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ABSTRACT
One of the major concerns of targeting interventions on individuals in social welfare programs is discrimina-
tion: individualized treatments may induce disparities across sensitive attributes such as age, gender, or race.
This article addresses the question of the design of fair and efficient treatment allocation rules. We adopt the
nonmaleficence perspective of “first do no harm”: we select the fairest allocation within the Pareto frontier.
We cast the optimization into a mixed-integer linear program formulation, which can be solved using off-
the-shelf algorithms. We derive regret bounds on the unfairness of the estimated policy function and small
sample guarantees on the Pareto frontier under general notions of fairness. Finally, we illustrate our method
using an application from education economics. Supplementary materials for this article are available online.
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1. Introduction

Heterogeneity in treatment effects, widely documented in social
sciences, motivates treatment allocation rules that assign treat-
ments to individuals differently based on observable character-
istics (Murphy 2003; Manski 2004). However, targeting indi-
viduals may induce disparities across sensitive attributes, such
as age, gender, or race. Motivated by evidence for policymak-
ers’ preferences toward nondiscriminatory actions (Cowgill and
Tucker 2019), this article designs fair and efficient targeting rules
for applications in welfare and health programs. We construct
treatment allocation rules using data from experiments or quasi-
experiments, and we develop policies that trade off efficiency
and fairness.

Fair targeting is a controversial task due to the lack of
consensus on formulating the decision problem. Conventional
approaches mostly developed in computer science consist in
designing algorithmic decisions that maximize the expected
utility across all individuals by imposing fairness constraints
on the decision space of the policymaker (Nabi, Malinsky, and
Shpitser 2019).1 In contrast, the economic literature has out-
lined the importance of taking into account the welfare effects
of such policies (Kleinberg et al. 2018). Fairness constraints on
the policymaker’s decision space may ultimately lead to sub-
optimal welfare for both sensitive groups. This is a significant
limitation when the policymakers are concerned with the effects

1For a review, the reader may refer to Corbett-Davies and Goel (2018). Further
discussion on the related literature is contained in Section 1.1.
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of their decisions on each individual’s utility: absent of legal
constraints, we may not want to impose unnecessary constraints
on the policy if such constraints are harmful to some or all
individuals.

This article studies the design of fair and Pareto optimal treat-
ment rules. We discuss targeting in a setting where decision-
makers prefer allocations for which we cannot find any other
policy that strictly improves the welfare of one of the two sensi-
tive groups without decreasing the welfare of the opposite group.
Within such a set, she then chooses the fairest allocation. The
decision problem is conceived for applications in social welfare
and health programs and motivated by the Hippocratic notion
of “first do no harm” (“primum non-nocere”) (Rotblat 1999):
instead of imposing possibly harmful fairness constraints on the
decision space, we restrict the set of admissible solutions to the
Pareto optimal set, and among such, we choose the fairest one.
For example, during a health-program campaign, the policy-
makers may not be willing to decrease all individuals’ health
status to gain fairness. Instead, they may be willing to trade off
health status of different groups (e.g., young and old individuals)
when considering fairness. Our framework has three desirable
properties: (i) it applies to general notions of fairness which may
reflect different decision-makers’ preferences; (ii) it guarantees
Pareto efficiency of the policy function, with the relative impor-
tance of each group solely chosen based on the notion of fairness
adopted by the decision-maker; (iii) it also allows for arbitrary
legal or ethical constraints, incorporating as a special case the
presence of fairness constraints whenever such constraints are

© 2023 American Statistical Association
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2 D. VIVIANO AND J. BRADIC

binding due to ethical or legal considerations.2 We name our
method Fair Policy Targeting.

This article contributes to the statistical treatment choice
literature by introducing the notion, estimation procedure and
studying the properties of Pareto optimal and fair treatment
allocation rules. We allow for general notions of fairness, and as
a contribution of independent interest, we study envy-freeness
(Varian 1976) in the context of policy targeting.

The decision problem consists of lexicographic preferences
of the policymaker of the following form: (i) Pareto-dominant
allocations are preferred over dominated ones; (ii) Pareto opti-
mal allocations are ranked based on fairness considerations.
We identify the Pareto frontier as the set of maximizers over
any weighted average of each group’s welfare. Therefore, such
an approach embeds as a special case maximizing a weighted
combination of the welfare of each sensitive group such as in
Athey and Wager (2021), Kitagawa and Tetenov (2018),3 and in
Rambachan et al. (2020). The above references take a specific
weighted combination of welfare with weights as given. In con-
trast, in our case, weights are part of the decision problem and
are directly selected to maximize fairness. This has important
practical implications: our procedure is solely based on the
notion of fairness adopted by the social planner. It does not
require specific importance weights assigned to each sensitive
group, which would be hard to justify to the general public.

Estimating the set of Pareto optimal allocations represents a
fundamental challenge since (i) the set consists of maximizers
over a continuum of weights between zero and one; (ii) each
maximizer of the welfare (or a weighted combination of wel-
fares) is often not unique (Elliott and Lieli 2013). To overcome
these issues, we show that the Pareto frontier can be approx-
imated using simple linear constraints. We use a discretiza-
tion argument, and we evaluate weighted combinations of the
objective functions separately to construct a polyhedron that
contains Pareto allocations. Our approach drastically simplifies
the optimization algorithm: instead of estimating the entire
set of Pareto allocations, we maximize fairness under easy-to-
implement linear constraints. Our theorems show that the dis-
tance between the Pareto frontier obtained via linear constraints
and its population counterpart converges uniformly to zero at a
rate 1/

√
n.

We study regret guarantees, that is, the difference between the
estimated policy function’s expected unfairness against the min-
imal possible unfairness achieved by Pareto optimal allocations.
We characterize the rate under high-level conditions for general
notions of unfairness and derive upper bounds that scale at rate
1/

√
n, in several examples, and a lower bound that matches

the same rate. An application and a calibrated numerical study
on targeting student awards illustrate the advantages of the
proposed method compared to alternatives that ignore Pareto
optimality.

2For binding fairness constraints, the policy that we propose is Pareto optimal
within the set of constrained policies and achieves a lower unfairness
compared to the policy that maximizes the utilitarian welfare under fairness
constraints. See Section 2.3 for details.

3Under the utilitarian perspective considered in Kitagawa and Tetenov
(2018), Athey and Wager (2021), the welfare maximization problem is
equivalent to maximizing a weighted combination of the welfare of differ-
ent groups with weights equal to the corresponding probabilities of such
groups. See Section 2 for more discussion.

The remainder of this article is organized as follows: we pro-
vide a brief overview of the literature in the following section; we
introduce the decision problem in Section 2; Section 3 discusses
estimation; Section 4 contains the theoretical analysis; Section 5
discusses counterfactual notions of fairness; Section 6 presents
an empirical application and numerical studies, and Section 7
concludes. Derivations and extensions are in the online supple-
mentary materials.

1.1. Related Literature

This article relates to a growing literature on statistical treat-
ment rules (Manski 2004; Hirano and Porter 2009; Bhattacharya
and Dupas 2012; Stoye 2012; Tetenov 2012; Armstrong and
Shen 2015; Kitagawa and Tetenov 2018, 2019; Zhou, Athey, and
Wager 2018; Viviano 2019; Sun 2021; Athey and Wager 2021;
Mbakop and Tabord-Meehan 2021). Further connections are
also related to the literature on classification (Elliott and Lieli
2013). However, none discuss the design of fair and Pareto
optimal decisions.

Fairness is a rising concern in economics, see Cowgill and
Tucker (2019), Kleinberg et al. (2018), and Rambachan et al.
(2020). The authors provide economic insights on the char-
acteristics of optimal decision rules when discrimination bias
occurs. Here, we answer the different questions of the design
and estimation of the optimal targeting rule within a statisti-
cal framework and derive the method’s properties. A further
difference from the references above is our focus on a multi-
objective instead of a single-objective decision problem. Addi-
tional references include Kasy and Abebe (2021) that provide
comparative statics on the impact of fairness on the individuals’
welfare, focusing on the analysis of algorithms, while Narita
(2021) motivates fairness based on incentive compatibility in the
different context of the design of experiments.

In computer science, Pareto optimality has been considered
in the context of binary predictions by Balashankar et al. (2019)
and Martinez, Bertran, and Sapiro (2019). The authors propose
semi-heuristic and computationally intensive procedures for
estimating Pareto efficient classifiers. Xiao et al. (2017) discuss
the different problems of estimation of a Pareto allocation that
balance fairness and individual utilities for recommender sys-
tems, where the relative importance weights of the different
objectives are selected a-priori. These references do not address
the treatment choice problem discussed in the current article.

References in computer science include Chouldechova
(2017), Dwork et al. (2012), Hardt, Price, and Srebro (2016)
among others. Corbett-Davies and Goel (2018) contain a review.
Additional work also includes Liu et al. (2017), who discuss
fair bandits, and Ustun, Liu, and Parkes (2019), who propose
decoupled estimation of tree classifiers without allowing for
exogenous (legal or economic) constraints on the policy space.
While the above references address the decision problem
as a prediction problem, several papers discuss algorithmic
fairness within a causal framework (Kilbertus et al. 2017; Nabi,
Malinsky, and Shpitser 2019; Kusner et al. 2019; Coston et al.
2020). All such papers estimate decision rules under fairness
constraints without discussing Pareto optimality. The different
decision problem considered here is motivated by applications
in social welfare and health programs. When not binding
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on policy-makers decisions, fairness constraints may lead to
Pareto-dominated allocations and possibly harmful policies
for advantaged and disadvantaged individuals. When fairness
constraints are binding, the decision problem proposed in this
article leads to fairer allocations than a constrained welfare
maximization problem while not being Pareto-dominated.

2. Decision Making and Fairness

We start by introducing some notation. For each unit, we denote
with S ∈ S a sensitive or protected attribute. For expositional
convenience, we let S = {0, 1}, with S = 1 denoting the disad-
vantaged group, and X ∈ X ⊆ R

p individual characteristics. We
define the post-treatment outcome with Y ∈ Y ⊆ R realized
only once the sensitive attribute, covariates, and the treatment
assignment are realized. We define Y(d), d ∈ {0, 1} the potential
outcomes under treatment d. The observed Y satisfies the Single
Unit Treatment Value Assumption (SUTVA) (Rubin 1990). Let

e(x, s) = P(D = 1|X = x, S = s), p1 = P(S = 1) (1)

be the propensity score and the probability of being assigned to
the disadvantaged group. Here, treatments are independent of
potential outcomes.

Assumption 2.1 (Treatment Unconfoundedness). For d ∈ {0, 1},
Y(d) ⊥ D|X, S.

2.1. Social Welfare

Given observables, (Yi, Xi, Di, Si) we seek to design a treatment
assignment rule (i.e., policy function) π : X × S �→ T ⊆
[0, 1], π ∈ � that depends on the individual characteristics and
protected attributes, and which can be either probabilistic or
deterministic.4 Here, � incorporates given and binding legal or
economic constraints that restrict the decision space. The wel-
fare generated by a policy π on those individuals with sensitive
attribute S = s is defined as5

Ws(π) = E

[
(Y(1) − Y(0))π(X, S)

∣∣∣S = s
]

. (2)

Under the utilitarian perspective (Manski 2004), the wel-
fare maximization problem, that is, the population counterpart
of the empirical welfare maximization (EWM) (Kitagawa and
Tetenov 2018), solves

max
π∈�

{
p1W1(π) + (1 − p1)W0(π)

}
where p1 is defined as in Equation (1). However, whenever
the sensitive group is a minority group, welfare maximization
assigns a small weight to the welfare of the minority, dispropor-
tionally favoring the majority group. An alternative approach is
to maximize the welfare separately for each possible sensitive
group designing different policies for different groups (Ustun,
Liu, and Parkes 2019). This approach may violate discriminatory
laws, that is, the resulting policy function violates the constraint
in �. A simple example is when, due to legal reasons, the policy

4It is deterministic if T = {0, 1} and probabilistic if T = [0, 1].
5Welfare is interpreted from an intention-to-treat perspective similarly to

Kitagawa and Tetenov (2018) and Athey and Wager (2021).

π(x, s) must be constant in the sensitive attribute s. Instead,
we consider a framework where the policymaker simultane-
ously maximizes each group’s welfare, imposing Pareto effi-
ciency on the estimated policy under arbitrary legal or economic
constraints encoded in �. Given the set of efficient policies,
the planner then selects the least unfair one. Our approach is
designed for social and welfare programs where legal constraints
naturally occur and where, given such constraints, the policy-
maker’s preferences align with classical notions of “first do no
harm.”

2.2. Pareto Principle for Treatment Rules

The set of Pareto optimal choices is defined as �o, and it contains
all such allocations π ∈ � for which the welfare for one of the
two groups cannot be improved without reducing the welfare for
the opposite group. We characterize �o in the following lemma.

Lemma 2.1 (Pareto Frontier). The set �o ⊆ � is such that

�o =
{
πα:πα∈ arg sup

π∈�

αW1(π)+ (1 − α)W0(π), α ∈ (0, 1)
}

.

(3)

The lemma follows from Negishi (1960), whose proof is in
Appendix A, supplementary materials. It will be convenient to
define

W̄α = sup
π∈�

αW1(π) + (1 − α)W0(π), (4)

the largest value of the objective in Equation (3) for a fixed
α. In the following examples, we show that Pareto allocations
generalize notions of treatment rules from previous literature.

Example 2.1 (Welfare Maximization). The population equiva-
lent of the EWM problem belongs to the Pareto frontier. Namely,
arg maxπ∈�

{
p1W1(π)+(1−p1)W0(π)

}
⊆ �o. An alternative

approach consists in maximizing weighted combinations of the
welfare with the weights for each group as given. For instance
the allocation (Rambachan et al. 2020)

π̌ω ∈ arg max
π∈�

{
ωW1(π) + (1 − ω)W0(π)

}
⊆ �o, (5)

for some specific weight ω belongs to the Pareto frontier.

Pareto optimal allocations are often nonunique, allowing for
flexibility in the choice of efficient policies. The policy-maker
must appeal to some preferential ranking principle based on her
preferences. We discuss those in the following lines.

2.3. Decision Problem

We start by defining C(�) the choice set of the policy maker
(Mas-Colell, Whinston, and Green 1995), where C is a choice
function with C({π1, π2}) = π1 if π1 is strictly preferred to π2.
We let

UnFairness : � �→ R (6)

an operator which quantifies the unfairness of a policy. We leave
unspecified UnFairness and provide examples in Sections 4.3
and 5. We now state the planner’s preferences.
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Assumption 2.2 (Policy-maker’s Preferences). Preferences are
rational,6 and for each π1, π2 ∈ �, (i) C({π1, π2})=π1 if W1
(π1)≥ W1(π2) and W0(π1)≥ W0(π2) and either (or both) of
the two inequalities hold strictly; (ii) if neither π1 Pareto domi-
nates π2 nor π2 Pareto dominates π1, C({π1, π2})= π1 if Un-
Fairness(π1) < UnFairness(π2); (iii) if neither Pareto dominates
the other and with equal UnFairness, C({π1, π2})= {π1, π2}.

Assumption 2.2 postulates lexicographic preferences of the
following form: (i) an allocation is strictly preferred to another if
it weakly improves welfare for both groups and strictly improves
welfare for at least one group; (ii) given two allocations where
none of the two Pareto dominates the other, allocations are
ranked based on fairness.

While different applications reflect different planner’s pref-
erences, Assumption 2.2 is motivated by the applications for
social welfare and health programs, where welfare depends on
outcomes such as health status (Finkelstein et al. 2012), future
earnings, or school achievements. Sacrificing each group’s wel-
fare (e.g., health-status) for fairness is undesirable in such appli-
cations. Conditional on achieving a Pareto efficient allocation,
the planner minimizes UnFairness. Whenever, however, fairness
constraints are binding (e.g., because of legal considerations),
these can be directly incorporated into the function class �. We
can now characterize the decision problem.

Proposition 2.2 (Decision Problem). Under Assumption 2.2,
π� ∈ C(�) if and only if

π� ∈ arg inf
π∈�

UnFairness(π)

subject to αW1(π) + (1 − α)W0(π) ≥ W̄α , for some α ∈ (0, 1).
(7)

The proof is contained in Appendix A, supplementary mate-
rials. Proposition 2.2 formally characterizes the policy-makers
decision problem, which consists of minimizing the policy’s
unfairness criterion under the condition that the policy is Pareto
optimal. The policy-maker does not maximize a weighted com-
bination of welfares, with some pre-specified and hard-to-justify
weights. Instead, each group’s importance (i.e., α) is implicitly
chosen within the optimization problem to maximize fairness.
This approach allows for a transparent choice of policy based on
the policy-makers definition of fairness.

Example 2.2 (Why Pareto Efficiency? A simple example). Let X =
1 for simplicity, take τs, φ ∈ (0, 1), s ∈ {0, 1} and let Y(d) =
τSd +ε(d), with E[ε(d)|S] = 0. Consider a class of probabilistic
decision rules

� =
{
π(x, s) = βs, β1, β0 ∈ (0, 1), β0p0 + β1p1 ≤ φ

}
,

with the share of treated units being at most φ. Let UnFairness
be the difference in the groups’ welfares, namely |τ1β1 − τ0β0|.
The smallest possible unfairness is zero, since we can choose
β1 = β0 = 0 with one of the fairest allocation selecting none of
the individuals to treatment. Consider now the Pareto frontier,
defined as

6Rational preferences imply transitivity and completeness (Mas-Colell, Whin-
ston, and Green 1995).

�o =
{
π(x, s) = β∗

s , β∗
0 = φ − p1β

∗
1

p0
, β∗

1 ∈ [0, 1]
}

⊂ �.

(8)
The set of Pareto allocation rules out all those allocation for
which the capacity constraint is attained with strict inequality,
also excluding β1 = β0 = 0. The proposed policy assigns all
benefits to individuals, and it tradeoffs who to treat to minimize
|τ1β1 − τ0β0|.7

We conclude by comparing the properties of the policy in
Proposition 2.2 with existing alternatives, stated as a corollary
of Proposition 2.2. In particular, we compare our method with
the policy that maximizes welfare with importance weights for
different groups (Rambachan et al. 2020) in Equation (5) and
the one with fairness constraints. For the latter, define �(κ) ={
π ∈ � : UnFairness(π) ≤ κ

}
⊆ �, the set of policies with

constraints, and

π̃ ∈ arg max
π∈�(κ)

p1W1(π) + (1 − p1)W0(π) (9)

the policy that maximizes welfare by imposing fairness con-
straints (e.g., Nabi, Malinsky, and Shpitser 2019).

Corollary 1 (Properties). Let π� be defined as in Equation (7)
and πω, π̃ and in Equations (5) and (9), respectively. Then
UnFairness(π�) ≤ UnFairness(π̌ω), ∀ω ∈ (0, 1).

Suppose that either π̃ ∈ �o (i.e., it belongs to the Pareto
frontier), or fairness constraints are binding to the policy-maker,
that is, �(κ) = �. Then UnFairness(π�) ≤ UnFairness(π̃).
Suppose instead that π̃ 
∈ �o. Then UnFairness(π�) ≤
UnFairness(πo) for all πo ∈ �o that Pareto dominate π̃ . In
addition, πω and π̃ do not Pareto dominate π�.

Corollary 1 shows that UnFairness of π� is Pareto opti-
mal and smaller than UnFairness of the policy πω that max-
imizes a weighted combination of the welfares. It also shows
that if π̃ is Pareto optimal, then its UnFairness is larger than
UnFairness of π�. When instead π̃ is not Pareto optimal, its
Pareto dominant allocations have larger UnFairness than π�.
Further intuition can be gained under strong duality, which we
discuss in Appendix B.1, supplementary materials. Intuitively,
the constraint in Proposition 2.2 holding for some weighted
combinations of welfares (instead of a particular choice of the
weights) is key to achieve lower unfairness of π� relative to π̃

when π̃ is Pareto efficient.8 Finally, when fairness constraints
are binding, the proposed procedure always leads to smaller
UnFairness.

7Observe that the level of unfairness with the frontier may or may not be
potentially strictly larger than the unfairness obtained in an unconstrained
scenario. Namely, to achieve zero unfairness for every π ∈ �o , we need
that τ1β∗

1 = τ0β∗
0 . Substituting β∗

0 = φ/p0 − p1β∗
1 /p0 this would require

β∗
1 = φ

p0
(τ1/τ0 + p1/p0)−1 which is not necessarily feasible (i.e., the

expression is larger than one).
8Under strong duality, the dual of π̃ corresponds to minimize UnFairness

for one particular weighted combination of welfare exceeding a certain
threshold. In contrast, our decision problem imposes the constraint that
some weighted combination of welfare exceeding a certain threshold. This
difference reflects the difference between the lexicographic preferences
we propose as opposed to an additive social planner’s utility.
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3. Fair Targeting: Estimation

We now construct an estimator of π�. We introduce some
notation, and we define

md,s(x) = E

[
Yi(d)

∣∣∣Xi = x, Si = s
]

,

�d,s,i = 1{Si = s}
ps

[1{Di = d}
e(Xi, Si)

(
Yi − md,s(Xi)

)
+ md,s(Xi)

]
(10)

the conditional mean of the group s under treatment d, and the
doubly robust score (Robins and Rotnitzky 1995), respectively.
We let �̂d,s,i the estimated counterpart of �d,s,i. Define

Ŵs(π) = 1
n

∑n
i=1

(
�̂1,s,i − �̂0,s,i

)
π(Xi, s). (11)

the estimated welfare built upon semiparametric literature
(Newey 1990; Robins and Rotnitzky 1995), with m̂d,s(.), ê(.), p̂s,
constructed via cross-fitting (Chernozhukov, Newey, and
Robins 2018). Details of the cross-fitting procedure are
contained in Appendix B.2, supplementary materials. We
consider first general notions of fairness, and introduce the
corresponding estimator below.

Definition 3.1 (Empirical UnFairness). We define Vn(π , ps, e, m)

an unbiased estimate of UnFairness(π) which depends on
observables and the population propensity score and condi-
tional mean. We write V̂n(π) = Vn(π , p̂s, ê, m̂), the empirical
counterpart.

We defer to Sections 4.3 and 5 explicit examples of V̂n(π).

3.1. (Approximate) Pareto Optimality

Next, we characterize the Pareto frontier using linear inequal-
ities. To construct the Pareto frontier we use the constraint in
Equation (7) after discretizing the set of weights α. Namely, in
the first step, we discretize the Pareto frontier, and construct a
grid of equally spaced values αj ∈ (0, 1), j ∈ {1, . . . , N}, with
N = √

n. We approximate the Pareto frontier using the set
(Ŵ0, Ŵ1 are defined in Equation (11))

�̂o =
{
πα ∈ � : πα ∈ arg sup

π∈�

{
αŴ0(π) + (1 − α)Ŵ1(π)

}
,

s.t. α ∈ {α1, ..., αN}
}

.
(12)

The grid’s choice is arbitrary, as long as values are equally spaced.
The set �̂o may be hard, if not impossible, to directly esti-

mate, since we may have uncountably many solutions (Manski
and Thompson 1989; Elliott and Lieli 2013). In particular, the
solution to each optimization problem in Equation (12) may not
be unique. Instead of directly estimating �̂o, we characterize it
through linear constraints. First, we find the largest empirical
welfare achieved on the discretized Pareto Frontier defined as

W̄j,n = sup
π∈�

{
αjŴ0(π)+(1−αj)Ŵ1(π)

}
, for each j ∈ {1, . . . , N},

(13)

which can be obtained through standard optimization routines
(Kitagawa and Tetenov 2018; Zhou, Athey, and Wager 2018).
Second, we observe that any π ∈ �̂o, must satisfy αjŴ0(π) +
(1 − αj)Ŵ1(π) ≥ W̄j,n, for some j ∈ {1, . . . , N}, since W̄j,n
defines the largest objective for a given αj. We impose such con-
straint up to a small slackness parameters λ/

√
n and construct

an approximate Pareto frontier as follows:

�̂o(λ) =
{
π ∈ � : ∃j ∈ {1, . . . , N} such that

αjŴ0,n(π) + (1 − αj)Ŵ1,n(π) ≥ W̄j,n − λ√
n

}
,

(14)

where �̂o(0) = �̂o, and �̂o ⊆ �̂o(λ) for any λ ≥ 0.
Here, we introduced − λ√

n which imposes that the resulting
policy is “approximately” Pareto optimal. As shown in Section 4,
λ/

√
n guarantees that �̂o(λ) contains all Pareto optimal policies

with high-probability, for λ = O(1). The estimated policy is
defined as

π̂λ ∈ arg min
π∈�̂o(λ)

V̂n(π). (15)

Remark 1 (The choice of the grid and λ). The choice of λ depends
on the function class �. In Theorems 4.2, 4.3, and 4.4 we discuss
guarantees by imposing that λ/

√
n ≥ M

√
v/N, for some finite

constant M with λ increasing in the geometric complexity v of
�, and where we choose N = √

n.9 In contrast, the function
class complexity does not affect the choice of the grid (i.e.,
N). This is because the welfare loss due to the grid’s approxi-
mation error is uniformly bounded by a constant independent
of �.10

3.2. Optimization: Mixed Integer Quadratic Program

We provide a mixed-integer quadratic program (MIQP) for
optimization. We define zs = (zs,1, . . . , zs,n), zs,i = π(Xi, s), π ∈
�. Here, zs,n defines the treatment assignment under policy
π , and sensitive attribute s (see the example below); zs have
simple representation for general classes of policy functions,
such as either probabilistic rules which we derive in Appendix
B.2, supplementary materials or deterministic linear decision
rules (Florios and Skouras 2008).

Example 3.1 (Maximum score). For the maximum score
π(Xi, s) = 1{Xiβx + Sμ ≥ 0}, β = (βx, μ) ∈ B, the indicators
zs,n are defined via mixed-integer constraints of the form
(Florios and Skouras 2008) X�

i β+sμ
|Ci| < zs,i ≤ X�

i β+sμ
|Ci| + 1, Ci ≥

supβ∈B |(Xi, Si)�β|, zs,i ∈ {0, 1}. Such constraint guarantees
that zs,i = 1{X�

i βx + sμ ≥ 0}.

9This guarantees that the estimated function class does not exclude Pareto
optimal policies with high probability, while λ = O(1) guarantees uniform
convergence of the Pareto frontier at 1/

√
n rate.

10Namely, take a grid of N+1 equally spaced αj . Then the approximation error
reads as supπ∈� |αW1(π) + (1 − α)W0(π) − maxαj∈{α1,...,αN} αjW1(π) −
(1−α)W0(π)| ≤ 2M/N, which is uniformly bounded by M where M bounds
the first moment of the potential outcomes, and independent of �.
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We now need to impose the constraint of Pareto optimality.
To do so, we introduce an additional set of decision variables
that guarantee the constraints in Equation (14) hold. The vector
u = (u1, . . . , uN) ∈ {0, 1}N encodes the locations on the grid
of α for which the supremum in (14) is reached at; here, uj =
1 whenever the constraint in Equation (14) holds for αj. The
chosen policy must be Pareto optimal, that is, uj must be equal
to one for at least one j. To ensure this, we impose the constraint∑N

j=1 uj ≥ 1.
Combining such constraints, it directly follows that π̂λ satis-

fies Equation (15) if and only if

π̂λ ∈ arg min
π

min
z0,z1,u

V̂n(π) (16)

subject to zs,i = π(Xi, s), 1 ≤ i ≤ n, (A)

ujαj〈�̂1,0 − �̂0,0, z0〉
+ uj(1 − αj)〈�̂1,1 − �̂0,1, z1〉
≥ ujnW̄j,n − √

nλ (B)

〈1, u〉 ≥ 1 (C)

π ∈ � (D)

uj ∈ {0, 1}, 1 ≤ j ≤ N. (E)
Here, �d,s is the vector of �d,s,i defined in Equation (10). Con-

straints (B) and (C) state that the resulting policy is (approxi-
mately) Pareto optimal, or, equivalently, it maximizes a weighted
combination of groups’ welfare for some αj. Constraints (A),
(C), (E) are (mixed-integer) linear constraints, while Constraint
(B) is quadratic. Notice that we can further simplify (B) as
a linear constraint at the expense of introducing additional
Nn binary variables and 2Nn additional constraints (e.g., see
Wolsey and Nemhauser 1999; Viviano 2019). Finally, (D) is
either linear or quadratic for deterministic assignments and
linear probability models. Hence, the objective admits a MIQP
representation whenever V̂n(π) admits linear representation in
π , as discussed in the following section. Note that the solution
to the optimization problem might not be unique, depending
on the function class. However, non-uniqueness does not affect
theoretical properties in Section 4.

Remark 2 (Computational complexity). The complexity of the
optimization problem depends on the policy function class. For
discrete covariates, in Section 4.4 we show that the problem
can be solved as a sequence of linear programs, for which algo-
rithms that returns exact solutions in polynomial time exist;
for example, Karmarkar 1984. For the maximum score and
the optimal tree, researchers may rely on existing algorithms
such as the branch and bound (Wolsey and Nemhauser 1999),
efficiently computed by existing software, for example, GUROBI
and CPLEX. However, their worst-case scalability may grow
exponentially with the sample size, similarly to what was dis-
cussed in the policy learning literature (Kitagawa and Tetenov
2018; Zhou, Athey, and Wager 2018). One solution for the opti-
mal tree is to use an exhaustive search method (Zhou, Athey, and
Wager 2018), which, we show in Section 6.1 is feasible for a mod-
erately large sample size. For the maximum score, researchers
may instead use the early termination strategy, which we study
in Section 4.4.

4. Theoretical Analysis

Below we restrict the policy function class of interest (Condition
(A), which holds for linear scores as in Manski 1975, and deci-
sion trees as in Zhou, Athey, and Wager 2018). We also impose
measurability (Condition (B); Kosorok 2008; Rai 2018).

Assumption 4.1. Suppose that the following conditions hold: (A)
� has finite VC-dimension, denoted as v; (B) � is pointwise
measurable.

Assumption 4.2. Let: (i) e(Xi, s), ps ∈ (δ, 1 − δ), almost surely,
for δ ∈ (0, 1), for all s ∈ {0, 1}; (ii) Yi(d) ∈ [−M, M], for some
M < ∞, for all d ∈ {0, 1} almost surely.

Condition (i) imposes the standard overlap assumption;
Condition (ii) assumes uniformly bounded outcomes (e.g.,
Mbakop and Tabord-Meehan 2021, for related conditions). The
following assumptions are imposed on the estimators.

Assumption 4.3 (Nuisances’ regularities). For some ξ1 ≥
1/4, ξ2 ≥ 1/4:

E

[(
m̂d,s(Xi) − md,s(Xi)

)2] = O(n−2ξ1),

E

[(
1
/

p̂sê(Xi, s) − 1
/

pse(Xi, s)
)2] = O(n−2ξ2).

(17)

for all s, d ∈ {0, 1}, where Xi is out-of-sample. In addition, for a
finite constant M and δ ∈ (0, 1), supd∈{0,1},s∈{0,1},x∈X |m̂d,s(x)| <

M, and ê(X, S), p̂ ∈ (δ, 1 − δ) almost surely.

Assumption 4.3 states that the product of the mean-squared
error of the estimated propensity score and conditional mean
converges to zero at the parametric rate. This condition
is standard in the doubly-robust literature (Farrell 2015;
Chernozhukov, Newey, and Robins 2018). Assumption 4.3
also states that the conditional mean and the propensity score
functions are uniformly bounded. The conditions can be stated
asymptotically, in which case, under uniform consistency, the
bound on estimated nuisance functions is not required, but
results should be interpreted in the asymptotic sense only (Athey
and Wager 2021).

4.1. Guarantees on the Pareto Frontier

It is interesting to study the behavior of the estimated frontier
relative to its population counterpart. We do so in the following
theorems.

Theorem 4.1. Under Assumptions 2.1, 4.1–4.3, for any γ ∈
(0, 1), λ ≥ 0, a universal constant c0 < ∞, with probability
larger than 1 − γ ,

supα∈(0,1),π∈�

∣∣∣αW0(π) + (1 − α)W1(π)

− maxαj∈{α1,...,αN }
{
αjŴ0(π) + (1 − αj)Ŵ1(π) − λ√

n

}∣∣∣
≤ c0

√
v
n + c0

√
log(2/γ )

n + λ√
n .

(18)

Theorem 4.1 shows that the distance between the estimated
Pareto frontier and its population counterpart converges to zero
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at rate 1/
√

n for a choice of λ = O(1) where λ is defined in
Equation (14). The derivation uses properties of the double-
robust estimator (Farrell 2015) and connects to the literature on
empirical welfare maximization (Kitagawa and Tetenov 2018;
Zhou, Athey, and Wager 2018; Athey and Wager 2021), while
differently here we control the maximum deviation uniformly
over a set of weights α.

A natural question is whether the estimated Pareto frontier
also contains all Pareto optimal allocations for a finite λ. We
complement Theorem 4.1 by showing that with high probability
the set of estimated allocations �̂o(λ) contains the Pareto fron-
tier for finite λ.

Theorem 4.2. Let Assumptions 2.1, 4.1–4.3 hold. For any γ ∈
(0, 1), λ ≥ b(

√
v + √

log(2/γ ) + 1), for a finite constant b > 0
independent of n, N = √

n, it follows that P
(
�o ⊆ �̂o(λ)

)
≥

1 − γ .

Theorem 4.2 complements Theorem 4.1 showing that it suf-
fices λ = O(1) (and hence a slackness of order O(1/

√
n)) for

the set of estimated allocations to contain the Pareto frontier.
The proofs of Theorems 4.1, 4.2 are contained in Appendix A,
supplementary materials. Theorem 4.2 uses finite sample prop-
erties of the estimated (discretized) frontier showing uniform
concentration. The choice of λ/

√
n matches the upper bound

on the maximal deviations, and the choice N = √
n guarantees

that the grid is coarse enough to control the estimation error.

Remark 3 (Nonbinary policies). While our framework considers
a binary action space, our guarantees also generalize to multi-
action policies. In such a case, the bound depends on the entropy
integral of � and the derivation leverages concentration of∣∣∣Ŵd(π) − Wd(π)

∣∣∣ for multi-action spaces (Zhou, Athey, and
Wager 2018). See Appendix B.5, supplementary materials for a
discussion.

4.2. General Fairness Bounds

Given the guarantees on the frontier, we next analyze guarantees
on fairness. We start our discussion by introducing regret
bounds for generic notions of unfairness under high-level
assumptions and then provide examples of upper and lower
bounds.

Assumption 4.4 (High-level conditions on UnFairness). For some
η > 0, γ > 0,

P

(
sup
π∈�

∣∣∣V̂n(π) − UnFairness(π)

∣∣∣ ≤ K(�, γ )n−η
)

≥ 1 − γ

for some K(�, γ ) < ∞. Also assume that UnFairness(π) is
uniformly bounded.

Assumption 4.4 states that the estimated unfairness con-
verges with probability 1−γ to population unfairness uniformly
over � at rate n−η for some arbitrary η. The constant K(�, γ )

depends on the function class’ complexity and the probability
γ . We characterize the constant and the rate η in examples in
Section 4.3 and Appendix B.4, supplementary materials.

Theorem 4.3. Let Assumptions 2.1, 4.1–4.4 hold. Then for some
constants 0 < c0, b < ∞, independent of n, λ ≥ b(

√
v +√

log(2/γ ) + 1), N = √
n, with probability at least 1 − 2γ ,

UnFairness(π̂λ) − infπ∈�o UnFairness(π) ≤ c0√
n + c0K(�,γ )

nη .
(19)

The proof is contained in Appendix A, supplementary mate-
rials and leverages Theorem 4.2 to show that the set of Pareto
allocations is contained with high probability within the esti-
mated allocations. Theorem 4.3 characterizes the convergence
rate of the UnFairness of the estimated policy relative to the
lowest unfairness within the class of Pareto allocations. To our
knowledge, this is the first result of this type of fair policy. The
rate depends on the convergence rate of the estimated UnFair-
ness. In the following paragraphs, we provide examples and
sufficient conditions for Assumption 4.4 to hold and formally
characterize the rate of convergence η and the constant K(·).

4.3. Regret: Examples and Rate Characterization

Here we discuss three examples, one based on policy predic-
tions, a second based on the welfare effect, and a third based
on incentive compatibility.

Definition 4.1 (Prediction disparity). Prediction disparity and its
empirical counterpart take the following form

C(π) = E

[
π(X, S)|S = 0

]
− E

[
π(X, S)|S = 1

]
,

Ĉ(π) =
∑n

i=1 π(Xi)(1 − Si)

n(1 − p̂1)
−

∑n
i=1 π(Xi)Si

np̂1
.

Prediction disparity captures disparity in the treatment prob-
ability between groups. The second notion of UnFairness mea-
sures welfare disparities between the two groups.

Definition 4.2 (Welfare disparity). Define the welfare disparity
and its empirical counterpart as

D(π) = W0(π) − W1(π), D̂(π) = Ŵ0(π) − Ŵ1(π).

Between-groups disparity captures the difference in welfare
between the advantaged group (S = 0) and the disadvantaged
group (S = 1), relative to the baseline.11

The policymaker may also consider |D(π)| or |C(π)| as mea-
sures of UnFairness, in which case the policymaker treats the
two groups symmetrically, whose regret bounds are discussed
in Appendix A.10, supplementary materials. One last example
is based on the notion of incentive compatibility, motivated by
discussion in Narita (2021).

Definition 4.3 (Incentive compatibility). Incentive compatibility
is defined as

I(π)= I1(π) + I0(π),
Is(π)=E

[
π(X, 1 − s)(Y(1) − Y(0))|S = s

]
−E

[
π(X, s)(Y(1) − Y(0))|S = s

]
11Recall the definition of welfare in Equation (2) where we only consider the

effect under treatment the effect under control.
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with estimator Î(π) = Î1(π) + Î0(π), Îs(π) = 1
n

∑n
i=1(�̂1,s,i −

�̂0,s,i)π(Xi, 1 − s) − Ŵs(π).

Here Is(π) captures fairness based on the incentive of an
individual in revealing her sensitive attribute: Is(π) is positive if
the welfare of an individual generated from incorrectly report-
ing her sensitive attribute is larger than the welfare obtained if
she reported it correctly. Additional notions, such as predictive
parity, can also be considered and omitted for the sake of brevity;
see Appendix B.4, supplementary materials for details. For each
of the three definitions above, UnFairness is linear in π , and
hence optimization can be performed via MIQP.

4.3.1. Upper and Lower Bounds: Rate Characterization
In the following theorem, we discuss the rate of the regret-
bound.

Theorem 4.4 (Regret bound). Let Assumptions 2.1, 4.1–4.3 hold.
Let either (i) UnFairness(π) = D(π), and V̂n(π) = D̂(π),
(ii) or UnFairness(π) = C(π), and V̂n(π) = Ĉ(π), (iii) or
UnFairness(π) = I(π), and V̂n(π) = Î(π). Then for some
constants 0 < b, c0 < ∞ independent of the sample size, for
any γ ∈ (0, 1), λ ≥ b(

√
v + √

log(2/γ ) + 1), N = √
n, with

probability at least 1 − 2γ ,

UnFairness(π̂λ)− inf
π∈�o

UnFairness(π)≤ c0

√
v
n
+c0

√
log(2/γ )

n
.

The proof is included in Appendix A, supplementary mate-
rials. Theorem 4.4 characterizes the regret bound for three
different notions of UnFairness. The bound scales at rate 1/

√
n.

Here K(�, γ ) = √
v + √

log(2/γ ), η = 1/2 in Theorem 4.3.
The lower bound depends, however, on the notion of unfairness.
Below, we derive a lower bound for any data-dependent policy
which achieves the same rate for the predictive disparity.

Theorem 4.5 (Lower bound). Let � be such that π(x, s) is
constant in its last argument s for all x ∈ X , π ∈ �, and
with finite VC-dimension v ≥ 3. Let UnFairness(π) =
C(π), and V̂n(π) = Ĉ(π). Let U be the set of distributions
of (X, S) and P(X, S) = {PY ,D|(X,S) : such that |Y| <

M a.s., and P(D = 1|X, S) ∈ (δ, 1 − δ)}. Then, there
exists a distribution PX,S,Y ,D = PX,SPY ,D|X,S with PX,S ∈
U , PY ,D|X,S ∈ P(X, S), such that for every rule πn ∈ �o based
upon (X1, S1, Y1, D1), . . . , (Xn, Sn, Yn, Dn), for finite constants
constant 0 < c0, C̄ < ∞ independent of n, and any γ ∈ (0, 1/4),
n ≥ max{C̄ log(1/(4γ )), v − 1}, with probability at least γ

UnFairness(πn) − infπ∈�o UnFairness(π) ≥
√

c0 log( 1
4γ

)

n .

The proof is contained in Appendix A, supplementary mate-
rials, and, to our knowledge, it is the first result of this type for
fair and Pareto optimal policies. The lower bound states that
we can find a distribution and some positive (nonvanishing)
probability γ such that any data-dependent policy πn achieves
a regret which scales to zero at a rate no faster than 1/

√
n.

Observe that a direct corollary of such a result is that the rate of
the lower bound is also achieved in expectation. The condition
imposes a restriction on the set of policies �: � does not

contain policies that use the sensitive attribute as a covariate.
This class of policies occurs if anti-discriminatory laws are
enforced and incorporated over the set �. The lower bound
applies to prediction disparity, and we leave to future research
a more comprehensive study of lower bounds under generic
notions of fairness. The derivation modifies arguments in the
empirical risk minimization literature (Devroye, Györfi, and
Lugosi 2013) due to the dependence of the objective function
with the conditional probability of treatment.

Throughout this section, we have considered distributional
notions of fairness, that is, they depend on distributional state-
ments relative to the sensitive attribute, often used in the liter-
ature (Donini et al. 2018; Kasy and Abebe 2021; Narita 2021).
Counterfactual notions depend instead on counterfactual state-
ments relative to the sensitive attribute (Kilbertus et al. 2017).
We discuss one counterfactual notion in Section 5.

4.4. Computational Complexity

We conclude this section with a discussion on the computational
complexity of the procedure. First, consider the case where
|X | < ∞, defines a finite number of strata, as often assumed in
economic applications (e.g., Manski 2004). Since |X | < ∞, let
X be a set of dummies X ∈ {0, 1}p,

∑
j X(j) = 1, and π(X, S) =

XβS, β0, β1 ∈ [0, 1]p, where β defines the treatment probability
for a given individual type. Note that the result continues to hold
if we require that π assigns treatments on a finite number of
strata, but X is continuous.

Proposition 4.6. Let |X | <∞, and π(X, S) = XβS, β0, β1, ∈
[0, 1]p. Suppose that you can writeVn(π)= g(

∑n
i=1 F̂iπ(Xi, Si)),

for some arbitrary F̂i and either g(x) = x or g(x) = |x|. Let
||F̂i||∞, ||�̂i||∞ < B < ∞ be uniformly bounded. Then there
exists an algorithm which solves Equation (16), with running
time O(

√
npω), for some finite ω < ∞.

The proof is contained in Appendix A.11, supplementary
materials. Proposition 4.6 states that there exists an exact algo-
rithm with a running time that is polynomial in the num-
ber of types and which scales at a rate

√
n in the number of

observations. The exponent ω depends on the algorithm.12 The
intuition is that we can represent the optimization problem in
Equation (16) as a sequence of

√
n many linear programs (see

Appendix A.11, supplementary materials).
For generic function classes, the sequence of linear programs

described above is not possible. Two examples are the maximum
score with continuous variables and the optimal classification
trees. These methods, however, admit a mixed-integer linear
program (MILP), which can be solved exactly with, for example,
Branch and Bound (BB) algorithms (Wolsey and Nemhauser
1999). In generic settings, MILP is known to be NP-hard in the
worst-case scenario, hence, infeasible for large samples. Here, we
characterize properties when an early termination is imposed.
Namely, with an early termination, the BB algorithm reports

12Classic examples include Vaidya’s and Karmarkar’s algorithm (Karmarkar
1984; Vaidya 1990).
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Figure 1. Directed acyclical graphs under which Assumption 2.1 does not hold in the presence of the confounder Ui , and holds in the absence of Ui .

an upper bound on the distance from the best objective (gap),
informative for the regret.

Proposition 4.7. Define W̄δ
j,n the value function which maxi-

mizes αjŴ0(π)+(1−αj)Ŵ1(π) with an early stopping criterion
which stops when the estimated bound on the gap is δ. Define π̂ δ

λ
the solution obtained after running the optimization algorithm
in Equation (16) which stops whenever the estimated gap is δ,
and which replaces W̄j,n in Constraint (B) with W̄δ

j,n. Let the
conditions in Theorem 4.4 hold. For some 0 < b, c0 < ∞ inde-
pendent of n, for any γ ∈ (0, 1), λ ≥ b(

√
v + √

log(2/γ )), N =√
n, with probability at least 1 − 2γ ,

UnFairness(π̂δ
λ) − inf

π∈�o
UnFairness(π)≤ c0

√
v
n

+ c0

√
log(2/γ )

n
+ δ.

The proof is in Appendix A.11, supplementary materials.
Proposition 4.7 shows that the effect of early termination with
gap δ is informative (and can be chosen appropriately) for the
policy regret.

5. Counterfactual UnFairness

This section is of independent interest, and it discusses a novel
notion of UnFairness which connects the literature on causal
fairness (Kilbertus et al. 2017) and the economic literature on
envy-freeness (Varian 1976). The notion is based on counter-
factual statements relative to the sensitive attribute. We sketch
the main intuition here and defer details to Appendix B.4.2,
supplementary materials. This section defines Y(d, s), X(s) the
potential outcome and covariates as functions of the sensitive
attribute s. The following causal model is considered.

Assumption 5.1. Let (A) Y(d, s) ⊥ (D, S)|X(s), (B) X(s) ⊥ S.

Assumption 5.1 is required for estimation with counterfac-
tual fairness and not for notions of fairness discussed in the
previous sections. Condition (A) and (B) in Assumption 5.1
state that the sensitive attribute is independent of potential
outcomes and covariates, while it allows for the dependence of
observed covariates and outcomes with the sensitive attribute.
Indexing potential outcomes and covariates captures this depen-
dence by the sensitive attribute. Dependence can also occur
through unobserved characteristics, which are dependent on
both outcomes and sensitive attributes as long as observables
do not causally affect the sensitive attribute. See Figure 1 for an

illustration. Assumption 5.1 holds when sensitive attributes do
not have causal parents (e.g., Kilbertus et al. 2017).13

Let the conditional welfare, for the policy function being
assigned to the opposite attribute, that is, the effect of π(x, s1),
on the group s2, conditional on covariates, be

Vπ(x,s1)(x, s2)

= E

[
π(x, s1)Yi(1, s2) + (1 − π(x, s1))Yi(0, s2)

∣∣∣Xi(s2) = x
]

.
(20)

Envy refers to the concept that “an allocation is equitable if
and only if no agent prefers another agent’s bundle to his own”
(Varian 1976). We say that the agent with attribute s2 envies the
agent with attribute s1, if her welfare (on the right-hand side of
Equation (21)) exceeds the welfare she would have received had
her covariate and policy been assigned the opposite attribute
(left-hand side of Equation (21)), namely

EX(s1)

[
Vπ(X(s1),s1)

(
X(s1), s2

)]
> EX(s2)

[
Vπ(X(s2),s2)

(
X(s2), s2

)]
.

(21)
We then measure the unfairness toward an individual with

attribute s2 as

A(s1, s2; π) =EX(s1)

[
Vπ(X(s1),s1)(X(s1), s2)

]
−EX(s2)

[
Vπ(X(s2),s2)

(
X(s2), s2

)]
.

(22)

Whenever we aim not to discriminate in either direction,
we take the sum of the effects A(s1, s2; π) and A(s2, s1; π).14

Equation (22) connects to previous notions of counterfactual
fairness (Kilbertus et al. 2017), while, differently from previous
references, (i) we provide formal justification to fairness using
an envy-freeness argument; (ii) we construct the definition
of fairness based on distributional impact of the treatment
allocation rule on the welfare. It is complementary to Kusner
et al. (2019), who compare the policy effects over individuals
with the opposite sensitive attribute, lacking an envy-based
justification. On the other hand, a shortcoming of the above
notion is that, similarly to the above references, it does not
capture notions of incentive compatibility differently from

13Whenever Si has not causal parents, such as, for instance, age and gender
for our application (see Section 6), Assumption 2.1 holds. The case of race
represents instead an exception under which Assumption 2.1 may fail since
an individual’s race depends on parents’characteristics. Assumption 2.1 can
be stated after conditioning on baseline characteristics such as parents’
observable characteristics to accommodate this latter case.

14Such an approach builds on the notion of “social envy” discussed in Feld-
man and Kirman (1974).
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Definitions 4.3, discussed in the previous section. A second
shortcoming is that it requires parametric estimation for the
minimax rate of convergence. Namely, in Appendix B.4.2,
supplementary materials we show that for a suitable choice of
the estimator of A(·), with probability at least 1 − 2γ

UnFairness(π̂) − inf
π∈�o

UnFairness(π) = O
(√

1
n2ζ

+
√

log(2/γ )

n

)
.

where here ζ denote the rate of convergence of the conditional
mean function (see Appendix B.4.2, supplementary materials).
The convergence rate is of order n−1/2 for parametric estima-
tors and slower for nonparametric estimators compared to the
notions of UnFairness discussed in Section 4. The slower con-
vergence rate is because counterfactual envy-freeness requires
extrapolation on a different population. It opens new questions
on the tradeoffs between counterfactual and predictive notions
of fairness.

6. Empirical Application and Numerical Study

We now discuss the empirical application. This section designs
a policy that assigns students to entrepreneurial programs
while imposing fairness on gender. We use data that originated
from Lyons and Zhang (2017). The article studies the effect
of an entrepreneurship training and incubation program for
undergraduate students in North America on subsequent
entrepreneurial activity. We have 335 observations, of which
53% treated and the remaining under control, and 26% of
applicants are women.15 The population of interest is the pool
of final applicants. We construct a targeting rule that assigns the
award to the finalist based on the applicant’s observable char-
acteristics. We maximize subsequent entrepreneurial activity,
which is captured using a dummy variable, indicating whether
the participant worked in the startup once the program ended.
The study is a quasi-experiment, and, as noted in Lyons and
Zhang (2018) the focus on the pool of final applicants mitigates
the selection on unobservables. Similarly to Lyons and Zhang
(2018) we control for residual confounding through individual-
level observable characteristics and an observable quality score
of the final applicant. We estimate the nuisance functions
through penalized regression, as discussed in Appendix C.1,
supplementary materials.

We consider three notions of UnFairness: (i) counterfactual
envy; (ii) predictive disparity, which minimizes the probability
of treatment between the two groups as in Definition 4.1; (iii)
predictive disparity with absolute value (i.e., it denotes the abso-
lute difference between the probability of treatment between the
two groups). While (ii) and (iii) do not impose conditions on
the distribution of the sensitive attribute, counterfactual envy
((i)) assumes unconfoundedness also of the sensitive attribute.
Such a condition is equivalent to assuming that the decision to
change gender is exogenous. The reader may refer to Figure 1 for
a graphical illustration. In case of failure of such an assumption,
the reader should refer to results for (ii) and (iii) only.

15Data is available at https://www.openicpsr.org/openicpsr/project/113492/
version/V1/view.

We consider linear decision rules, given their large use in
economics (Manski 1975)16

� =
{
π(x, fem) = 1

{
β0 + β1fem + x�φ ≥ 0

}
,

(β0, β1, φ) ∈ B
}

.
(23)

We allow covariates x to be either (a) the years to graduation,
years of entrepreneurship, the region of the startup, the major,
the school rank, or (b) the score assigned to the candidate by
the interviewer and the school rank. We refer to these two
cases respectively as Case 1 and Case 2. We consider in-sample
capacity constraints imposed on the function class with at most
150 individuals selected for the treatment.17

We compare the proposed methodology to the method that
maximizes the empirical welfare with the double robust score
(Athey and Wager 2021). We consider three nested function
classes for the welfare maximization method. The first does
not impose any restriction except for the functional form in
Equation (23). The second, imposes that β1 = 0. The third class
imposes that β1 = 0 and that the average effect of the policy
on females is at least as large as the one on males. The function
classes are

�1 = �, �2 =
{
π(x) = 1

{
β0 + x�φ ≥ 0

}}
,

�3 =
{
π(x) = 1

{
β0 + x�φ ≥ 0

}
,

En
[
(Yi(1) − Yi(0))π(Xi)

∣∣∣S = 1
]

≥ En
[
(Yi(1) − Yi(0))π(Xi)

∣∣∣S = 0
]}

,

where En[·] denote the empirical expectation, estimated using
the doubly robust method.

Figure 2 reports the Pareto frontier over each function
class.18 The figure shows that restricting the function class leads
to Pareto-dominated allocations. This outlines the limitations of
maximizing welfare under fairness constraints: such constraints
can be harmful to both groups. Instead, the proposed method
enforces Pareto optimality in the least constrained environment
(red line) and selects the policy based on fairness considerations.

In Table 1 we collect results19 of the welfare of female and
male students, as well as the relative importance weight assigned
to each group for methods that maximize different UnFairness
measures. In the table, we observe that minimizing Envy and
Predictive Disparity leads to (weakly) larger welfare effects on
the minority group. Envy leads to comparable results to welfare
maximization for Case1 due to the discreteness of the fron-
tier.20 We observe an increase in the welfare of female students

16This is estimated solving Equation (16) with a small slackness parameter of
order 10−6. The reader may refer to Appendix B.3, supplementary materials
for details.

17The validity of the in-sample capacity constraints follows from a uniform
concentration argument of the capacity constraint around its expectation.

18The value functions over the Pareto frontier can be exactly recovered as
follows: we solve 2 optimization problems for each αj , j ∈ {1, . . . , N}. For
each of these problems, we impose constraints on the welfare of one of
the two groups being larger than the other and vice-versa; we then select
the subset of solutions that are not Pareto dominated by the other, and we
plot the corresponding welfare in the figure.

19In computations, the competitors (Welfare Maximization) achieves the
global optimum (dual gap equal to zero). For the proposed method, we
impose a maximum time limit on the MIQP.

20Even if the weight α is larger for FTP Envy and FTP Parity Abs in Case 1 and
2 respectively, this does not lead to a different result than Welfare Max. 1
due to the discreteness of the frontier.

https://www.openicpsr.org/openicpsr/project/113492/version/V1/view
https://www.openicpsr.org/openicpsr/project/113492/version/V1/view
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Figure 2. (Discretized) Pareto frontier under deterministic linear policy rule estimated through MIQP. Dots denote Pareto optimal allocations. Red dots (circle) correspond
to �1, blue dots (triangle) to �2 and black dots (square) to �3.

Table 1. Empirical application.

Welfare female Welfare male Importance weight
Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

FTP Envy 0.376 0.372 0.272 0.195 0.384 0.487
FTP Pred 0.432 0.374 0.224 0.180 0.847 0.924
FTP Pred Abs 0.433 0.351 0.208 0.235 0.924 0.487
Welfare Max. 1 0.376 0.351 0.272 0.235 0.266 0.266
Welfare Max. 2 0.288 0.307 0.285 0.238 0.266 0.266
Welfare Max. 3 0.331 0.307 0.265 0.238 0.266 0.266

NOTE: The first two columns report the welfare improvement plus the baseline
value. The last column reports the importance weights assigned by the method
to the welfare of female students. FTP Envy refers to the Fair Targeting rule that
minimizes envy-freeness unfairness; FTP Predictive Disp (Definition 4.1) refers to
the Pareto allocation that minimizes the difference in probability of treatment
(Abs indicate in absolute value); Welfare Max. 1 denotes the method that max-
imizes the empirical welfare considering �1, and similarly Welfare Max. 2, 3 for
the function classes, respectively �2, �3.

when minimizing the absolute difference between probabilities
of treatments for Case 1 and comparable results to the welfare
maximization method for Case 2. The table shows that the
proposed method finds importance weights assigned to each
group solely based on the notion of fairness provided, without
requiring any prior specification of relative weights assigned to
each group. The method that maximizes the empirical welfare
instead assigns the importance weight equal to its correspond-
ing probability to the sensitive group, which is small for minori-
ties. In two settings only, the results coincide with the proposed
method due to the discreteness of the frontier.

Figure 3 reports the unfairness level for different sets of
covariates, with unfairness measured as the difference in the
probability of treatments between the two groups. Overall, Fig-
ure 3 shows that the level of the unfairness of the proposed
method is uniformly smaller than the unfairness achieved by
maximizing welfare, consistently with results in Section 2.

Finally, we compare also with probabilistic decision rules,
which are allowed in our framework. Figure 3 collects result for
a probabilistic policy function (in green) which is a super-set of
� in Equation (23) and assigns different probabilities of treat-
ments to groups below and above the hyperplane in Equation

(23) (see Appendix B.3, supplementary materials).21 Results are
mostly comparable across probabilistic or deterministic deci-
sions. However, we find that a probabilistic decision enlarges
the set of Pareto allocations in Appendix C.1, supplementary
materials.

6.1. A Calibrated Experiment

Next, we conduct a calibrated experiment. We run the simula-
tions calibrated to the same estimated model in the empirical
application (using data from Lyons and Zhang 2017). Covariates
and sensitive attributes are drawn with replacement from the
empirical distribution. Formally, we draw Si ∼iid Bern(p̂1),
where p̂1 is the probability of being female. We draw covariates
X|S = 1 from the females’ empirical distribution and similarly
X|S = 0 for male applicants. We draw D|X, S ∼ Bern(ê(X, S)),
and Y(d) = m̂d,S(X) + ε, ε ∼ N (0, 1), where ê, m̂ are
the estimated conditional mean and propensity score as in the
application. We consider unfairness as prediction disparity in
Definition 4.1.

We consider three classes of policy functions: (i) probabilis-
tic linear rule x�

1 β , were x1 is a set of binary variables ; (ii)
maximum-score π(x2) = 1{x�

2 β > 0}; (iii) classification tree
with depth equal to two. For each method, we compute results
over three variables (whether the student is in a minority group,
will graduate in more the one year, whether the average score
exceeds the median score). We also include the average score as
a continuous variable in the tree and the maximum score. We
impose that the number of treated individuals does not exceed
150 individuals across each design and report welfare per share
of treated individuals.22 We estimate the probabilistic rule with a
linear program, the maximum score with a mixed-integer linear
program, and the classification tree via an exhaustive search.

21Formally, the function class is
{
πβ(X , S) = p11{X�

i β + Sβ0 > 0} +
p01{X�β + Sβ0 ≤ 0}, p1, p0 ∈ [0, 1], β ∈ B

}
.

22Welfare is scaled by the unconditional treatment probability since the
number of treated units is fixed.
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Figure 3. Empirical application. Unfairness level of the Fair Policy Targeting method with a deterministic allocation rule (in red), with a probabilistic decision rule (in green),
and of the welfare maximization method (in blue). Pred disp refers to Definition 4.1 and Pred disp abs to Definition 4.1 in absolute value. Smaller values indicate smaller
UnFairness.

Figure 4. Running time, UnFairness and welfare for p = 4. Here, Linear Prob is a linear probability rule estimated via linear programming, maximum score is estimated
with MILP and optimal tree via exhaustive search with depth two. The maximum score algorithm presents two different stopping times denoted as Max Score 1 and Max
Score 2 (with 50 and 200 sec stopping after estimating the Pareto frontier).

For the classification tree, we fix the number of possible splits
to be four at equally spaced quantiles of each covariate distri-
bution.23 We run 100 replications, and over each replication,
we correctly estimate the nuisance functions from the sampled
observations.

In Figure 4 we report the running time (in seconds) of
different function classes, with the maximum score having two
different stopping times (see also Appendix C.2, supplementary
materials for more results). Consistently with Section 4.4, the
complexity of the linear rule scales much slower than the one
of the maximum score. Also, the optimal tree is much faster
than the maximum score, even for a larger sample size. The
maximum score presents a relatively fast growth in terms of
running time, which, however, is still feasible to handle for
n = 600. Figure 4 also shows that a more stringent stopping
time on the maximum score does not affect its performance
either in terms of fairness or welfare. This is because by passing

23The choice of the exhaustive search follows in spirit to the discussion in
Zhou, Athey, and Wager (2018), with differences due to the presence of
multiple objectives and constraints here. Four splits facilitate computa-
tions.

as a starting point an “educated guess,” most of the remaining
optimization time is to discard dominated solutions. We obtain
such a guess by taking the best solution estimated in the first step
run to estimate the Pareto frontier. Finally, Figure 4 shows that
different function classes mostly lead to nondominated male
and female welfare comparisons.

Table 2 contrasts the unfairness and welfare of five different
alternative approaches. Each competitor uses the same function
class and estimation procedure as the proposed method. The
first two competitors maximize a weighted average of female
and male welfare with weights either α = 1/2 (in the spirit of
the planner’s utility in Rambachan et al. 2020), or the empir-
ical average En[S] as a welfare maximization problem. The
third approach maximizes welfare with constraints in the form
of UnFairnessn(π) ≤ κ/n, where we choose κ ∈ {10, 1}
(Constrained Max and Constrained Max2, respectively).24 The
fourth approach maximizes welfare with constraints on dis-
parate impact as in Definition 4.2 (in the spirit of optimization

24This is in the spirit of fairness constraints (e.g., Nabi, Malinsky, and Shpitser
2019), with constraints on statistical parity.
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Table 2. Statistical disparity (Unfairness), welfare of male (W0) and female (W1) par-
ticipants of the proposed method (Fair Targeting) and of the alternative procedures
in percentage points.

Linear rule Maximum score Tree

UnFair W0 W1 UnFair W0 W1 UnFair W0 W1

Fair targeting −33.5 10.4 10.8 −62.4 12 9.4 −35.5 13.4 8.5
Weighted average 13.2 14.7 8.5 14.3 16.6 7.7 2.4 15.2 8.3
Utilitarian average 25.6 16.3 6.4 14.3 16.6 7.7 30.9 17.0 6.3
Constrained max −13.2 14.4 8.1 −32.2 14.2 8.3 −13.8 15.0 7.1
Disparate impact 3.2 13.5 7.9 −8.2 15.0 8.8 6.8 15.1 7.9
Constrained Max2 −16.3 14.1 8.3 −34.5 13.9 8.4 −19.3 14.7 7.3
Disparate impact2 −3.8 12.1 8.4 −13.7 14.6 9.3 0.6 14.3 8.1

NOTE: Weighted average maximizes a weighted average of females and males’
welfare with weight α = 1/2; Utilitarian average uses instead α = En[S]; Con-
strained Max maximizes welfare under fairness constrain and Disparate Impact
maximizes welfare under constraints on disparate welfare impact between the
two groups. n = 600, p = 4. The constraint is κ = 10 for the methods in the
fourth and fifth row and κ = 1 for the last two rows. The shaded row indicates
the method proposed in the current paper.

in Donini et al. 2018). Interestingly, while the stricter constraint
reduces the gap in males’ and females’ welfare for the competitor
Disparate Impact, such a gap is due to the estimation error of the
constraint (Appendix C.2, Figure C.4, supplementary materials
presents details). We observe that the proposed method leads
to the lowest UnFairness, and it is not Pareto-dominated. Our
method favors the minority group, leading to larger welfare
for female students. Appendix C.2, supplementary materials
provides results for a smaller sample size.

7. Conclusion

In this article, we have introduced a novel method for estimating
fair and optimal treatment allocation rules. We proposed a
multi-objective decision problem, where the policymaker aims
to select the least unfair policy in the set of Pareto optimal
allocations. We discuss a set of theoretical guarantees on the esti-
mated policy and provide an application. Theoretically, we open
new questions on the tradeoffs between predictive and causal
notions of fairness and its corresponding regret bound. Coun-
terfactual notions require extrapolation, hence, possibly leading
to a slower convergence rate. We leave a comprehensive study of
the properties of different notions of fairness in terms of their
implied regret to future research. From a practical perspective,
an interesting new direction is estimation with nonutilitarian
within-group welfare measures. Finally, the decision problem
considered aims to balance efficiency and fairness, and a study
of such tradeoffs in a decision theoretical framework remains an
open research question.

Supplementary Materials

The supplementary materials contain mathematical proofs omitted in the
main text, extensions and additional numerical studies.
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