, but Assump-

tions 2 (surrogacy) and 3 (comparability) do not necessarily hold. Then

τO = τE = τE,O = E [hO(Si(1), Xi)− hO(Si(0), Xi)|Pi = E] .
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(ii) Suppose Assumptions 1 (unconfoundedness), 2 (surrogacy) and 4 (overlap) hold, but As-

sumption 3 (comparability) does not necessarily hold. Then the difference between the average

causal effect and the estimand is

τ − E [hO(Si(1), Xi)− hO(Si(0), Xi)|Pi = E]

= E
[{

hE(Si, Xi)− hO(Si, Xi)
}
· r(Si, Xi)− e(Xi)

e(Xi) · (1− e(Xi))

∣∣∣∣Pi = E

]
.

(iii). Suppose Assumptions 1 (unconfoundedness), 3 (comparability) and 4 (overlap) hold, but

Assumption 2 (surrogacy) does not necessarily hold. Then the difference between the average

causal effect and the estimand is

τ − E [hO(Si(1), Xi)− hO(Si(0), Xi)|Pi = E]

= E
[{

µE(Si, Xi, 1)− µE(Si, Xi, 0)
}
· r(Si, Xi) · (1− r(Si, Xi))

e(Xi) · (1− e(Xi))

∣∣∣∣Pi = E

]
(iv). Suppose Assumptions 1 (unconfoundedness) and 4 (overlap) hold, but Assumptions 2

(surrogacy) and 3 (comparability) do not necessarily hold. Then the difference between the

average causal effect and the estimand is

τ − E [hO(Si(1), Xi)− hO(Si(0), Xi)|Pi = E]

= E
[{

µE(Si, Xi, 1)− µE(Si, Xi, 0)
}
· r(Si, Xi) · (1− r(Si, Xi))

e(Xi) · (1− e(Xi))

∣∣∣∣Pi = E

]
+E

[{
hE(Si, Xi)− hO(Si, Xi)

}
· r(Si, Xi)− e(Xi)

e(Xi) · (1− e(Xi))

∣∣∣∣Pi = E

]
.

Theorem 2(i) shows that even without surrogacy and comparability, we estimate a valid

causal effect as long as unconfoundedness holds. The treatment effect we estimate is the aver-

age effect of the treatment on the surrogate index – an aggregate of intermediate outcomes –

rather than the average effect on the primary outcome. This result also shows that the inter-

pretation remains the same whether the surrogate estimate is constructed using the surrogate

score approach or the surrogate index approach. The second, third, and fourth results show how

a lack of comparability or surrogacy affect the difference between what is being estimated and

the average treatment effect on the primary outcome.
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The bias from violations of surrogacy (part (iii) of the theorem) – which we view as the

assumption whose validity is most likely to be questioned in typical applications – consists of

two factors. The first factor is small if the surrogates and pre-treatment variables explain a large

share of the variation in Yi and therefore µE(s, x, 1) and µE(s, x, 0) are close. In terms of the

DAG shown in Figure 1c, the surrogates block most of the paths between W and Y , and hence

the treatment effect on an index based on S must match that on Y .

The second factor is small if the surrogate explains a large share of the variation in Wi, so

that the surrogate score is close to zero or one and therefore E[r(Si, Xi) · (1− r(Si, Xi))] is close

to zero. This result may be more surprising: even if the surrogates do not capture much of

the variation in the primary outcome, as long as the treatment and the surrogate are highly

correlated, the bias from violations of surrogacy must be modest. Intuitively, if S captures

all the variation in W , then the relationship between S and Y in the observational sample

must coincide with the relationship between the W and Y . Since comparability guarantees that

the relationship between S and Y is the same in both samples, it follows that we identify the

relationship between W and Y in the experimental sample – the treatment effect of interest.

4.2 Bounds on the Magnitude of the Bias

We now show how one can derive empirically estimable bounds on the magnitude of the potential

bias when surrogacy fails using the expressions in the previous subsection.

For simplicity, we consider the case where comparability holds with a constant sampling

score, but surrogacy is violated. Assume that treatment assignment in the experimental sample

is random and that there are no covariates Xi. Furthermore, suppose that the conditional

expectation of the outcome give the surrogates and the treatment is linear and homoskedastic:

µE(Si,Wi) ≡ E [Yi|Si,Wi, pi = E] = α+γ>Si+βWi, and V (Yi|Si,Wi, pi = E) = σ2
Y |S,W .

Here, β captures the direct effect of the treatment on the outcome that is not captured by the

surrogates (as in Figure 1b).

Define the explanatory power of the surrogates for predicting the outcome as

R2
Y |S = 1−

σ2
Y |S,W + β2E[V(Wi|Si)]

V(Yi)
= 1−

σ2
Y |S,W + β2E[r(Si)(1− r(Si)]

V(Yi)
,
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and similarly for predicting the treatment:

R2
W |S = 1− E[r(Si)(1− r(Si)]

E[r(Si)](1− E[r(Si)])
= 1− E[V(Wi|Si)]

V(Wi)
,

where V(Wi|Si) and V(Wi) are the conditional and marginal variances of Wi respectively, and

E[V(Wi|Si)] is the expectation of the conditional variance which by definition is less than or

equal to the marginal variance.

The bias in the surrogate index estimator is:

bias ≡ E [hO(Si(1), Xi)− hO(Si(0), Xi)|Pi = E]− τ

= −β × E[r(Si)(1− r(Si)]

E[r(Si)](1− E[r(Si)])
= −β × V(Wi|Si)

V(Wi)
= −β × (1−R2

W |S).

Paralleling the intuition discussed above, the degree of bias depends upon the magnitude of the

direct effect β and the residual variance in treatment assignment conditional on the surrogates.

If β = 0, surrogacy is satisfied and there is no bias. If treatment assignment does not vary

conditional on S, there is no scope for W to affect Y conditional on S and hence the surrogate

index estimator must be unbiased.

The parameter R2
W |S can be estimated directly in the data. Hence, in order to obtain an

estimable bound on the degree of bias, we need to bound β. To do so, note that the conditional

expectation of Yi given the surrogates is

E [Yi|Si, pi = E] = α + γ>Si + βr(Si).

It follows that β2 can be bounded above by the R2 for the explanatory power of the surrogates

in explaining the primary outcome:

β2 =
{
V(Yi)

(
1−R2

Y |S

)
− σ2

Y |S,W

}/
E[r(Si)(1− r(Si)] ≤ V(Yi)

1−R2
Y |S

E[r(Si)(1− r(Si)]
.

Since the square of the bias is

bias2 =

(
β × E[r(Si)(1− r(Si)]

E[r(Si)](1− E[r(Si)])

)2

,

it follows that

|bias| ≤
(

V(Yi)

V(Wi)
×
(

1−R2
W |S

)
×
(

1−R2
Y |S

))1/2

. (4.1)
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All of the variances and residual variances in this expression can be estimated, yielding an

implementable upper bound on the degree of bias from violations of surrogacy. Intuitively, the

bound on the bias is proportional to one minus the R2 from the regression of the treatment on

the surrogates and one minus the R2 from the regression of the outcome on the surrogates. If

the surrogates explain a large share of variation of the treatment or in the outcome, then the

violations of the surrogacy assumption matter less, following the intuition for Theorem 2(iii)

discussed above.

Sharpening the Bounds. We can sharpen the bounds by bringing in information on the

explanatory power of the treatment Wi for the primary outcome Yi given Si. First define the

combined explanatory power of the treatment Wi and the surrogates Si:

R2
Y |S,W = 1− E[V(Yi|Si,Wi)]

E[V(Yi)]
.

Define the incremental explanatory power of the treatment over the surrogates as:

δ =
R2

Y |S,W −R2
Y |S

1−R2
Y |S

,

so that δ ∈ [0, 1]. Then the bound on bias can be written as:

|bias| ≤
(

V(Yi)

V(Wi)
× δ ×

(
1−R2

W |S

)
×
(

1−R2
Y |S

))1/2

. (4.2)

Intuitively, if the treatment explains very little of the variance in the primary outcome condi-

tional on the surrogates (i.e., δ is small), then there is little scope for bias from a direct effect

of W on Y .

Equation (4.2) is not empirically implementable because R2
Y |S,W cannot be directly estimated

in our setting, as we do not see Y and W together in the experimental sample. To make

progress, we make the assumption that the incremental explanatory power of the treatment for

the primary outcomes given the surrogates is smaller than the unconditional explanatory power

of the treatment:

δ =
R2

Y |S,W −R2
Y |S

1−R2
Y |S

≤ R2
Y |W .
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We view this as a relatively weak requirement that will hold in most applications: it simply

requires that the explanatory power of the treatment for the long-term outcome does not increase

(in percentage terms) when one includes information on intermediate outcomes. Under this

assumption,

|bias| ≤
(

V(Yi)

V(Wi)
×R2

Y |W ×
(

1−R2
W |S

)
×
(

1−R2
Y |S

))1/2

= τ
((

1−R2
W |S

)
×
(

1−R2
Y |S

))1/2
.

(4.3)

Of course, R2
Y |W – the extent to which the treatment explains the outcome of interest – is

not empirically estimable in our setting either. However, one may be able to place bounds on

R2
Y |W (or the treatment effect τ) from prior studies. For instance, if there have been several

evaluations of similar programs in the past and in no case has R2
Y |W exceeded 10%, then one may

be comfortable assuming R2
Y |W < 0.1 to gauge the potential degree of bias from violations of

surrogacy. Alternatively, one can evaluate how much larger than previously observed treatment

effects the true treatment effect would have to be in order to generate a given amount of bias

in the surrogate index estimate.

4.3 Validation of Surrogacy Assumption

Although the bounds derived above can be useful in assessing worst-case scenarios and testing

null hypotheses, they will often be wide given that they place relatively little structure on the

relationship between the surrogates and the long-term outcome. As an alternative approach to

gaining confidence in the estimates obtained using surrogate indices, one can assess the validity

of the surrogacy condition by “holding out” an intermediate outcome. Intuitively, by treating

one of the surrogates as a primary outcome, one can assess whether the surrogate index performs

well out-of-sample.

Formally, suppose we have a vector of intermediate outcomes Si that we partition into two

components: Si = (Si1, Si2), where Si2 is a scalar. We treat Si2 as a pseudo-primary outcome

and use Si1 as the vector of surrogates for that outcome. That is, we treat the experimental

data on (Wi, Si1) as the experimental sample and the observational data on (Si1, Si2) as the

observational sample. We can then construct a surrogate index for Si2 using Si1 and compare
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the actual experimental estimate of the average treatment effect of Wi on Si2 to the estimate

based on the surrogate index. If these two estimates do not match, we would likely question the

validity of the surrogacy assumption in predicting the actual long-term outcome of interest Yi.

If in contrast the two estimates are well aligned, we would have more confidence in the surrogacy

condition required to identify treatment effects on Yi, especially if we find that the surrogate

index and experimental estimates match for many intermediate outcomes Si2 that are similar

to Yi. The assumption underlying this approach to validation is that if Si1 satisfies surrogacy

for the long-term outcome Y , it would satisfy surrogacy for the pseudo-outcome Si2 (and vice

versa). The logic is analogous to “placebo tests” using pre-determined or exogenous variables

that are commonly used to evaluate unconfoundedness in standard treatment effect settings;

although balance on pre-determined variables does not guarantee unconfoundedness, violations

of balance would typically reduce one’s confidence that unconfoundedness holds.

This validation approach is especially informative when the surrogates have a sequential

nature, e.g., when the intermediate variables Sit measure the same outcome as the long-term

outcome earlier in time (e.g., employment rates in earlier periods, as in our empirical application

below). In this temporal setting, one can evaluate the surrogacy assumption as time progresses

by testing whether a surrogate index constructed based on early indicators tracks experimental

outcomes well as time elapses, and then make longer-term predictions with greater confidence.

When the long term outcome Yi is itself observed in the experimental sample – i.e., if sufficient

time elapses in the sequential example above so that Yi is observed – one can directly test the

surrogacy assumption (Assumption 2) by testing if the estimates based on the surrogate index

match the standard ATE on the long-term outcome. Equivalently, one can test Assumption 2 by

testing if the treatment predicts the long-term outcome conditional on the surrogates. Although

this test is not useful for the present application itself (as one would be able to estimate long-

term impacts directly), it can be used to validate a set of surrogates for use in future studies in

similar settings.

5 Estimation

In this section, we first present a simple estimator for the surrogate index, our primary approach

to combining intermediate outcomes. We then discuss alternative estimators based on reweight-
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ing strategies that are first-order equivalent but can have different finite-sample properties.

5.1 Surrogate Index

Suppose we estimate the surrogate index as ĥO(s, x). We take an average of the surrogate

index in the experimental sample for the treatment and control groups, after adjusting for the

propensity score. A natural estimator, corresponding to (3.2), is the following difference of the

two averages over the experimental sample:

τ̂E =
1∑NE

i=1Wi/ê(Xi)

NE∑
i=1

ĥO(Si, Xi) ·
Wi

ê(Xi)
(5.1)

− 1∑NE

i=1(1−Wi)/(1− ê(Xi))

NE∑
i=1

ĥO(Si, Xi) ·
1−Wi

1− ê(Xi)
.

We refer to this as the surrogate index estimator. Note that compared to the representation in

the theorem, we normalize the weights so that the weights sum up to one. This tends to improve

the finite sample properties of related estimators in other settings substantially (Hirano, Imbens

and Ridder 2003; Busso, DiNardo and McCrary 2014).

In the case where the estimator for the surrogate index hO(s, x) was based on a linear

specification for the regression of the primary outcome on the intermediate outcome, hO(s, x) =

γ0 + γ′Ss+ γ′Xx, this leads to

τ̂E = γ̂′S τ̂S,

where τ̂S is an estimator for E [Si(1)− Si(0)] .

In the simplest case without pre-treatment variables and where the experimental sample is

randomized, τ̂S = S1 − S0, where S1 and S0 are the average values of the surrogate outcomes.

Here, the estimator simplifies to the difference in the estimated surrogate index in the treatment

group and the control group:

τ̂E = γ̂′S(S1 − S0) = h1 − h0, (5.2)

where h1−h0 is the difference in the average predicted values of the surrogate index ĥO(s, x) in

the treated and control samples.8 That is, the treatment effect on the long-term outcome can

8This expression is also familiar from the mediation literature (e.g., Baron and Kenny 1986). However, we
emphasize that in general, there may be interactions between the surrogates and pre-treatment variables.
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be estimated as the treatment effect on the predicted value of the long-term outcome based on

the surrogates.9

5.2 Alternative Estimators

We now present three alternative estimators that are based on the other representations for τ in

the main theorem. These estimators rely on reweighting observations rather than constructing

a surrogate index. Although these estimators are all asymptotically equivalent, their behavior

in finite samples can vary, and the best estimator can depend on the setting; see, for instance,

similar issues in the context of estimating average treatment effects under unconfoundedness

(Imbens and Wooldridge (2009); Abadie and Cattaneo (2018)).

Surrogate Score Estimator. We now use the second representation for τ in the main theorem

to derive an alternative estimator. Let ê(x), r̂(s, x), and t̂(s, x), be estimators for e(x), r(s, x),

and t(s, x) respectively. These may be nonparametric estimators, or simply estimators based on

generalized linear models. For example we could specify

e(x) =
exp(β0 + β′Xx)

1 + exp(β0 + β′Xx)
, r(s, x) =

exp(α0 + α′Ss+ α′Xx)

1 + exp(α0 + α′Ss+ α′Xx)
,

and

t(s, x) =
exp(δ0 + δ′Ss+ δ′Xx)

1 + exp(δ0 + δ′Ss+ δ′Xx)
,

estimated by maximum likelihood or method of moments. Once we have estimates ê(x), r̂(s, x)

and t̂(s, x), we can plug them into the sample analogs of the expected values in the main theorem.

The surrogate score estimator is based on averaging the following expression over the obser-

vational sample:

τ̂O =
1∑NO

i=1 ω1,r̂,ê,t̂

NO∑
i=1

Yi · ω1,r̂,ê,t̂ −
1∑NO

i=1 ω0,r̂,ê,t̂

NO∑
i=1

Yi · ω0,r̂,ê,t̂, (5.3)

where for w = 0, 1 the weights are

ωw,r̂,ê,t̂ =
r̂(Si, Xi)

w · (1− r̂(Si, Xi))
1−w · t̂(Si, Xi) · (1− q)

ê(Xi)w · (1− ê(Xi))1−w · (1− t̂(Si, Xi)) · q
.

9When the surrogacy condition fails, equation (5.2) still identifies the treatment effect on a weighted average
of intermediate outcomes under unconfoundedness. In this case, the surrogate index serves as a disciplined
way to choose weights when aggregating different intermediate outcomes, based on their predictive power for a
long-term outcome of interest.
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Efficient Score Estimator. We can also base estimation on the efficient score given in (3.5).

Given estimators for the propensity score, the surrogate score, and the sampling score, denoted

by ê(·), r̂(·, ·), the surrogate index ĥ(·, ·), and t̂(·, ·, ·), we can estimate the average treatment

effect as

τ̂E,O =
N∑
i=1

1Pi=E

q̂

(
ĥO(Si, Xi)Wi

ê(Xi)
− ĥO(Si, Xi)(1−Wi)

1− ê(Xi)

)

+
1Pi=O

1− q̂

(
t̂(Si, Xi)

1− t̂(Si, Xi)

1− q̂
q̂

)
(Yi − ĥ(Si, Xi)) (r̂(Si, Xi)− ê(Xi))

ê(Xi)(1− ê(Xi))
.

Based on the results in Newey (1994), it follows that under standard conditions the two

estimators above and the surrogate index estimator all reach the semi-parametric efficiency

bound, and must be first-order equivalent.

Double Matching Estimator. Finally, we consider a matching estimator. Although matching

estimators are generally not efficient in settings with unconfoundedness (Rubin 2006; Abadie

and Imbens 2006, 2016), they are intuitive and widely applied, and it is instructive to see how

a matching strategy can be used here.

Consider unit i in the experimental sample with Xi = x and Si = s, and suppose this is a

treated unit with Wi = 1. We need to find three matches for this unit. First, we need to find

a unit with the opposite treatment in the same (experimental) sample. Specifically, we need to

find the closest unit in the experimental sample, in terms of pre-treatment variables, among the

units with Wi = 0. Suppose this unit is unit j, with Wj = 0, and the value of the pre-treatment

variables for this unit are Xj = x′, and the surrogate outcomes are Sj = s′ (as a result of the

matching we should have x ≈ x′, but potentially s could be quite different from s′). Next,

we need to find for each of the units i and j a match in the observational sample. Find the

unit in the observational sample closest to unit i, in terms of both pre-treatment variables and

surrogates. Let i′(i) be the index for this unit, and let the value of the outcome for this unit be

Yi′ , and the values of the pre-treatment variables and surrogates Xi′ and Si′ (now as a result of

the matching Xi ≈ Xi′ and Si ≈ Si′ . Finally, find the unit in the observational sample closest

to unit j, in terms of both pre-treatment variables and surrogates. Let the value of the outcome

for this unit be Yj′ , and the values of the pre-treatment variables and surrogates Xj′ and Sj′ ,

with Xj ≈ Xj′ and Sj ≈ Sj′ .
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Then we combine these matches to estimate the causal effect for unit i, Yi(1)− Yi(0), as the

difference in average outcomes for the two matches from the observational sample:

̂Yi(1)− Yi(0) = Yi′ − Yj′ . (5.4)

The matching estimator for τ would then be the average value of (5.4) over the experimental

sample.

5.3 Estimation with Many Potential Surrogates

When the number of pre-treatment variables or surrogates (and their interactions) is large,

standard regularization methods such as LASSO (Tibshirani 1996; Belloni, Chernozhukov and

Hansen 2014), ridge regression, tree or forest based methods (Breiman 2001; Wager and Athey

2018), or super learners (Van der Laan and Rose 2011) can be used to obtain better estimates

of the relevant conditional expectations.

Similar to the familiar case of estimating average treatment effects under a selection on

observables assumption, in which pre-treatment variables play two roles in achieving uncon-

foundedness, surrogates also play two roles, both of which should be taken into account in

the variable selection procedure. Recall that in the standard case, pre-treatment variables are

associated with the potential outcomes and with the treatment indicator. Biases from omit-

ting pre-treatment variables arise from the combination of the association with the potential

outcomes and the association with the treatment indicator. As a result, variable selection pro-

cedures need to take both into account (e.g., Belloni, Chernozhukov and Hansen 2014), and

the most effective procedures involve doubly robust methods (e.g., Scharfstein, Rotnitzky and

Robins 1999). In the current setting, the surrogates play two roles as well. Their association

with the treatment indicator is captured through the surrogate score, while their association

with the outcomes is captured in the surrogate index. Surrogate selection should therefore focus

on selecting intermediate outcomes that are either strongly linked to the primary outcome or

the treatment.10

10The latter requirement is closely related to the requirement that there are substantial effects of the treatment
on the surrogates, but it is not the same. If two potential surrogates are highly correlated, there may be
substantial treatment effects for both of them, but it may not be necessary to include both.
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6 Efficiency Gains from Surrogate Indices

In this section, we show how surrogate indices increase the precision of treatment effect estimates

in addition to expediting their estimation.

To quantify efficiency gains, we consider a single sample setting in which there is one (exper-

imental) sample in which the long-term outcome is observed alongside treatment and the surro-

gates. Formally, all units in the population are characterized by the sextuple (Yi(0), Yi(1), Si(0),

Si(1), Xi,Wi). We observe the quadruple (Si, Xi,Wi, Yi), now including the realized outcome Yi.

In this setting, it is well-known that an efficient estimator for the effect of a treatment Wi

on Yi is the difference between the sample mean of the treated outcomes and the sample mean

of the control outcomes in the absence of covariates or further assumptions about the data

generating process. Thus, it might seem that incorporating surrogate variables Si in estimation

(for example, by replacing Yi with the surrogate index in estimation, as in τE) would reduce

efficiency. However, the opposite is true under the surrogacy assumption. Intuitively, the

surrogacy assumption brings additional information to bear on the problem – namely that any

variation in Y conditional on S is orthogonal to W and hence is simply noise that increases

the residual variance of the outcome and reduces precision. By identifying suitable surrogates –

outcomes that capture the treatment effect of interest earlier in the causal chain shown in Figure

1c – one can strip out the residual variation arising from downstream factors that create noise.

For example, if a program affects individuals’ labor market trajectories entirely by changing their

first job placement, then any subsequent changes in employment outcomes simply add noise.

Hence, one can estimate the program’s long-term effect on earnings more precisely by focusing

solely on the portion of lifetime earnings that projects onto characteristics of an individual’s

first job.

To formalize this result, let σ2(s, x) = V(Yi|Si = s,Xi = x), σ2
w(x) = V(Yi|Xi = x,Wi = w),

and µw(x) = E[Yi|Xi = x,Wi = w].

Theorem 3. (i) The efficiency bound without assuming surrogacy, but when surrogacy holds is

Vns = E
[
σ1(Xi)

2

e(Xi)
+

σ2
0(Xi)

1− e(Xi)
+ (µ1(Xi)− µ0(Xi)− τ)2

]

= E
[
σ2(Si, Xi) ·

(
r(Si, Xi)

(e(Xi))2
+

1− r(Si, Xi)

(1− e(Xi))2

)
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+
r(Si)

(e(Xi))2
· (hE(Si, Xi)− µ1(Xi))

2 +
1− r(Si, Xi)

(1− e(Xi))2
· (hE(Si, Xi)− µ0(Xi))

2

+ (µ1(Xi)− µ0(Xi)− τ)2
]
.

(ii) The efficiency bound assuming surrogacy is

Vs = E
[
σ2(Si, Xi) ·

(
r2(Si, Xi)

(e(Xi))2
+

(1− r(Si, Xi))
2

(1− e(Xi))2

)

+
r(Si)

(e(Xi))2
· (hE(Si, Xi)− µ1(Xi))

2 +
1− r(Si, Xi)

(1− e(Xi))2
· (hE(Si, Xi)− µ0(Xi))

2

+ (µ1(Xi)− µ0(Xi)− τ)2
]
.

The difference between the two bounds, Vns − Vs, is the efficiency gain from exploiting

surrogacy. The expressions differ in the first term, involving σ2(Si, Xi). There is no gain if

Si = Wi (the treatment can be perfectly inferred from the surrogates), or if σ2(s, x) = 0 (the final

outcome can be inferred perfectly from the surrogates and pre-treatment variables). Intuitively,

in these cases the surrogate index estimate is identical to the conventional experimental estimate

as there is no residual variance in the outcome or treatment conditional on the surrogates.

To gain more intuition about the determinants of the efficiency gain, consider the case where

σ2 = σ2(s, x) for all s (homoskedasticity) and there are no pre-treatment variables. In this case,

Vns − Vs = E
[

2σ2

p(1− p)
·
{
p(1− p)− (r(Si)− p)2

}]
, (6.1)

where p = E[Wi]. Again, there is no gain if Si = Wi, in which case the surrogate score

r(Si) ∈ {0, 1}. The efficiency gain is largest if r(Si) is constant (and thus equal to E[r(Si)] = p)

and when the residual variance in the primary outcome Y given the surrogates σ2 is large.

Intuitively, the use of surrogates purges the most noise when the residual variances in W and

Y given S are high, thereby yielding larger efficiency gains. Insofar as the unexplained variance

is particularly large for rare outcomes, the use of surrogates is likely to yield particularly large

precision gains when studying rare outcomes such as mortality (Athey and Stern 1998).

There is an interesting tradeoff between the settings in which surrogates yield large efficiency

gains and settings in which violations of the surrogacy assumptions generate minimal bias.
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Theorem 2 shows that the bias from violations of surrogacy is smallest when r(Si) is close to 0

or 1 or when σ2 is small. Theorem 3 shows that the efficiency gains are largest under precisely

the opposite conditions. Surrogates are thus likely to yield the largest gains in precision when the

surrogacy assumption is known to be highly credible (e.g., based on out-of-sample validation as

in Section 4.3), but there is considerable residual variance in treatment assignment and outcomes

conditional on the surrogates.

The results in this section imply that when given a choice between many potential surrogates,

it is optimal to use the smallest set of surrogates that satisfy the surrogacy assumption to

maximize efficiency. In a temporal setting where surrogates are ordered sequentially over time,

this implies that the objectives of rapid detection and maximizing precision are generally aligned:

it is preferable to use outcomes over the shortest time period both to save time and maximize

precision.

7 Application: Impacts of Job Training on Employment

In this section, we apply our method to estimate the causal effect of the Greater Avenues to

Independence (GAIN) job training program on long-term employment rates (Riccio et al. 1989;

Friedlander and Robins 1995). GAIN was a job assistance program implemented in California

in the late 1980s to help welfare recipients find work. MDRC conducted a randomized trial

to evaluate the GAIN program’s employment impacts in six counties in California in the late

1980s. We focus primarily on the GAIN trial in Riverside, which was widely heralded as the

program that had the largest treatment effects on earnings. The Riverside program emphasized

a “jobs first” approach to re-entry into the labor force, encouraging unemployed workers to take

any job they found; in contrast, other sites focused more heavily on developing human capital

through training programs (Hotz, Imbens and Klerman 2006).

We begin by presenting a brief summary of the experimental design and describing how we

construct a surrogate index estimator using short-term employment rates. We then illustrate

each of our theoretical results by evaluating the magnitude of the gains from using surrogate

indices in terms of time and precision relative to existing experimental estimates of the program’s

long-term impacts in Riverside. We also show how one can validate the surrogacy assumption

using intermediate outcomes and bound the degree of bias arising from potential violations of
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surrogacy. Finally, we assess whether the surrogate index accurately predicts the heterogeneity

in long-term treatment effects across other sites.

7.1 The GAIN Program

The GAIN treatment was randomly assigned to welfare (Aid for Families with Dependent Chil-

dren) recipients. This is a very low-income population. In Riverside, only 22% of the partic-

ipants were employed and mean quarterly earnings were $453 in the quarter prior to random

assignment. The treatment group consisted of N1 = 4405 participants, which the control group

consisted of N0 = 1040 participants who were not eligible for the additional services. Let

N = N1 +N0 = 5445 denote the total number of participants in the Riverside trial.

Hotz, Imbens and Klerman (2006) followed study participants for nine years after assignment

of the treatment, measuring quarterly employment rates and earnings from the Unemployment

Insurance database. They found that the treatment effects of the Riverside GAIN program on

employment rates and earnings were initially large, but declined over time, as shown in Figure

2, which plots employment rates (Panel A) and quarterly wage earnings (Panel B) by quarter

for individuals in the treatment and control groups.

In Riverside, the mean impact over the nine years after the experimental intervention was a

6.37 (s.e. = 1.1) percentage point (pp) increase in employment rates. Our question is whether

this nine-year employment impact could have been estimated more quickly by using short-term

employment impacts as surrogates. We use data drawn directly from Hotz, Imbens and Klerman

(2006); see that paper for further details on data construction and Friedlander and Robins (1995)

for further details on the GAIN program.

7.2 Surrogate Index Estimator

Let Yit represent an indicator for whether individual i is employed in quarter t, for t = 1, . . . , 36

after the experimental intervention. Let Wi represent a treatment indicator for individual i,

where Wi = 1 denotes that individual i received the GAIN treatment and Wi = 0 denotes that

he/she did not receive treatment. Let ȲiT =
∑T

i=1 Yit/T denote the fraction of quarters for

which individual i is employed from periods 1 to T .

Our goal is to estimate the treatment effect of the GAIN program on mean employment
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rates over T quarters after the experiment. One could estimate this parameter as

τ̂T =
1

TN1

N∑
i=1

T∑
t=1

YitWi −
1

TN0

N∑
i=1

T∑
t=1

Yit(1−Wi),

if one were willing to wait T quarters, as Hotz, Imbens and Klerman (2006) do using data for

T = 36 quarters (nine years). Our goal is to expedite identification of this treatment effect by

constructing surrogate indices using data on employment rates up to quarter S < T .

We construct a surrogate index for mean employment rates from quarters 1 to T for each

individual based on observed employment indicators Yit from quarters 1 to S. To do so, we

estimate the following linear regression model using OLS, using only data from the treatment

group:11

ȲiT = β0 +
S∑

t=1

βtYit + εi. (7.1)

The predicted value from this regression, which we denote by Ŷi,T,S, is our surrogate index for

mean employment from quarters 1 to T based on the individual’s employment record up to

quarter S. We compute this surrogate index for each of the individuals in the experimental

sample and define our estimate of the treatment effect based on the surrogate index as

τ̂T,S =
1

N1

N∑
i=1

Ŷi,T,SWi −
1

N0

N∑
i=1

Ŷi,T,S(1−Wi), (7.2)

simply replacing the actual employment rate observed from periods 1 to T with the prediction

based on the surrogate index, as in equation (5.2).

Because the data in this application come from a randomized experiment, the unconfound-

edness assumption is satisfied in this setting. The comparability assumption is also satisfied

because the treatment group (which we use as the “observational sample” to estimate the sur-

rogate index) is a random sample of the full population. Hence, the key assumption in question

11We discard the control group when estimating the surrogate index to ensure that none of the variation used
to estimate the surrogate index is itself experimentally induced, as would be the case in an application where one
lacked experimental data for 9 years. In most applications, one would use historical data – e.g., observational
data for the nine years preceding the experiment – to construct the surrogate index. We use the same treatment
group data to evaluate the performance of the surrogate index vs. the actual experimental estimates, which could
raise concerns about overfitting due to re-use of the same sample. We find that using a randomly split sample
approach yields very similar estimates, and therefore report estimates based on this simple approach here.
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is the surrogacy condition: how many quarters of data S on employment rates are adequate to

capture mean treatment effects on employment rates over the full 9 year period – i.e., how much

time and precision could we have gained in predicting long-term impacts by using a surrogate

index?

7.3 Results for Riverside

Gains in Time. To calculate the potential gain in time that could have been achieved using a

surrogate index, we compare the estimates obtained from our surrogate index estimator with the

actual experimental estimates of the mean treatment effect in Riverside over 9 years, varying the

surrogacy window S from 1 to 36. The estimates based on the surrogate index, plotted in the

solid circles in Figure 3a, quickly converge to the nine-year mean impact. The point estimates

from the surrogate index approach fall within the 95% confidence interval for the experimental

estimate of the nine-year employment effect for S ≥ 3 (three quarters of data). At S = 6, the

point estimate of 6.73% nearly matches the actual experimental estimate of 6.37%. Using more

than six quarters of data to construct the surrogate index yields estimates that remain relatively

stable around 6%, suggesting that it is adequate to have 1.5 years of data to predict the nine

year impact accurately.

By contrast, the point estimates from a naive approach of simply focusing on mean em-

ployment rates over the observed sample period – shown by open circles – fall within the 95%

confidence interval for the experimental estimate only after the 25th quarter (6.25 years).12

Moreover, we find that using employment rates in any one quarter by itself as a surrogate would

generally yield a highly biased estimate of the long-term impact (Figure 3b). Because there are

highly non-linear dynamics in employment rates over time – as shown in Figure 2 – combining

employment rates over multiple quarters yields more accurate forecasts of long-term employ-

ment impacts. In particular, the surrogate index places much larger weight on employment in

the most recent quarter relative to earlier quarters (Appendix Table 1).

Appendix Figure 2 shows that we find similar results when predicting quarterly earnings

rather than employment rates: a surrogate index based on earnings over the first six quarters

12Including additional variables as predictors in the surrogate index – e.g., pre-treatment employment rates,
racial demographics, education levels, etc. – has little impact on the estimates because these variables have very
limited explanatory power for long-term employment rates above and beyond employment rates in a few quarters
after random assignment.
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after the experiment does well in forecasting nine-year mean impacts, while naive estimators

based purely on short-term treatment effects perform poorly.

Validation. In Figure 4, we implement the out-of-sample validation approach discussed in

Section 4.3. We examine how a surrogate index based on S = 6 quarters of post-experimental

data performs in predicting mean employment impacts over varying horizons from T = 6 to T =

36 quarters. We find that the surrogate index estimates closely track the actual experimental

estimates; in particular, the point estimates from the surrogate index approach always fall within

the 95% confidence intervals for the experimental estimate, and the point estimates are generally

very similar. Appendix Figure 3 shows similar results for earnings levels.13

Figure 4 shows how the surrogate index estimator can be validated out-of-sample before one

makes longer-term predictions. The fact that the surrogate index estimates based on 6 quarters

of data closely track experimental impacts 2, 3, and 4 years after random assignment serves

to validate the key surrogacy assumption within a few years after the experiment. One can

therefore make extrapolations to longer-term (e.g., 9-year) impacts with greater confidence a

few years after random assignment.

Bounds. In Figure 5, we plot the bounds in (4.3), varying the number of quarters used to

estimate the surrogate index as in Figure 3a. To select the key exogenous parameter R2
Y |W

that governs the bounds, note that R2
Y |W = 0.66% in our experimental sample.14 We therefore

consider values of R2
Y |W = 1% and R2

Y |W = 5%, a more conservative assumption in which the

explanatory power of the treatment for the long-term outcome is permitted to be five times as

large as what is observed empirically.15

The bounds shrink as the number of surrogates used rises, collapsing to zero when S = 36

and the surrogate index fully explains the outcome of interest. When we assume R2
Y |W ≤ 1%, the

point estimate for the bounds excludes zero when S ≥ 5, implying that one can rule out a zero

13We can also use the surrogate index approach to predict employment and earnings impacts in a given
year, rather than the cumulative mean starting in the quarter after random assignment. We present results on
estimated experimental impacts and surrogate index predictions by year in Appendix Figure 3. The surrogate
index closely tracks the experimental estimates by year as well, although the surrogate index predictions deviate
slightly more from the experimental estimates in later years.

14The conservative bounds that do not make any assumption about R2
Y |W in (4.1) are ten times as wide as

the bounds shown in Figure 3a when R2
Y |W = 0.01 and hence prove to be uninformative in this application.

15These choices are intended to parallel how one might choose R2
Y |W in actual applications: one could use the

largest value observed in previously conducted studies or some multiple of that value (e.g., 5 times as large).
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mean treatment effect over 9 years within 5 quarters after the experiment.16 Under the more

conservative R2
Y |W ≤ 5% assumption, the bounds exclude zero when S ≥ 18. Hence, even if one

is uncertain about the validity of the surrogacy conditions and the magnitude of the program’s

long-term impact, one can be confident that there is a positive impact on mean employment

rates relatively quickly under plausible assumptions based on historical data. Intuitively, em-

ployment rates have sufficiently high serial correlation that there is not too much scope for

long-term treatment effects to deviate from the predictions based on short-term outcomes even

if the surrogacy condition is violated. Appendix Figure 4 shows similar results when predicting

quarterly earnings rather than employment rates.

Gains in Precision. In addition to being available more rapidly, the surrogate index estimator

is also much more precise, consistent with the results in Section 6. The standard error on

the conventional experimental estimate of the treatment effect on average employment rates

over 9 years is 1.1 percentage points, 54% larger than the standard error the corresponding

estimate using the surrogate index estimator based on the first six quarters of employment (0.7

percentage points).17 Equivalently, starting from the conventional experimental estimate as the

reference, the surrogate index estimator reduces the standard error of the treatment effect by

35%. Likewise, we find that the standard error on the conventional experimental estimate of

the treatment effect on average earnings over 9 years is 55% larger than an estimate based on a

surrogate index constructed using earnings in the first six quarters after the experiment.

Using more than six quarters of data to predict long-term impacts yields strictly less precise

estimates (Appendix Table 2). Hence, using more data to estimate the program’s impacts is

undesirable even if those data are available when the program is being evaluated. One intuition

for why a surrogate index based on a few quarters of data increases precision is that the GAIN

program largely operates by putting individuals on different trajectories in the first few quarters

16To simplify the figure, we ignore estimation error in the bounds. It is straightforward to construct confi-
dence intervals for the bounds following Imbens and Manski (2004); for instance, a 95% coverage region can be
constructed as the upper bound plus 1.645 times the standard error of the upper bound estimate and the lower
bound minus 1.645 times the standard error. The standard errors for the point estimates for the bounds range
from 0.3 to 1.0 percentage points as we vary S; as a result, the 95% coverage region is only slightly wider than
the bounds plotted in Figure 5. At the lower bound of the 95% coverage region, we can rule out a zero effect
starting in quarter 8 rather than quarter 5.

17To simplify computation, we construct confidence intervals simply based on the treatment effect estimate on
the surrogate index, ignoring the estimation error in the surrogate index itself. Using a bootstrap to account for
this source of error yields very similar estimates.
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after the intervention. All subsequent fluctuations in employment and earnings are largely

orthogonal to the initial treatment and hence simply add noise.

7.4 Results for Other Sites

We now turn to the data from other sites beyond Riverside.18 Hotz, Imbens and Klerman (2006)

report experimental estimates over a nine-year horizon in three other urban counties: Alameda

(Oakland), Los Angeles, and San Diego. They show that the treatment effects of the GAIN

program were very heterogeneous across sites, perhaps because they took different approaches

to job training and served different types of populations.

Here, we ask whether one could have predicted this treatment effect heterogeneity on long-

term outcomes more quickly through a surrogate index. Using the regression coefficients esti-

mated in (7.1) in the Riverside sample, we construct predicted rates of mean employment over

T = 36 quarters for individuals in each of the other sites using S = 6 quarters of data after the

experiment.19 We then estimate the treatment effect based on the surrogate index for each site

separately as in (7.2).

Figure 6 plots treatment effect estimates based on a six-quarter surrogate index against

the actual treatment effects estimated using nine years of data. Panel A shows results for

employment rates, while Panel B shows results for quarterly earnings. The surrogate index

estimates are closely aligned with the long-term experimental estimates across the sites. In

particular the six-quarter surrogate index captures the finding that the GAIN treatment had

much larger long-term effects on employment in Riverside than in other sites. The surrogate

index also captures the fact that the earnings gains were largest in Riverside, smallest in Los

Angeles, and in the middle in Alameda and San Diego.

Intuitively, the surrogate index performs well because sites with larger and more persistent

short-term effects on employment and earnings tended to have larger long-term effects on em-

ployment and earnings. Because the trajectory of short-term outcomes is highly predictive of

18We analyze data from the other sites separately from Riverside to conduct an out-of-sample validation
analysis. We analyzed the data from the other sites only after reporting the results above for Riverside, simply
evaluating the performance of the six-quarter surrogate index already estimated in Riverside in the other sites.

19Since we use the coefficients estimated in the Riverside data to construct surrogate indices in the other
sites, this analysis is a joint test of the surrogacy and comparability assumptions. In practice, we find that the
surrogate indices one obtains are virtually identical regardless of which site’s data are used, showing that these
sites are quite comparable in terms of employment and earnings dynamics.
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long-term outcomes in the observational sample in Riverside (Appendix Table 1), we obtain

predicted treatment effects that closely mirror the actual long-term estimates. This cross-site

validation demonstrates how surrogate indices estimated in a given setting can provide reliable

predictions in other settings.

In summary, our analysis of the GAIN experiment shows that surrogate indices can yield

substantial gains in time and precision. This result is of interest not just in the context of the

GAIN evaluation itself, but a much broader set of studies that estimate treatment effects on

employment and earnings using relatively short panels. As discussed in the introduction, many

recent studies use estimates of short-term treatment effects on earnings to make predictions

about lifetime earnings impacts, relying on strong assumptions – such as constant effects over

time – to make such extrapolations. Our results suggest that these short-term treatment effects

could be combined into a surrogate index that would yield more accurate predictions of long-term

impacts using existing observational data.

8 Conclusion

This paper has proposed a simple method of combining intermediate outcomes to estimate the

long-term impacts of treatments more rapidly and precisely. Our method requires estimating

a “surrogate index” – the conditional expectation of the long-term outcome given intermediate

outcomes – and then estimating the treatment effect on the surrogate index. The surrogate index

can be easily estimated using regression or other standard methods. We formalize conditions

under which this method yields unbiased estimates, derive bounds for the degree of bias when

those assumptions fail, and propose a simple out-of-sample validation approach using “hold

out” intermediate outcomes. We show that surrogates can also greatly improve the precision of

estimates even in settings where the treatment effect on the long-term outcome can be estimated

directly, particularly when that outcome is rare or noisy.

Applying the method to analyze the impacts of the GAIN job training program in Califor-

nia, we find that using short-term earnings and employment rates to construct surrogate indices

expedites the detection of long-term treatment effects on employment and earnings by several

years and also substantially increases precision. Furthermore, a single surrogate index accu-

rately predicts heterogeneity in the long-term treatment effects of different types of job training
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programs across sites, showing that surrogate indices estimated in a given setting may be gen-

eralizable to other settings. The success of the surrogate index in this application validates the

use of short-term employment outcomes as surrogates for detecting longer-term impacts of job

training programs, an empirical result that can be applied when analyzing ongoing programs.

Building on this application, it would be useful to systematically establish surrogate in-

dices that match the long-term treatment effects estimated in other experiments and quasi-

experiments. Over time, this would allow researchers to collectively build a public library of

surrogate indices for long-term outcomes that could be used to expedite the analysis of future

interventions.
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ONLINE APPENDICES

A. Connection to Mediation and Missing Data Literatures

In this appendix, we link the setup and assumptions in the current paper to the literatures

on mediation and missing data.

Mediation. In the mediation literature (e.g., Baron and Kenny 1986; VanderWeele 2015), the

intermediate outcome that we refer to here as the surrogate Si is called a mediator. To emphasize

its role as a causal variable in the mediation literature, we consider potential outcomes Yi(w, s)

that are indexed by the treatment and the surrogate. (In terms of these potential outcomes the

original potential outcomes Yi(w) can be defined as Yi(w) = Yi(w, Si(w)), for w ∈W.)

In the setting considered in the mediation literature, we observe the quadruple (Wi, Si, Yi, Xi)

for all units in the sample and so there is no distinction between the experimental sample and the

observational sample. Hence, the comparability assumption is automatically satisfied (Frangakis

and Rubin 2002; Mealli and Mattei 2012; Ding and Lu 2017).

The focus in the mediation literature is on decomposing the causal effect of the treatment on

the outcome into a direct effect that involves comparing potential outcomes where the surrogate

remains fixed, and an indirect effect that passes through the mediator/surrogate. Three key

concepts are the average total effect,

τ total = E [Yi(1, Si(1))− Yi(0, Si(0))] ,

the average natural indirect effect, where we fix the treatment at w = 1, but change the surrogate

from Si(0) to Si(1),

τnie = E [Yi(1, Si(1))− Yi(1, Si(0))] ,

and the average natural direct effect, where we fix the surrogate at Si(0) and change the treatment

from Wi = 0 to Wi = 1:

τnde = E [Yi(1, Si(0))− Yi(0, Si(0))] ,

with the the latter two adding up to the first: τ total = τnie + τnde.

These effects are identified in the mediation literature using assumptions similar to the

ones made in Section 3. The first assumption in the mediation framework is a reformulation
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of the unconfoundedness assumption, Assumption 1. It rules out the presence of unmeasured

confounders between the treatment and the surrogate, and between the treatment and the

outcome.

Assumption 5.

Wi ⊥⊥
(
Si(0), Si(1), Yi(0, Si(0)), Yi(1, Si(1))

) ∣∣∣ Xi.

The second assumption is another unconfoundedness assumption that rules out the presence

of unobserved confounders between the surrogate and the outcome, conditional on the treatment.

Assumption 6.

Si ⊥⊥
(
Yi(Wi, s)s∈S

) ∣∣∣ Xi,Wi.

The key assumption we add here, which is not commonly made in the mediation literature,

is to rule out any direct effect of the treatment on the outcome, allowing only for an indirect

effect through the surrogate.

Assumption 7. For all i, w,w′ ∈W, s ∈ S,

Yi(w, s) = Yi(w
′, s).

This assumption is similar to the exclusion restriction in instrumental variables settings, e.g.,

Imbens and Angrist (1994); Angrist, Imbens and Rubin (1996).

The following proposition links the two sets of assumptions.

Proposition 3. Suppose Assumptions 5-7 hold. Then Assumptions 1 and 2 hold.

Missing Data. From a missing data perspective, the surrogacy and comparability assump-

tions we make have parallels to the missingness at random (MAR) assumption common in the

missing data literature (Rubin 1976; Little and Rubin 2019), and specifically the literature on

combining samples with different sets of variables, (Ridder and Moffitt 2007; Gelman, King and

Liu 1998; Rässler 2004, 2012; Graham, Pinto and Egel 2016).

In our two sample setting, we can think of the complete data as the quintuple (Xi, Si, Yi,Wi, Pi).

Here, we view the sample as randomly drawn from a large population, so that we view Pi as a
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stochastic missing data indicator. For the units in the sample we observe the incomplete data

(Xi, Si,1Pi=OYi,1Pi=EWi, Pi), where for units with Pi = O the treatment indicator Wi is missing,

and for units with Pi = E the outcome Yi is missing. Now consider the following assumption.

Assumption 8. (Missing Data Assumption)

Conditional on (Si, Xi), the three variables Pi, Yi and Wi are jointly independent:

Pi ⊥⊥ Yi ⊥⊥ Wi

∣∣∣ Si, Xi.

This is slightly different from a standard missing at random assumption where one would

assume Pi ⊥⊥ Yi|Si, Xi and/or Pi ⊥⊥ Wi|Si, Xi. We need the stronger assumption to incorporate

surrogacy, as the following proposition shows.

Proposition 4. (Missing Data Model)

(i) Assumption 2 implies surrogacy

Yi ⊥⊥ Wi

∣∣∣ Si, Xi,

and comparability

Pi ⊥⊥ Yi

∣∣∣ Si, Xi.

(ii) Assumption 8 has no testable implications.

Note that even after we have dealt with the missing Yi and missing Wi problems, we still have

the missing potential outcomes, which is why we still need the unconfoundedness assumption.

B. Proofs

Proof of Proposition 1:

pr (Wi = 1|Yi = y, r(Si, Xi) = r, Pi = E) = E [Wi|Yi = y, r(Si, Xi) = r, Pi = E]

= E [E [Wi|Si, Xi, Yi = y, r(Si, Xi) = r, Pi = E]|Yi = y, r(Si, Xi) = r, Pi = E]

= E [E [Wi|Si, Xi, Yi = y, Pi = E]|Yi = y, r(Si, Xi) = r, Pi = E]

= E [E [Wi|Si, Xi, Pi = E]|Yi = y, r(Si, Xi) = r, Pi = E]

= E [r(Si, Xi)|Yi = y, r(Si, Xi) = r, Pi = E] = r(Si, Xi),
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which proves the result. �

Proof of Proposition 2: Part (i) follows directly from the definitions of µE(·) and hE(·) and

Assumption 2. Part (ii) follows directly from the definitions of hE(·) and hO(·) and Assumption

3. Part (iii) follows from parts (i) and (ii). �

Proof of Theorem 1: We prove the case for E[Yi(1)|Pi = E], specifically

E[Yi(1)|Pi = E] = E
[
hO(Si, Xi) ·

Wi

e(Xi)

∣∣∣∣Pi = E

]
(8.1)

= E
[
Yi ·

r(Si, Xi) · t(Si, Xi) · (1− q)
e(Xi) · (1− t(Si, Xi)) · q

∣∣∣∣Pi = O

]
(8.2)

= E
[
hO(Si, Xi) ·

r(Si, Xi) · t(Si, Xi) · (1− q)
e(Xi) · (1− t(Si, Xi)) · q

∣∣∣∣Pi = O

]
(8.3)

The proof of E[Yi(0)|Pi = E] is similar. The score function representation is immediate from

these equalities. We note that equality (8.1) uses Assumptions 1–3 and equalities (8.2) and (8.3)

only use Assumption 4.

Consider (8.1). By Assumption 1 (unconfoundedness), it follows that

E[Yi(1)|Pi = E] = E
[
Yi ·

Wi

e(Xi)

∣∣∣∣Pi = E

]
.

Using the law of iterated expectations, we can first condition on Si and Xi to get

E
[
Yi ·

Wi

e(Xi)

∣∣∣∣Pi = E

]
= E

[
E
[
Yi ·

Wi

e(Xi)

∣∣∣∣Si, Xi, Pi = E

]∣∣∣∣Pi = E

]
.

By Assumption 2 (surrogacy), we have

E
[
E
[
Yi ·

Wi

e(Xi)

∣∣∣∣Si, Xi, Pi = E

]∣∣∣∣Pi = E

]
= E

[
E [Yi|Si, Xi, Pi = E] · E [Wi|Si, Xi, Pi = E]

e(Xi)

∣∣∣∣Pi = E

]
By Assumption 3 (comparability), hE(s, x) = hO(s, x) so that this is equal to

E
[
hO(Si, Xi) ·

E [Wi|Si, Xi, Pi = E]

e(Xi)

∣∣∣∣Pi = E

]
= E

[
hO(Si, Xi) ·

r(Si, Xi)

e(Xi)

∣∣∣∣Pi = E

]
Undoing the law of iterated expectations gives us the desired equality.

Consider (8.2). By the definition of t(s, x), we have

t(s, x)

(1− t(s, x))
· 1− q

q
=

pr (Si = s,Xi = x|Pi = E)

pr (Si = s,Xi = x|Pi = O)
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where Assumption 4 assures 1− t(s, x) is not zero. This leads to

E
[
Yi ·

r(Si, Xi) · t(Si, Xi) · (1− q)
e(Xi) · (1− t(Si, Xi)) · q

∣∣∣∣Pi = O

]
= E

[
Yi ·

r(Si, Xi)

e(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
Again, by the law of iterated expectations, conditioning on Si and Xi leads to

E
[
Yi ·

r(Si, Xi)

e(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
= E

[
hO(Si, Xi)

r(Si, Xi)

e(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
Using the definition of conditional expectations, we obtain

E
[
hO(Si, Xi)

r(Si, Xi)

e(Xi)
· pr (Si, Xi|Pi = E)

pr (Si, Xi|Pi = O)

∣∣∣∣Pi = O

]
=

∫
hO(s, x)

r(s, x)

e(x)
· pr (Si = s,Xi = x|Pi = E)

pr (Si = s,Xi = x|Pi = O)
· pr (Si = s,Xi = x|Pi = O) dsdx

=

∫
hO(s, x)

r(s, x)

e(x)
pr (Si = s,Xi = x|Pi = E) dydsdx

=E
[
hO(Si, Xi)

r(Si, Xi)

e(Xi)

∣∣∣∣Pi = E

]
Consider (8.3). By the law of iterated expectations conditional on Si and Xi, we obtain

E
[
Yi ·

r(Si, Xi) · t(Si, Xi) · (1− q)
e(Xi) · (1− t(Si, Xi)) · q

∣∣∣∣Pi = O

]
= E

[
hO(Si, Xi) ·

r(Si, Xi) · t(Si, Xi) · (1− q)
e(Xi) · (1− t(Si, Xi)) · q

∣∣∣∣Pi = O

]
where Assumption 4 assures 1− t(s, x) is not zero. �

Proof of Theorem 2: Consider part (i). By the law of iterated expectations conditional on

Si and Xi, we have

τE ≡E
[
hO(Si, Xi) ·

Wi

e(Xi)
− hO(Si, Xi) ·

1−Wi

1− e(Xi)

∣∣∣∣Pi = E

]
=E

[
hO(Si, Xi) ·

r(Si, Xi)

e(Xi)
− hO(Si, Xi) ·

1− r(Si, Xi)

1− e(Xi)

∣∣∣∣Pi = E

]
By the proof of (8.2) in Theorem 1 where we don’t use surrogacy or comparability, we get

τO ≡E
[
Yi ·

r(Si, Xi) · t(Si, Xi) · (1− q)
e(Xi) · (1− t(Si, Xi)) · q

− Yi ·
(1− r(Si, Xi)) · t(Si, Xi) · (1− q)

(1− e(Xi)) · (1− t(Si, Xi)) · q

∣∣∣∣Pi = O

]
=E

[
hO(Si, Xi) ·

r(Si, Xi)

e(Xi)
− hO(Si, Xi) ·

1− r(Si, Xi)

1− e(Xi)

∣∣∣∣Pi = E

]
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The second equality in τE = τO = τE,O is immediate based on only the law of iterated expecta-

tions. Finally, by the law of iterated expectations conditional on Xi, we have

E
[
hO(Si, Xi) ·

Wi

e(Xi)
− hO(Si, Xi) ·

1−Wi

1− e(Xi)

∣∣∣∣Pi = E

]
=E

[
E
[
hO(Si, Xi) ·

Wi

e(Xi)
− hO(Si, Xi) ·

1−Wi

1− e(Xi)

∣∣∣∣Xi, Pi = E

]∣∣∣∣Pi = E

]
By Assumption 1 (unconfoundedness), we have

E
[
E
[
hO(Si, Xi) ·

Wi

e(Xi)
− hO(Si, Xi) ·

1−Wi

1− e(Xi)

∣∣∣∣Xi, Pi = E

]∣∣∣∣Pi = E

]
=E

[
E
[
hO(Si(1), Xi) ·

Wi

e(Xi)
− hO(Si(0), Xi) ·

1−Wi

1− e(Xi)

∣∣∣∣Xi, Pi = E

]∣∣∣∣Pi = E

]
=E [E [hO(Si(1), Xi) | Xi, Pi = E]− E [hO(Si(0), Xi) | Xi, Pi = E]|Pi = E]

Undoing the law of iterated expectations give the desired result.
For parts (ii)-(iv), we prove (iv) first. By Assumption 1 (unconfoundedness), we have

τ = E [E [Yi|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [Yi|Wi = 0, Xi, Pi = E] | Pi = E] .

By iterated expectations, this is equal to

τ = E [E [E [Yi|Si, Xi,Wi = 1, Pi = E] |Wi = 1, Xi, Pi = E] | Pi = E]

− E [E [E [Yi|Si, Xi,Wi = 0, Pi = E] |Wi = 0, Xi, Pi = E] | Pi = E]

= E [E [µE(Si, Xi, 1)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µE(Si, Xi, 0)|Wi = 0, Xi, Pi = E] | Pi = E]

Thus,we have

τ − E [hO(Si(1), Xi)− hO(Si(0), Xi) | Pi = E]

=E [E [µE(Si, Xi, 1)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µE(Si, Xi, 0)|Wi = 0, Xi, Pi = E] | Pi = E]

− {E [E [hO(Si, Xi) |Wi = 1, XiPi = E] | Pi = E]− E [E [hO(Si, Xi) |Wi = 0, XiPi = E] | Pi = E]}

We add and subtract

E [E [hE(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [hE(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]

to get

τ − E [hO(Si(1), Xi)− hO(Si(0), Xi) | Pi = E]

=E [E [µE(Si, Xi, 1)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [µE(Si, Xi, 0)|Wi = 0, Xi, Pi = E] | Pi = E]

− E [E [hE(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E] + E [E [hE(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]

+ E [E [hE(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [hE(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]

− {E [E [hO(Si, Xi) |Wi = 1, XiPi = E] | Pi = E]− E [E [hO(Si, Xi) |Wi = 0, XiPi = E] | Pi = E]}
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Rearranging the terms, we have

τ − E [hO(Si(1), Xi)− hO(Si(0), Xi) | Pi = E] (8.4)

=E [E [µE(Si, Xi, 1)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [hE(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E] (8.5)

− E [E [µE(Si, Xi, 0)|Wi = 0, Xi, Pi = E] | Pi = E] + E [E [hE(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E] (8.6)

+ E [E [hE(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [hO(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E] (8.7)

+ E [E [hO(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]− E [E [hE(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E] (8.8)

Next, by the definition of expectations,

hE(s, x) =E[Yi|Si = s,Xi = x, Pi = E]

=E[Yi|Si = s,Xi = x,Wi = 1, Pi = E] · pr(Wi = 1|Si = s,Xi = x, Pi = E)

+ E[Yi|Si = s,Xi = x,Wi = 0, Pi = E] · pr(Wi = 0|Si = s,Xi = x, Pi = E)

=µE(s, x, 1) · r(s, x) + µE(s, x, 0) · (1− r(s, x))

Use this to write (8.5) as

E [E [µE(Si, Xi, 1)|Wi = 1, Xi, Pi = E]Pi = E]

− E [E [µE(Si, Xi, 1) · r(Si, Xi) + µE(Si, Xi, 0) · (1− r(Si, Xi))|Wi = 1, Xi, Pi = E] | Pi = E]

=E [E [(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · (1− r(Si, Xi))|Wi = 1, Xi, Pi = E] | Pi = E]

=E
[
E
[
(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · (1− r(Si, Xi)) · r(Si, Xi)

e(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · (1− r(Si, Xi))r(Si, Xi)

e(Xi)
| Pi = E

]
Using the same argument we can write (8.6) as

− E [E [µE(Si, Xi, 0)|Wi = 0, Xi, Pi = E] | Pi = E] + E [E [hE(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]

=− E [E [µE(Si, Xi, 0)|Wi = 0, Xi, Pi = E] | Pi = E]

+ E [E [µE(Si, Xi, 1) · r(Si, Xi) + µE(Si, Xi, 0) · (1− r(Si, Xi))|Wi = 0, Xi, Pi = E] | Pi = E]

=E [E [(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · r(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]

=E
[
E
[
(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · (1− r(Si, Xi)) · r(Si, Xi)

1− e(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · (1− r(Si, Xi)) · r(Si, Xi)

1− e(Xi)
| Pi = E

]
Combining the results for (8.5) and (8.6) leads to

E
[
(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · (1− r(Si, Xi)) · r(Si, Xi)

(1− e(Xi)) · e(Xi)
| Pi = E

]
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Collecting the last two terms, (8.7) and (8.8), we have

E [E [hE(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E]− E [E [hO(Si, Xi)|Wi = 1, Xi, Pi = E] | Pi = E]

+ E [E [hO(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]− E [E [hE(Si, Xi)|Wi = 0, Xi, Pi = E] | Pi = E]

=E
[
E
[
hE(Si, Xi) ·

r(Si, Xi)

e(Xi)
|Xi, Pi = E

]
| Pi = E

]
− E

[
E
[
hO(Si, Xi) ·

r(Si, Xi)

e(Xi)
|Xi, Pi = E

]
| Pi = E

]
+ E

[
E
[
hO(Si, Xi) ·

1− r(Si, Xi)

1− e(Xi)
|Xi, Pi = E

]
| Pi = E

]
− E

[
E
[
hE(Si, Xi) ·

1− r(Si, Xi)

1− e(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
E
[
(hE(Si, Xi)− hO(Si, Xi)) ·

r(Si, Xi)

e(Xi)
|Xi, Pi = E

]
| Pi = E

]
− E

[
E
[
(hE(Si, Xi)− hO(Si, Xi)) ·

1− r(Si, Xi)

1− e(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
E
[
(hE(Si, Xi)− hO(Si, Xi)) ·

r(Si, Xi)− e(Xi)

(1− e(Xi)) · e(Xi)
|Xi, Pi = E

]
| Pi = E

]
=E

[
(hE(Si, Xi)− hO(Si, Xi)) ·

r(Si, Xi)− e(Xi)

(1− e(Xi)) · e(Xi)
| Pi = E

]
Combining the terms together, we obtain the expression in (iv)

τ − E [hO(Si(1), Xi)− hO(Si(0), Xi) | Pi = E]

=E
[
(µE(Si, Xi, 1)− µE(Si, Xi, 0)) · (1− r(Si, Xi)) · r(Si, Xi)

(1− e(Xi)) · e(Xi)
| Pi = E

]
+ E

[
(hE(Si, Xi)− hO(Si, Xi)) ·

r(Si, Xi)− e(Xi)

(1− e(Xi)) · e(Xi)
| Pi = E

]
Finally for part (ii), under Assumption 2 (surrogacy), but not Assumption 3 (comparability), µE(Si, Xi, 1)−
µE(Si, Xi, 0) = 0 and the result is immediate from (iv). For part (iii), under Assumption 3 (compa-
rability), but not Assumption 2 (surrogacy), hE(Si, Xi) − hO(Si, Xi) = 0 and the result is immediate
from (iv). �

Proof of Theorem 3: The first representation of the efficiency bound without surrogacy is derived
in Robins and Rotnitzky (1995); Robins, Rotnitzky and Zhao (1995); Hahn (1998). For the second
case we focus on the setting where the propensity score is constant, and the surrogate is discrete with
support s1, . . . , sM . The latter is not restrictive, and the former can be relaxed at the expense of
additional algebra.

The efficient estimator is τ̂ = Y 1 − Y 0 where Y 1 and Y 0 are the average values for the surrogate
outcome in treated and control samples respectively. We can write this as

τ̂ =
M∑

m=1

π̂s|1 · µ̂E(sm, 1)−
M∑

m=1

π̂s|0 · µ̂E(sm, 0).

Here µ̂E(s, w) is the average outcome for units with Si = s and Wi = w, and π̂E(s|w) = P (Si = s|Wi =
w). Let π̂E(s) be the fraction of units with Si = s. Let πE(s|w) and πE(s) be the corresponding
population probabilities, so that πE(s|1) = πE(s) · r(s)/p.
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We can write the difference between τ̂ and τ =
∑M

m=1 πE(sm|1)·µE(sm, 1)−
∑M

m=1 πE(sm|0)·µ(sm, 0)
as

τ̂ − τ =

M∑
m=1

π̂E(sm|1) · (µ̂E(sm, 1)− µE(sm, 1))−
M∑

m=1

π̂E(sm|0) · (µ̂E(sm, 0)− µE(sm, 0))

+
M∑

m=1

(π̂E(sm|1)− πE(sm|1)) · µE(sm, 1)−
M∑

m=1

(π̂E(sm|0)− πE(sm|0)) · µE(sm, 0).

Up to the relevant order of approximation this is equal to

τ̂ − τ ≈
M∑

m=1

πE(sm|1) · (µ̂E(sm, 1)− µE(sm, 1))−
M∑

m=1

πE(sm|0) · (µ̂E(sm, 0)− µE(sm, 0))

+
M∑

m=1

(π̂E(s|1)− πE(s|1)) · µE(sm, 1)−
M∑

m=1

(π̂E(s|1)− πE(s|0)) · µE(sm, 0).

If N is the overall sample size, the variance of µ̂E(s, 1) is σ2(s)/(N ·πE(s|1) ·p). The variance of π̂E(s|1)
is πE(s|1) · (1− πE(s|1))/(N · p). Then

VE(τ̂ − τ) ≈
M∑

m=1

πE(sm|1)2 · σ2(sm)

N · πE(sm|1) · p
−

M∑
m=1

πE(sm|0)2 · σ2(sm)

N · πE(sm|0) · (1− p)

+
M∑

m=1

πE(sm|1) · (1− πE(sm|1))

N · p
·(µE(sm, 1)−µ1)2+

M∑
m=1

πE(sm|0) · (1− πE(sm|0))

N · (1− p)
·(µE(sm, 0)−µ0)2

≈
M∑

m=1

r(sm) · πE(sm) · σ
2(sm)

N · p2
−

M∑
m=1

r(sm) · πE(sm)
σ2(sm)

N · (1− p)2

+
M∑

m=1

πE(sm|1)

N · p
· (µE(sm, 1)− µ1)2 +

M∑
m=1

πE(sm|0)

N · (1− p)
· (µE(sm, 0)− µ0)2

M∑
m=1

r(sm) · πE(sm) · σ
2(sm)

N · p2
−

M∑
m=1

r(sm) · πE(sm)
σ2(sm)

N · (1− p)2

+
M∑

m=1

πE(sm) · r(sm)

N · p2
· (µE(sm, 1)− µ1)2 +

M∑
m=1

πE(sm) · r(sm)

N · (1− p)2
· (µE(sm, 0)− µ0)2

=
1

N
· EE

[
σ2(Si) ·

(
r(Si)

p2
+

1− r(Si)
(1− p)2

)
+
r(Si)

p2
· (µ(Si)− µ1)2 +

1− r(Si)
(1− p)2

· (µ(Si)− µ0)2
]
.
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Now consider the case with surrogacy. The estimator now is

τ̂ − τ =

M∑
m=1

π̂E(sm|1) · (ĥE(sm)− µE(sm, 1))−
M∑

m=1

π̂E(s|0) · (ĥE(sm)− µE(sm, 0))

+
M∑

m=1

(π̂E(s|1)− πE(s|1)) · µE(sm, 1))−
M∑

m=1

(π̂E(s|0)− πE(s|0) · µE(sm, 0)),

where ĥE(s) is the average outcome for all units with Si = s, no longer separately by treatment status.
Approximately, the estimator is

τ̂ − τ =

M∑
m=1

πs|1 · (ĥE(sm)− µ(sm, 1))−
M∑

m=1

πs|0 · (ĥE(sm)− µ(sm, 0))

+

M∑
m=1

(π̂s|1 − πs|1) · µ(sm, 1))−
M∑

m=1

(π̂s|0 − πs|0) · µ(sm, 0)).

The variance for the last two terms does not change, but the variance for the first two terms is different,
and there is also a covariance term. The total variance of the first term is

M∑
m=1

(πE(sm|1)− πE(sm|0))2 · V(ĥE(sm))

=
M∑

m=1

πE(sm)2
(
r(sm)

p
− 1− r(sm)

1− p

)2

· σ2(sm)

N · πE(sm)

=
1

N

M∑
m=1

πE(sm)

(
r(sm)− p
p · (1− p)

)2

· σ2(sm)

=
1

N

M∑
m=1

πE(sm)

(
r(sm)

p
+

1− r(sm)

1− p
− r(sm) · (1− r(sm))

p2 · (1− p)2

)
· σ2(sm)

=
1

N
· EE

[
σ2(Si) ·

(
r(Si)

p2
+

1− r(Si)
(1− p)2

− r(Si) · (1− r(Si))
p2 · (1− p)2

)
.

Combining this with the last term leads to

VE(τ̂) ≈ 1

N
· EE

[
σ2(Si) ·

(
r(Si)

p2
+

1− r(Si)
(1− p)2

− r(Si) · (1− r(Si))
p2 · (1− p)2

)

+
r(Si)

p2
· (hE(Si)− µ1)2 +

1− r(Si)
(1− p)2

· (hE(Si)− µ0)2
]
.

�

Proof of Proposition 3: We wish to show that the three conditions

Wi ⊥⊥
(
Si(0), Si(1), Yi(Si(0)), Yi(1, Si(1))

) ∣∣∣ Xi (8.9)
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Si ⊥⊥
(
Yi(Wi, s)s∈S

) ∣∣∣ Xi,Wi (8.10)

and

Yi(w, s) = Yi(w
′, s) ∀ i, w, w′ ∈W, s ∈ S, (8.11)

imply

Wi ⊥⊥
(
Yi(0), Yi(1), Si(0), Si(1)

) ∣∣∣ Xi, (8.12)

Wi ⊥⊥ Yi

∣∣∣ Si, Xi. (8.13)

Note that we leave out the conditioning in Pi = E in the last two conditions because we

are focused here on the one-sample case. Condition (8.12) follows directly from (8.9) because

Yi(w) = Yi(w, Si(w)).

Condition (8.11) implies that we can write Yi(s) without ambiguity, and by (8.9), we have

Wi ⊥⊥ Yi(s)
∣∣∣ Xi.

By (8.10) we have

Si ⊥⊥ Yi(s)
∣∣∣ Xi,Wi.

Combining these implies(
Si,Wi

)
⊥⊥ Yi(s)

∣∣∣ Xi.

This in turn implies

Wi ⊥⊥ Yi(s)
∣∣∣ Si, Xi,

which in turn implies

Wi ⊥⊥ Yi(Si)
∣∣∣ Si, Xi.

[49]



This is equivalent to the condition we set out to prove,

Wi ⊥⊥ Yi

∣∣∣ Si, Xi.

�

Proof of Proposition 4: The first part of the Proposition is immediate. For the second part,

note that we can estimate from the data the distributions

fY |S,X,P (y|s, x,O), fW |S,X,P (w|s, x,E), and fP,S,X(p, s, x),

but no other distributions. That implies that the joint distribution of (Y,W, P, S,X) implied by

fY |W,S,X,P (y|w, s, x, p) = fY |S,X,P (y|s, x,O),

and

fW |S,X,P (w|s, x,O) = fW |S,X,P (w|s, x,E),

for all (y, w, p, s, x) is consistent with the data, and it also satisfies Assumption 8. �
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Rässler, Susanne. 2012. Statistical matching: A frequentist theory, practical applications, and alter-
native Bayesian approaches. Vol. 168, Springer Science & Business Media.

Riccio, James, et al. 1989. “GAIN: Early Implementation Experiences and Lessons. California’s
Greater Avenues for Independence Program.” Memo.

Ridder, Geert, and Robert Moffitt. 2007. “The econometrics of data combination.” Handbook of
econometrics, 6: 5469–5547.

Robins, James M, and Andrea Rotnitzky. 1995. “Semiparametric efficiency in multivariate regres-
sion models with missing data.” Journal of the American Statistical Association, 90(429): 122–129.

Robins, James M, Andrea Rotnitzky, and Lue Ping Zhao. 1995. “Analysis of semiparametric
regression models for repeated outcomes in the presence of missing data.” Journal of the american
statistical association, 90(429): 106–121.

Rosenbaum, Paul R. 1984. “The consequences of adjustment for a concomitant variable that has been
affected by the treatment.” Journal of the Royal Statistical Society: Series A (General), 147(5): 656–
666.

Rosenbaum, Paul R, and Donald B Rubin. 1983. “The central role of the propensity score in
observational studies for causal effects.” Biometrika, 70(1): 41–55.

Rubin, Donald B. 1974. “Estimating causal effects of treatments in randomized and nonrandomized
studies.” Journal of educational Psychology, 66(5): 688.

Rubin, Donald B. 1976. “Inference and missing data.” Biometrika, 63(3): 581–592.

[54]



Rubin, Donald B. 2006. Matched sampling for causal effects. Cambridge University Press.

Scharfstein, Daniel O, Andrea Rotnitzky, and James M Robins. 1999. “Adjusting for non-
ignorable drop-out using semiparametric nonresponse models.” Journal of the American Statistical
Association, 94(448): 1096–1120.

Tchetgen Tchetgen, Eric J, and Ilya Shpitser. 2014. “Estimation of a Semiparametric Natural
Direct Effect Model Incorporating Baseline Covariates.” Biometrika, 101(4): 849–864.

Tibshirani, Robert. 1996. “Regression shrinkage and selection via the lasso.” Journal of the Royal
Statistical Society. Series B (Methodological), 267–288.

van der Laan, Mark J, and Maya L Petersen. 2004. “Estimation of direct and indirect causal
effects in longitudinal studies.” Memo.

Van der Laan, Mark J, and Sherri Rose. 2011. Targeted learning: causal inference for observa-
tional and experimental data. Springer Science & Business Media.

VanderWeele, Tyler. 2015. Explanation in causal inference: methods for mediation and interaction.
Oxford University Press.

Wager, Stefan, and Susan Athey. 2018. “Estimation and inference of heterogeneous treatment
effects using random forests.” Journal of the American Statistical Association, 113(523): 1228–1242.

Weir, Christopher J, and Rosalind J Walley. 2006. “Statistical evaluation of biomarkers as
surrogate endpoints: a literature review.” Statistics in medicine, 25(2): 183–203.

Xu, Jane, and Scott L Zeger. 2001. “The evaluation of multiple surrogate endpoints.” Biometrics,
57(1): 81–87.

Zheng, Wenjing, and Mark J van der Laan. 2012. “Targeted maximum likelihood estimation of
natural direct effects.” The international journal of biostatistics, 8(1): 1–40.
document

[55]



TABLE 1
Setup and Notation

(X is observed, 7 is missing)

Sample Treatment Long-Term Outcome Surrogate Pretreatment Variables
Units Pi Wi Yi Si Xi

1 to NE E X 7 X X

NE + 1 to NE + NO O 7 X X X

Notes: This table summarizes the setup of the dataset for the problem we analyze. The experimental sample has NE
observations. It includes information on the treatment indicator, the intermediate outcomes (surrogates), and pretreatment
variables; however, critically, it does not include data on the long-term outcome, reflecting the fact that the long-term outcome
is observed with a long delay after the experiment. The observational sample has NO observations. It includes information
on the primary outcome, the surrogates, and the pretreatment variables; however, it may not include data on the treatment
variable. The question we analyze is how one can identify the causal effect of W on Y in this setting where W and Y are not
observed together in the experimental sample.



APPENDIX TABLE 1
Regression Coefficients Underlying Surrogate Indices for Mean Employment and Earnings Over

Nine Years

Quarter

Six-Quarter Surrogate 

Index

(1)

Twelve-Quarter 

Surrogate Index

(2)

Six-Quarter Surrogate 

Index

(3)

Twelve-Quarter 

Surrogate Index

(4)

1 0.062 0.043 0.078 -0.007

(0.010) (0.008) (0.021) (0.015)

2 0.036 0.033 -0.040 -0.015

(0.011) (0.008) (0.021) (0.015)

3 0.072 0.042 0.093 0.055

(0.011) (0.009) (0.021) (0.015)

4 0.054 0.030 0.057 0.012

(0.012) (0.009) (0.021) (0.015)

5 0.113 0.052 0.080 0.046

(0.012) (0.009) (0.021) (0.015)

6 0.217 0.045 0.390 0.045

(0.011) (0.010) (0.016) (0.015)

7 0.042 0.062

(0.010) (0.016)

8 0.037 0.009

(0.010) (0.016)

9 0.073 0.079

(0.010) (0.016)

10 0.039 0.041

(0.011) (0.016)

11 0.095 0.115

(0.011) (0.017)

12 0.204 0.315

(0.009) (0.013)

Constant 0.131 0.072 453.143 250.705

(0.005) (0.004) (21.825) (15.980)

0.067 0.074 249.306 277.159

(0.007) (0.009) (36.340) (46.706)

Employment Earnings

Estimated Treatment 

Effect

Notes: This table shows the regression coefficients on employment (Columns 1 and 2) and earnings (Columns 3 and 4) used
to construct surrogate indices for mean employment and earnings over nine years. These are simply regression coefficient of
the nine-year mean outcome on employment rates or earnings over the first six quarters (Columns 1 and 3) or twelve quarters
(Columns 2 and 4). Standard errors for the coefficients are shown in parentheses. The estimated treatment effects listed in
the final row show the effect on mean employment or earnings over 36 quarters estimated using the surrogate index.



APPENDIX TABLE 2
Estimates of Treatment Effects on Employment and Earnings Over Nine Years,

Varying Quarters of Data Used to Construct Surrogate Index
    Quarters Used

Employment

(1)

Earnings

(2)

1 0.012 53.589

(0.003) (16.705)

2 0.032 125.402

(0.004) (20.981)

3 0.046 166.467

     (0.005) (26.858)

4 0.053 193.449

(0.006) (29.976)

5 0.063 221.958

(0.006) (33.018)

6 0.067 249.306

(0.007) (36.340)

7 0.067 244.448

(0.007) (38.754)

8 0.071 260.034

(0.008) (40.296)

9 0.075 287.194

(0.008) (42.131)

10 0.075 284.252

(0.008) (43.490)

11 0.075 283.595

(0.008) (45.171)

12 0.074 277.159

(0.009) (46.706)

13 0.072 273.788

(0.009) (47.550)

14 0.074 288.479

(0.009) (48.458)

15 0.074 284.172

(0.009) (49.152)

16 0.071 283.263

(0.009) (49.719)

17 0.073 294.511

(0.010) (50.609)

18 0.073 290.171

(0.010) (51.389)

19 0.072 293.753

(0.010) (52.130)

20 0.074 290.306

(0.010) (52.615)

21 0.073 285.737

(0.010) (52.995)

22 0.072 286.378

(0.010) (53.465)

23 0.072 286.091

(0.010) (53.823)

24 0.071 269.948

(0.010) (54.297)

25 0.071 274.255

(0.010) (54.617)

26 0.068 263.414

(0.010) (55.126)

27 0.067 256.391

(0.010) (55.361)

28 0.065 254.838

(0.010) (55.535)

29 0.066 261.461

(0.011) (55.707)

30 0.066 260.665

(0.011) (55.840)

31 0.066 255.566

(0.011) (55.963)

32 0.066 256.100

(0.011) (56.034)

33 0.065 252.594

(0.011) (56.125)

34 0.064 250.590

(0.011) (56.164)

35 0.064 249.931

(0.011) (56.182)

36 0.064 249.054

(0.011) (56.210)

Notes: Column 1 shows estimated treatment effects on a surrogate index for mean employment rates over 9 years that is
constructed using data on employment rates up to quarter x, varying x from 1 to 36. The surrogate index is constructed
as the predicted value from an individual-level OLS regression of mean employment rates over 36 quarters on employment
indicators from the first quarter after the intervention to quarter x (using data from the treatment group only to fit the model).
The point estimates that are listed exactly match those plotted in Figure 3a; standard errors for these estimates are given in
parentheses. Column 2 replicates Column 1 using mean quarterly earnings rather than employment as the outcome variable,
and using mean quarterly earnings rather than employment to construct surrogate indices, as in Appendix Figure 2a.



FIGURE 1
Surrogacy Assumptions and Violations

A. Surrogacy Assumption Satisfied

W S Y

B. Violation of Surrogacy due to Direct Effect
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C. Multiple Surrogates
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D. Instrumental Variable
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Notes: This figure shows a set of directed acyclical graphs (DAGs) that illustrate the assumptions underlying the use of an
intermediate outcome S as a surrogate to estimate the causal effect of a treatment W on a long-term outcome Y . Panel A
shows a case where the surrogacy assumption is satisfied with a single intermediate outcome S which lies on the causal chain
from W to Y . Panel B shows a case where this surrogacy condition is violated, due to a direct effect of the treatment on
the outcome that doesn’t pass through the surrogate. Panel C shows how this problem can be addressed by using multiple
intermediate outcomes to capture other pathways that link the treatment and long-term outcome, which (in combination with
unconfoundedness and comparability assumptions) is the logic underlying our surrogate index approach. Finally, in Panel
D, we present a DAG representation of standard instrumental variables estimators, where there is an unobserved confound
between W and Y that is addressed by introducing an instrument Z that affects W but does not affect Y directly (the
exclusion restriction). The instrumental variables case differs from the case on which we center our attention here because we
focus on a setting in which W and Y are not observed in the same sample, as shown in Table 1.



FIGURE 2
Employment Rates in Riverside GAIN Treatment vs. Control Group, by Quarter
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Notes: This figure shows the employment rates for the treatment group (circles) and control group (triangles) in the California
GAIN training program in Riverside County, CA. Each point represents the employment rate among the group at a given
number of quarters since random assignment. The horizontal lines show the mean employment rate over the nine years (36
quarters) after random assignment in the two groups; the difference between these two groups is the long-term treatment
effect τ of interest. The data underlying this figure, which are based on Unemployment Insurance records, were obtained from
Hotz, Imbens and Klerman (2006).



FIGURE 3
Estimates of Treatment Effect on Mean Employment Rates Over Nine Years

A. Varying Quarters of Data Used to Construct Surrogate Index
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B. Using Employment Rate in a Single Quarter as a Surrogate
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Notes: These figures show how surrogate indices based on varying numbers of quarters of employment data perform in matching
the actual treatment effect of the GAIN program on mean employment rates over nine years in Riverside. In both panels,
the solid line shows the mean treatment effect of τ = 6.37% on employment rates over nine years (36 quarters), estimated
as the difference in means between the treatment and control groups as shown in Figure 2. The dashed lines show a 95%
confidence interval for this estimate. In Panel A, the circles show the estimated treatment effect on a surrogate index for
mean employment rates over 9 years that is constructed using data on employment rates up to quarter x, varying x from 1 to
36. The surrogate index is constructed as the predicted value from an individual-level OLS regression of mean employment
rates over 36 quarters on employment indicators from the first quarter after the intervention to quarter x (using data from
the treatment group only to fit the model). The triangles in Panel A show a “naive” estimate of the mean treatment effect on
observed employment rates up to quarter x. In Panel B, the circles show the treatment effect estimate obtained if one uses
only the employment indicator in quarter x as the surrogate instead of constructing an index based on employment rates from
quarter 1 to quarter x. This series is constructed in the same way as the series in circles in Panel A, except that we use only
the employment indicator in quarter x as a predictor when constructing the surrogate index.



FIGURE 4
Validation of Six-Quarter Surrogate Index: Estimates of Treatment Effects on Mean Employment

Rates, Varying Outcome Horizon
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Notes: This figure shows how a surrogate index based on the first six quarters of employment data can be validated out of
sample by comparing estimates based on the surrogate index to actual observed treatment effects on employment outcomes
over time in Riverside. The triangles show point estimates of the treatment effect on cumulative mean employment rates from
quarter 1 to quarter x after random assignment. The solid vertical lines show 95% confidence intervals for these estimates. The
circles show estimates of treatment effects based on a surrogate index for mean employment rates up to quarter x constructed
using the first six quarters of employment data. The surrogate index is constructed as the predicted value from an individual-
level OLS regression of mean employment rates up to quarter x on employment indicators in the first six quarters after random
assignment (using data from the treatment group only to fit the model).



FIGURE 5
Bounds on Mean Treatment Effect on Employment Rates Over Nine Years, Varying Number of

Quarters Used to Construct Surrogate Index
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Notes: This figure plots bounds on the degree of bias from violations of the surrogacy assumption when using a surrogate index
to estimate the treatment effect on long-term employment rates in Riverside. The dark grey shaded regions shows bounds
on the treatment effect on mean employment rates over nine years based on surrogate index estimates constructed using
employment data up to quarter x, varying x from 1 to 36, assuming that the treatment explains at most R2

Y |W = 1% of the
variation in mean employment rates. These bounds are calculated using the formula in equation (4.3). The light grey shaded
region replicates the dark grey shaded region assuming R2

Y |W = 5%. The horizontal line shows the actual mean treatment
effect estimate of τ = 6.37% on employment rates over nine years (36 quarters). The circles show the point estimate of the
treatment effect using a surrogate index for mean employment rates over 9 years that is constructed using data on employment
rates up to quarter x, varying x from 1 to 36. The series in circles replicates the series in circles plotted in Figure 2a; see notes
to that figure for further details.



FIGURE 6

Surrogate Index Estimates vs. Actual Experimental Estimates, by Site

A. Employment Rates
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B. Quarterly Earnings
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Notes: This figure evaluates the performance of the surrogate index estimated using data from Riverside in predicting het-
erogeneity in treatment effects across sites. Panel A plots treatment effect estimates based on the six-quarter surrogate index
against treatment effect estimates based on actual mean employment rates over nine years. We construct the surrogate index
for employment rates by first running an individual-level OLS regression of mean employment rates over 36 quarters on em-
ployment indicators from the first to sixth quarter after the intervention, using data from the treatment group in Riverside
only. We then use these regression coefficients to predict employment rates for individuals in all sites. Finally, we estimate
treatment effects as the mean difference beteween the predicted employment rates for the treatment and control groups in
each site. The actual experimental estimates are simply the observed differences in mean employment rates over nine years
between the treatment and control groups in each site. The vertical dashed lines show 95% confidence intervals for the actual
experimental estimates. The earnings estimates in Panel B are constructed analogously, using quarterly earnings rather than
employment as the outcome variable, and using quarterly earnings rather than employment indicators to construct surrogate
indices.



APPENDIX FIGURE 1
Earnings in GAIN Treatment vs. Control Group, by Quarter
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Notes: This figure replicates Figure 2 using quarterly earnings rather than employment as the outcome variable. See notes to
Figure 2 for details.



APPENDIX FIGURE 2
Estimates of Treatment Effect on Mean Quarterly Earnings Over Nine Years

A. Varying Quarters of Data Used to Construct Estimate
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B. Using Earnings in a Single Quarter as a Surrogate
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Notes: This figure replicates Figure 3 using quarterly earnings rather than employment as the outcome variable, and using
quarterly earnings rather than employment indicators to construct surrogate indices. See notes to Figure 3 for details.



APPENDIX FIGURE 3
Validation of Six-Quarter Surrogate Index: Estimates of Treatment Effects on Mean Quarterly

Earnings, Varying Outcome Horizon
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Notes: This figure replicates Figure 4 using quarterly earnings rather than employment as the outcome variable, and using
quarterly earnings rather than employment indicators to construct surrogate indices. See notes to Figure 4 for details.



APPENDIX FIGURE 4
Bounds on Mean Treatment Effect on Earnings Over Nine Years, Varying Number of Quarters

Used to Construct Surrogate Index
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Notes: This figure replicates Figure 5 using quarterly earnings rather than employment as the outcome variable, and using
quarterly earnings rather than employment indicators to construct surrogate indices. See notes to Figure 5 for details.



APPENDIX FIGURE 5
Treatment Effects on Employment and Earnings in Each Year, Varying Outcome Horizon

A. Employment Rates
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B. Quarterly Earnings

0

100

200

300

400

Es
tim

at
ed

 T
re

at
m

en
t E

ffe
ct

 o
n 

M
ea

n
Q

ua
rte

rly
 E

ar
ni

ng
s 

at
 Y

ea
r x

 ($
)

3 4 5 6 7 8 9
Years Since Random Assignment

Six-Quarter Surrogate Index Estimate
Actual Experimental Estimate

 

Notes: This figure replicates Figure 4 and Appendix Figure 3 using yearly means instead of cumulative means of employment
rates (Panel A) and quarterly earnings (Panel B). In Panel A, the triangles show the actual experimental estimate (based
on the mean difference between the treatment and control group) in each year x after random assignment, varying x from 3
(quarters 8-11) to 9 (quarters 33-36). The vertical lines show 95% confidence intervals for these estimates. The circles show
estimates of treatment effects based on a surrogate index for mean employment rates in year x constructed using six quarters
of employment data. The surrogate index is constructed as the predicted value from an individual-level OLS regression of
mean employment rates in year x on employment indicators in the first six quarters after random assignment (using data from
the treatment group only to fit the model). Panel B replicates Panel A using quarterly earnings instead of employment rates
as the outcome and for the construction of the surrogate index.
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