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The study of causalmechanisms abounds in political science, and causalmediation analysis has grown rapidly across different

subfields. Yet, conventional methods for analyzing causal mechanisms are difficult to use when the causal effect of interest

involves multiple mediators that are potentially causally dependent—a common scenario in political science applications.

This article introduces a general framework for tracing causal pathswithmultiplemediators. In this framework, the total effect

of a treatment on an outcome is decomposed into a set of path-specific effects (PSEs).We propose an imputation approach for

estimating these PSEs from experimental and observational data, along with a set of bias formulas for conducting sensitivity

analysis. We illustrate this approach using an experimental study on issue-framing effects and an observational study on the

legacy of political violence. An open-source R package, paths, is available for implementing the proposed methods.
The study of causal mechanisms abounds in political
science. In political psychology, for example, scholars
investigate the pathways through which the framing

of political issues in mass media and elite communications
affect citizens’ attitudes and behavior (e.g., Druckman and
Nelson 2003; Nelson, Clawson, and Oxley 1997; Slothuus
2008). In political economy, a growing body of research exam-
ines the mechanisms through which historical events shape
contemporary social and political outcomes (e.g., Acharya,
Blackwell, and Sen 2016b; Lupu and Peisakhin 2017; Mazum-
der 2018). Over the past decade, studies of causal mediation
have grown rapidly across different subfields of political science
because empirical evaluation of the mechanisms hypothesized
to transmit causal effects is central for testing and refining the-
ories of social and political processes (Acharya, Blackwell, and
Sen 2016a; Imai et al. 2011).

A common approach to assessing causalmediation involves
decomposing the total effect of a treatment on an outcome into
two components: an indirect effect operating through a me-
diator of interest and a direct effect operating through alter-
native pathways. This is typically accomplished via an additive
decomposition in which the average total effect of treatment
is partitioned into the so-called average natural direct and in-
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direct effects (Pearl 2001), which are also known as the av-
erage direct effect (ADE) and average causal mediation effect
(ACME), respectively (Imai et al. 2011; Imai, Keele, and Yama-
moto 2010).

Despite its conceptual simplicity, this approach faces an
important limitation when the causal effect of interest in-
volves multiple, potentially overlapping, causal pathways—a
common scenario in political science applications. In partic-
ular, the ADE and ACME can only be identified under a set of
potentially strong assumptions: (i) no unobserved treatment-
outcome confounding, (ii) no unobserved treatment-mediator
confounding, (iii) no unobserved mediator-outcome confound-
ing, and (iv) no treatment-induced mediator-outcome con-
founding (Imai et al. 2010; VanderWeele 2015). Of these as-
sumptions, assumption iv is especially restrictive because it
requires that there must not be any posttreatment variables
that affect both the mediator and outcome, whether they are
observed or not.

Consequently, if two mediators are present and one me-
diator affects both the other mediator and the outcome, the
ACME for the second mediator cannot be identified without
functional form assumptions (Imai and Yamamoto 2013). To
circumvent this problem, empirical studies have often assumed,
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sometimes implicitly, that different mediators are causally in-
dependent (i.e., they do not affect each other), an assumption
that is strong, untestable, and unrealistic in many applica-
tions. Moreover, when the causal effect of interest involves
multiple mediators that are causally dependent, the causal path-
ways through those mediators are not mutually exclusive, ren-
dering their mediating effects inseparable even conceptually. In
fact, the overlapping of causal pathways via different media-
tors may require us to reformulate and reassess the “com-
peting hypotheses” of underlying processes. The prevailing
practice of treating causally dependent mediators as indepen-
dent can be both methodologically problematic and theoret-
ically inaccurate.

In this article, we show that in the presence of multiple me-
diators, a more fruitful approach to analyzing causal mech-
anisms is to trace different causal paths explicitly. Specifically,
we make three novel contributions to the methodological tool-
box for causal mediation analysis. First, drawing on a previ-
ous identification result for path-specific effects (Avin, Shpitser,
and Pearl 2005), we provide a general framework for effect
decomposition with an arbitrary number of mediators. In par-
ticular, we provide, for the first time, a general formula that
decomposes the total effect of treatment into K 1 1 PSEs—
one “direct effect” and Kmutually exclusive indirect effects—
in the presence ofK causally ordered mediators. This is in con-
trast to the previous literature on PSEs, which has focused
on the case of two mediators (e.g., Albert and Nelson 2011;
Daniel et al. 2015). The K 1 1 PSEs are nonparametrically
identified under the assumption that observed variables can be
arranged in a directed acyclic graph (DAG), and, in this DAG,
no unobserved confounding exists for any of the treatment-
outcome, treatment-mediator, and mediator-outcome relation-
ships (Pearl 2009).

Second, we develop a new method for estimating the PSEs.
Our proposed method, based on model-assisted imputation
of counterfactual outcomes, holds several distinct advantages
over conventional methods for analyzing causal mediation
(e.g., Baron and Kenny 1986; Imai et al. 2011). First, it can
accommodate either one or multiple mediators, whether dif-
ferent mediators are treated as causally independent, causally
dependent, or analyzed as a whole. The proposed approach
can therefore be applied to broader empirical settings than
are possible with existing approaches. Second, in contrast to
the simulation approach developed by Imai et al. (2010), the
imputation approach does not require modeling the condi-
tional distributions of the mediators given their antecedent
variables. This is especially appealing because in many po-
litical science applications, the mediators of interest are con-
tinuous and/or multivariate, making it practically difficult to
model their conditional distributions. The imputation approach,
instead, involves modeling only the conditional means of the
outcome variable itself, given treatment, pretreatment con-
founders, and varying sets of mediators. Estimating condi-
tional means as opposed to distributions is substantially less
demanding in terms of both statistical power and the assump-
tions required, and the analyst needs correct modeling as-
sumptions only for the outcome variable, not for any of the
mediators. Moreover, these models can be fit via any method
of the analyst’s choice, be it linear regression, generalized linear
models (GLM), or, as we will illustrate, data-adaptive meth-
ods such as Bayesian additive regression trees (BART; Chip-
man, George, and McCulloch 2010; Hill 2011).

Third, we propose a set of bias formulas for assessing the
sensitivity of estimated PSEs to the unconfoundedness as-
sumptions required. Although these assumptions are custom-
ary in the mediation literature (VanderWeele 2015), it is never
possible to completely rule out the presence of unobserved
confounding in many empirical settings (Bullock, Green, and
Ha 2010). To address this limitation, we develop a bias factor
approach for conducting sensitivity analysis with regard to
unobserved confounding for the mediator-outcome relation-
ships—which may occur in both experimental and observa-
tional studies. As an extension of the bias formulas developed
by VanderWeele (2010) for the single-mediator setting, our
approach provides a set of general purpose formulas that al-
low us to calculate potential biases of the estimated PSEs due
to unobserved confounding—regardless of the models used
to estimate the PSEs.

Taken together, these methodological innovations repre-
sent a new, more general framework for analyzing causal
mechanisms in empirical political science research. Our frame-
work improves upon existing approaches (e.g., Imai et al.
2011) by allowing multiple mediators, offering a finer decom-
position of the treatment effect into multiple PSEs, each cor-
responding to one of the mediators, and providing a method
for sensitivity analysis. Applied researchers can adopt our
framework tomake richer inferences about how causal effects
operate through multiple pathways. To facilitate practice, we
offer an open-source R package, paths, for implementing all
of the proposed methods, which is available at the Compre-
hensive R Archive Network (CRAN).

The rest of the article is organized as follows. For ease
of exposition, we start with the case of two causally ordered
mediators, for which we present a decomposition of the total
effect of treatment into a set of PSEs, outline the assumptions
needed for identifying these PSEs, and introduce an impu-
tation approach to estimation. We next generalize the frame-
work for defining, identifying, and estimating PSEs to the
setting with an arbitrary number of causally ordered media-
tors. We then describe the bias factor approach to sensitivity



1. Note that M1 and M2 can each consist of multiple variables and
that the causal relationships among the component variables can be left
unspecified, as long as M1 causally precedes M2.
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analysis. Finally, we illustrate these methods using several
empirical examples where researchers have endeavored to dis-
entangle causal pathways in the presence of multiple causally
dependent mediators.

PATH-SPECIFIC CAUSAL EFFECTS
In political psychology, scholars study how issue framing, that
is, a presenter’s deliberate emphasis on certain aspects of a
political issue, shapes citizens’ attitudes and behavior (Chong
and Druckman 2007; Nelson, Oxley, and Clawson 1997b). An
important debate in this literature concerns whether issue
framing affects citizens’ opinions by altering their beliefs about
the issue (hereafter the “belief”mediator) or by changing their
perceived importance of different issue-related considerations
(hereafter the “importance” mediator) (e.g., Druckman and
Nelson 2003; Nelson, Clawson, and Oxley 1997; Nelson and
Oxley 1999; Slothuus 2008). To assess the relative importance
of these two mechanisms, Slothuus (2008) conducted a survey
experiment on a sample of 408 Danish students. Specifically,
the author examined how two versions of a newspaper article
on a social welfare reform bill—one highlighting the reform’s
purported positive effect on job creation (the “job frame”) and
the other emphasizing its negative impact on the poor (the
“poor frame”)—affect the respondent’s support for the reform.
After randomly assigning respondents to either the job frame
or the poor frame, the author asked them a series of 5-point-
scale questions to measure (a) their beliefs about why some
people receive welfare benefits, or who is responsible for the
situation of welfare recipients, and (b) their perceived im-
portance of competing issue-related considerations (e.g., work
incentives vs. living conditions among the poor). Finally, the
author measured the outcome variable by asking the respon-
dents whether and to what extent they support the proposed
welfare reform.

In this study, the author implicitly assumes that the belief
mediator and the importance mediator are causally inde-
pendent. This assumption would be violated if, for example,
issue framing induced respondents to modify their beliefs
about why some people received welfare benefits, and, in turn,
their modified beliefs caused a change in their perceived im-
portance of competing considerations. In fact, this is a major
concern in the framing effects literature. AsMiller (2007, 711–
12) points out on the basis of her experimental study, “indi-
viduals use information obtained from the media to evaluate
how important issues are,” and “when media exposure to an
issue causes negative emotional reactions about the issue,
increased importance judgments will follow.” Moreover, Imai
and Yamamoto’s (2013, 153) reanalyses of Slothuus’s data
suggest that the independence assumption is unlikely to hold
in this application. If this is the case, the ACME of the im-
portance mediator cannot be nonparametrically identified,
since the belief mediator acts as a treatment-induced con-
founder between the importance mediator and the outcome.
Yet, as we will show, we can still identify the strength of the
causal path issue frame → importance → support for welfare
reform, which represents the amount of treatment effect oper-
ating via the perceived importance of competing considera-
tions above and beyond that operating via the respondent’s
issue-related beliefs. This quantity is substantively important
because it reflects the independent role of the importance
mediator in transmitting the framing effect.

Path-specific effects
We use A to denote a binary treatment, Y an outcome of
interest, and X a vector of observed pretreatment confounders.
Although our framework can accommodate an arbitrary num-
ber of mediators, for ease of exposition, we first consider the
case where two (sets of) mediators, M1 and M2, lie on the
causal paths from A to Y. We assume that M1 precedes M2,
such that no component of M2 can causally affect any com-
ponent of M1.1 A causal DAG that is consistent with the hy-
pothesized relationships between these variables is shown in
the top panel of figure 1. In Slothuus’s (2008) study on issue-
framing effects, A represents the issue frame presented to the
respondent, Y represents the respondent’s support for the
proposed welfare reform, M1 represents the respondent’s be-
liefs about why some people receive welfare benefits, and M2

represents the respondent’s perceived importance of compet-
ing considerations.

In this DAG, four possible paths exist from the treatment
to the outcome, as shown in the lower panels of figure 1:
(a) A → Y , (b) A → M2 → Y , (c) A → M1 → Y , and
(d) A → M1 → M2 → Y . If the mediators M1 and M2 are
causally independent, that is, if they do not affect each other,
the last path does not exist. In this case, the total effect of A
on Y can be partitioned into the effect operating through M1

(A → M1 → Y), the effect operating through M2 (A →

M2 → Y), and a “direct” effect not operating through M1 or
M2 (A → Y) (Imai and Yamamoto 2013). However, in the
general case where M1 and M2 are causally dependent, it is
not possible to partition the mediating effects of M1 and M2

into their respective components, since some of the total ef-
fect of A on Y operates through both M1 and M2, as repre-
sented by the path A → M1 → M2 → Y .

To define the PSEs formally, we use the potential out-
comes notation. Specifically, we use Y(a, m1, m2) to denote



Volume 85 Number 1 January 2023 / 253
the potential outcome under treatment status a and mediator
values M1 p m1 and M2 p m2, M2(a, m1) to denote the po-
tential value of the mediatorM2 under treatment status a and
mediator value M1 p m1, and M1(a) to denote the potential
value of the mediator M1 under treatment status a. This no-
tation allows us to define nested counterfactuals. For exam-
ple, Y(1, M1(0), M2(0, M1(0))) represents the potential out-
come in the hypothetical scenario where the unit was treated
but the mediators M1 and M2 were set to values they would
have taken had the subject not been treated. Further, if we let
Y(a) denote the potential outcome when treatment status is
set to a and the mediatorsM1 andM2 take on their “natural”
values under treatment status a (i.e.,M1(a) andM2(a,M1(a))),
we have Y(a) p Y(a;M1(a);M2(a;M1(a))) by definition.

Under the above notation, the average total effect (ATE)
of A on Y can be written as a telescoping sum (Vander-
Weele, Vansteelandt, and Robins 2014):

E½Y(1)2 Y(0)� p E½Y(1;M1(1);M2(1;M1(1)))2 Y(0;M1(0);M2(0;M1(0)))�
p E½Y(1;M1(0);M2(0;M1(0)))2 Y(0;M1(0);M2(0;M1(0))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A→Y

 1 E½Y(1;M1(0);M2(1;M1(0)))2 Y(1;M1(0);M2(0;M1(0)))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A→M2→Y

 1 E½Y(1;M1(1);M2(1;M1(1)))2 Y(1;M1(0);M2(1;M1(0)))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A→M1→Y ;A→M1→M2→Y

≡ tA→Y 1 tA→M2→Y 1 tA→M1⇝Y :

ð1Þ

The three terms in equation (1) represent the PSEs for causal
paths A → Y , A → M2 → Y , and A → M1⇝Y , respectively,
with a straight arrow denoting a single direct path and a
squiggly arrow representing a combination of multiple paths.2

Specifically, the first term (tA→Y) corresponds to the amount of

ð1Þ
2. Equation (1) is not the only way of defining the PSEs for the causal
paths A → Y , A → M2 → Y , and A → M1⇝Y . An alternative decompo-
sition, for example, can be obtained by switching the 0s and 1s in eq. (1)
and then flipping the signs of both sides. In general, when the treatment
treatment effect if the mediatorsM1 andM2 were set to values
they would have taken under treatment status A p 0 for each
unit, representing the causal path A → Y . The second term
(tA→M2→Y) corresponds to the amount of treatment effect
operating through the mediator M2 under treatment status
A p 1 and mediator status M1 p M1(0), representing the
causal path A → M2 → Y . The last term (tA→M1⇝Y) corre-
sponds to the amount of treatment effect operating through
the mediator M1 under treatment status A p 1. It represents
the causal path A → M1⇝Y , or the combination of the causal
paths A → M1 → Y and A → M1 → M2 → Y .

Although four causal paths exist from A to Y, equation (1)
partitions the ATE into only three components: tA→Y ,
tA→M2→Y , and tA→M1⇝Y . In particular, the last component
tA→M1⇝Y encompasses both the causal pathA → M1 → Y and
the causal path A → M1 → M2 → Y . It reflects the overall
mediating effect of M1, some of which may also operate
through M2. By contrast, the component tA→M2→Y captures
only the causal path A → M2 → Y , but not A → M1 →

M2 → Y . Thus it should not be interpreted as the overall
mediating effect of M2. Instead, it reflects the “independent”
mediating effect ofM2, that is, themediating effect ofM2 above
and beyond that of M1.

Thus, in the issue-framing example, tA→Y reflects the direct
effect of issue framing on the respondent’s support for welfare
reform, that is, the fraction of the total effect operating neither
through the belief mediator nor through the importance me-
diator; tA→M2→Y reflects the effect of issue framing operating
only through changing the respondent’s perceived importance
of competing considerations, and tA→M1⇝Y reflects the effect of
Figure 1. Causal relationships with two causally ordered mediators; A denotes the treatment, Y denotes the outcome of interest, X denotes a vector of

pretreatment covariates, and M1 and M2 denote two causally ordered mediators. The confounding arcs between X and each of the other nodes are omitted

in subgraphs a–d.
and the mediators have an interaction effect on the outcome, the PSEs
defined by these alternative decompositions will be different. We focus on
eq. (1) in the main text and illustrate the above alternative decomposition
in app. F.
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issue framing operating through changing the respondent’s
beliefs about the issue, regardless of whether the modified
beliefs subsequently change the perceived importance of com-
peting considerations.

Identification
Following Pearl (2009), we use a DAG to denote a nonpara-
metric structural equation model with mutually independent
errors. In this framework, the top panel of figure 1 corre-
sponds to a set of nonparametric structural equations that
underlie our key identification assumption: no confounding
exists for any of the treatment-mediator, treatment-outcome,
and mediator-outcome relationships after conditioning on
their antecedent variables (see app. A). This assumption is
much stronger than the standard ignorability assumption that
researchers often invoke to identify the ATE in observational
studies. Unlike the standard ignorability assumption, which
stipulates the conditional independence between treatment
and potential outcomes, this assumption involves multiple
conditional independence relationships, some of which per-
tain to conditional independence between the so-called cross-
world counterfactuals, such as Y(a;m1;m2)⫫M1(a1)jX;A
for any a, a1, m1, m2. Such cross-world independence rela-
tionships will generally be violated when posttreatment con-
founders are present for any of the mediator-outcome rela-
tionships (Richardson and Robins 2013). Thus, in practice, to
reduce the bias due to potential posttreatment confounding,
we recommend that all observed posttreatment variables be
included as components of M1 or M2, depending on the hy-
pothesized causal order among these variables. Finally, we note
that our identification assumption does not rule out all forms
of unobserved confounding for the causal effects of X on its
descendants. For example, unobserved variables are permitted
(although not shown) in figure 1 that affect both X and Y.

Under the above assumption, it can be shown that the
PSEs defined by equation (1) are nonparametrically identi-
fied (Avin et al. 2005). To identify the components of equa-
tion (1), it suffices to identify the counterfactual expectation
E½Y(a;M1(a1);M2(a2;M1(a1)))� for any combination of a, a1,
a2 ∈ f0; 1g. As proved in appendix A, this quantity can be
written as a function of observed variables:

E½Y(a;M1(a1);M2(a2;M1(a1)))�
p∭ E½Y jx; a;m1;m2� f (m2jx; a2;m1)f (m1jx; a1)f (x)dm2dm1dx;

ð2Þ

where f (⋅) denotes a probability density/mass function. This
equation generalizes Pearl’s (2001) mediation formula to the
case of two (sets of) causally dependent mediators (see also
Daniel et al. 2015).

ð2Þ
Note that the last term in equation (1), that is, tA→M1⇝Y ,
reflects the combination of the causal paths A → M1 → Y
and A → M1 → M2 → Y . Without additional assumptions,
the PSEs for the paths A → M1 → Y and A → M1 →

M2 → Y cannot be separately identified. In the issue-framing
study, for example, we can identify the overall mediating effect
via the respondent’s beliefs about the issue (A → M1⇝Y),
but we cannot pinpoint how much of this mediating effect
further operates through the perceived importance of com-
peting considerations (A → M1 → M2 → Y). Similarly, we
can identify the “independent” mediating effect via the re-
spondent’s perceived importance of competing considerations
(A → M2 → Y), but we cannot gauge the overall effect of the
importance mediator, which involves both A → M2 → Y and
A → M1 → M2 → Y . Nonetheless, the independent mediat-
ing effect is arguably more interesting here because it reflects
the effect of the importance mediator above and beyond that
of the belief mediator—an effect that would persist even if
issue framing did not affect the respondent’s beliefs about
what had caused the plight of welfare recipients.

Comparison with existing approaches
Existing work on causal mediation analysis with multiple
mediators has focused on the ACME via each of the media-
tors, instead of the PSEs. For example, Imai and Yamamoto
(2013) consider the following decomposition of the ATE:

E½Y(1)2 Y(0)� p E ½Y(1;M1(1);M2(0;M1(0)))�2 E½Y(0;M1(0);M2(0;M1(0)))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A→Y;A→M1→Y

1 E½Y(1;M1(1);M2(1;M1(1)))�2 E½Y(1;M1(1);M2(0;M1(0)))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A→M2→Y ;A→M1→M2→Y

≡ ADEM2
(0)1 ACMEM2

(1):

ð3Þ

Here, ACMEM2
(1) represents the amount of treatment effect

operating through M2 (under treatment status A p 1),
whether the effect also operates throughM1 or not. Similarly,
ADEM2

(0) reflects the amount of treatment effect that does
not operate through M2, regardless of M1.

The above decomposition is useful when the researcher’s
substantive interest lies solely in the mediator M2, whereas
the other mediator M1 is purely a nuisance that needs to
be accounted for due to the confounding it causes between
M2 and Y. A limitation of this approach, however, is that
neither the ACME nor the ADE for M2 can be nonpara-
metrically identified because M1 is a treatment-induced
confounder of the relationship between M2 and Y. More-
over, empirical researchers are often in a situation where both
M1 and M2 are of substantive interest, making it inappro-
priate to treat the mediator M1 as purely a nuisance.

In contrast, our proposed approach begins with the fol-
lowing alternative decomposition:

ð3Þ
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E½Y(1)2 Y(0)� p E½Y(1;M1(0);M2(1;M1(0)))2 Y(0;M1(0);M2(0;M1(0)))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A→Y;A→M2→Y

1 E½Y(1;M1(1);M2(1;M1(1)))2 Y(1;M1(0);M2(1;M1(0)))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A→M1→Y ;A→M1→M2→Y

≡ ADEM1
(0)1 ACMEM1

(1);

ð4Þ

where the two terms represent the ADE and ACME with
respect to M1, rather than M2. A comparison of equation (4)
with equation (1) reveals that ACMEM1

(1) p tA→M1⇝Y and
ADEM1

(0) p tA→Y 1 tA→M2→Y . Thus, our proposed ap-
proach allows us to estimate the amount of treatment effect
that operates through M1 (i.e., ACMEM1

(1)), and, further-
more, to decompose the ADE forM1 into the effect operating
through M2 but not through M1 (tA→M2→Y) and the effect
operating neither through M1 nor through M2 (tA→Y).

Table 1 summarizes how the PSEs relate to theACMEs and
ADEs with respect to M1 and M2. We can see that the PSEs
generally represent further decompositions of the ACMEs
and ADEs. The table also shows that, if the mediatorsM1 and
M2 are causally independent, that is, if the causal path A →

M1 → M2 → Y (bottom right) does not exist, the ACMEs
forM1 and forM2 will amount to PSEs specific to these media-
tors. The prevailing practice of treating different mediators as
causally independent can therefore be seen as a special case of
our approach. Thus, even in applications where the analyst is
willing to assume that different mediators are causally inde-
pendent, our framework for defining, identifying, and esti-
mating PSEs can still be applied, except that the estimated
PSEs can now be equivalently interpreted as the overall in-
direct effects via the corresponding mediators.

Finally, we note that the PSEs are distinct from the con-
trolled direct effect (CDE), an estimand recently advocated
for analyzing causal mechanisms in political science (e.g.,
Acharya et al. 2016a; Zhou and Wodtke 2019). The CDE

ð4Þ
measures the strength of the causal relationship between a
treatment and outcome when a mediator is fixed at a given
value for all units. Compared with the ACME, an advantage
of the CDE is that it can still be identified in the presence of
posttreatment confounders of the mediator-outcome rela-
tionship, provided that these confounders are observed. In
practice, the CDE is useful in contexts where it is reasonable
to entertain a policy intervention that sets the mediator at
a given value for all units. However, unlike the ACME and
PSEs, the CDE does not directly gauge the strengths of dif-
ferent causal paths from the treatment to the outcome.

ESTIMATING PATH-SPECIFIC EFFECTS
To date, most estimation methods for causal mediation
analysis have focused on the setting involving a single me-
diator or a set of mediators considered as a whole. In this
case, the key quantity for identifying the ACME and ADE is
the nested counterfactual, E[Y(a,M(a*))], whereM is the sole
mediator of interest, and a, a＊ ∈ f0; 1g. Various estimators
have been proposed for this quantity (e.g., Imai et al. 2010;
Tchetgen Tchetgen and Shpitser 2012). In particular, Van-
steelandt, Bekaert, and Lange (2012) introduced an imputa-
tion method, which involves (a) fitting a model of the ob-
served outcome conditional on treatment, the mediator, and a
set of pretreatment confounders; (b) using this model to im-
pute the counterfactual outcome Y(a, M(a*)) for each unit
with treatment status a*; and (c) fitting a model of these im-
puted counterfactuals conditional on the pretreatment con-
founders. Albert (2012) proposed a similar method, in which
the first two steps are the same and the last step involves an
inverse-probability-of-treatment-weighted average of the im-
puted counterfactuals.

Here, we develop a method for estimating the PSEs by
extending these imputation-based methods to the case of
Table 1. Path-Specific Effects (PSEs) that Compose the Average Causal Mediation
Effects (ACMEs) and Average Direct Effects (ADEs) in the Presence
of Two Causally Dependent Mediators
ADE for M2
 ACME for M2
ADE for M1
 PSE for A → Y
 PSE for A → M2 → Y

ACME for M1
 PSE for A → M1 → Y
 PSE for A → M1 → M2 → Y
Note. Under the assumption that the treatment and mediators do not have interaction effects (i.e., the no-
interaction assumption; Robins 2003), the PSE for each path is uniquely defined (i.e., they do not depend
on the reference levels chosen for the other paths), and each of the ADEs and ACMEs equals the sum of
the two component PSEs shown in the same row/column in the table. Without the no-interaction
assumption, these relationships still hold, although the rows and the columns correspond to different
PSE decompositions. The PSE decomposition defined by eq. (1) corresponds to the rows; that is,
tA→Y 1 tA→M2→Y p ADEM1

(0), and tA→M1⇝Y p ACMEM1
(1).
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potential outcomes involving multiply nested counterfac-
tuals. We start with the setting of two causally ordered media-
tors, as shown in figure 1, and discuss the general case ofK(≥ 1)
causally ordered mediators in the next section.
An imputation approach
Consider equation (1). Because the PSEs tA→Y , tA→M2→Y ,
tA→M1⇝Y are governed by four counterfactual means E[Y
(0)], E[Y(1)], E[Y(1, M1(0), M2(0, M1(0)))], and E[Y(1, M1

(0), M2(1, M1(0)))], it suffices to estimate each of these
latter quantities. Given the assumption of no unobserved
confounding for the treatment-outcome relationship, the
first two quantities, E[Y(0)] and E[Y(1)], can be estimated
via any conventional method of covariate adjustment, such
as matching, weighting, or regression. Or, in experimental
studies where treatment is randomly assigned, they can be
estimated using simple averages of the observed outcome
within the control and treatment groups.

Using the mediation formula (2), the latter two quan-
tities, E[Y(1, M1(0), M2(0, M1(0)))] and E[Y(1, M1(0), M2(1,
M1(0)))], can be written as

E½Y(1;M1(0);M2(0;M1(0)))� p E½E½E½Y jX;A p 1;M1;M2�j
X;A p 0��

ð5Þ

E½Y(1;M1(0);M2(1;M1(0)))� p E½E½E½Y jX;A p 1;M1�j
X;A p 0��:

ð6Þ

A proof of these equations is given in appendix B. Thus, to
evaluate these nested counterfactuals, we need only esti-
mate (a) the conditional means E½Y jX;A p 1;M1;M2� and
E½Y jX;A p 1;M1� and (b) their own conditional means given
the pretreatment confounders X among the untreated units
(A p 0). After these estimates are obtained, the outermost
expectations in equations (5) and (6) can be estimated using
their sample analogs.

Alternatively, the nested counterfactuals above can be
written as (see app. B)

E½Y(1;M1(0);M2(0;M1(0)))�

p E E½Y jX;A p 1;M1;M2� Pr½A p 0�
Pr½A p 0jX� jA p 0

� � ð7Þ

E½Y(1;M1(0);M2(1;M1(0)))�

p E E½Y jX;A p 1;M1� Pr½A p 0�
Pr½A p 0jX� jA p 0

� �
:

ð8Þ

These equations suggest that to evaluate the nested counter-
factuals, we need only estimate E½Y jX;A p 1;M1;M2�,
E½Y jX;A p 1;M1�, and the probability ratio Pr½A p

ð6Þ

ð8Þ

ð5Þ
0�=Pr½A p 0jX�. After these estimates are obtained, the outer
expectation in equations (7) and (8) can be estimated using
their sample analogs.

Hence, equations (5)–(6) and (7)–(8) suggest two different
routes to estimating the nested counterfactuals E[Y(1, M1(0),
M2(0, M1(0)))] and E[Y(1, M1(0), M2(1, M1(0)))]. They can
be seen as extensions of Vansteelandt et al.’s (2012) and
Albert’s (2012) imputation-based estimators for the ACME
to the estimation of PSEs, respectively. Since the first pro-
cedure involves only model-based imputation and the sec-
ond procedure involves both imputation and inverse prob-
ability weighting, we refer to them as a “pure imputation
estimator” and an “imputation-based weighting estimator,”
respectively.

An important advantage of our proposed estimators over
existing approaches to causal mediation (e.g., Imai et al.
2010) is that they do not require estimating the conditional
densities/probabilities of the mediators. Our approach there-
fore obviates the problem of high instability and model sen-
sitivity in the common empirical setting where the mediators
M1 and M2 are multivariate and/or continuous. Moreover,
the proposed approach only requires the analyst to correctly
specify models for the outcome, not for any of the mediators.
This will likely reduce the possibility of model misspecifica-
tion, since researchers often have better substantive under-
standings of the generative process for the outcome variable
itself than for themediators. Below, we provide a step-by-step
guide to the implementation of these estimators in experi-
mental and observational studies.

Implementation
First, consider the experimental setting where treatment is
randomly assigned. In this case, because treatment statusA is
independent of the pretreatment confounders X, both equa-
tions (5)–(6) and equations (7)–(8) reduce to

E½Y(1;M1(0);M2(0;M1(0)))� p E½E½Y jX;A p 1;M1;M2�
jA p 0�

E½Y(1;M1(0);M2(1;M1(0)))� p E½E½Y jX;A p 1;M1�
jA p 0�:

Thus, in experimental studies, the imputation approach can
be implemented as follows:

1. Estimate E[Y(0)] and E[Y(1)] using sample aver-
ages of the observed outcome within the control
and treatment groups.

2. Fit an outcome model conditional on the treatment
A, the mediators M1 and M2, and the pretreatment
confounders X. For the control units, impute their
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counterfactual outcome Y(1, M1(0), M2(0, M1(0)))
by setting A p 1 (while using their observed values
of X, M1, and M2). The average of these imputed
counterfactuals constitutes an estimate of the
counterfactual mean E[Y(1, M1(0), M2(0, M1(0)))].

3. Fit an outcomemodel conditional on the treatmentA,
themediatorM1, and the pretreatment confoundersX.
For the control units, impute their counterfactual out-
come Y(1, M1(0), M2(1, M1(0))) by setting A p 1
(while using their observed values of X, M1). The
average of these imputed counterfactuals constitutes
an estimate of the counterfactual mean E[Y(1,M1(0),
M2(1, M1(0)))].

4. Calculate the PSEs as defined in equation (1).

In practice, to reduce model dependence, data-adaptive/ma-
chine learning methods can be used to fit the outcomemodels
in steps 2 and 3. This can be useful for mitigating bias due to
model misspecification, especially when nonlinear or inter-
action effects are likely to exist (Glynn 2012). Approximate
standard errors and confidence intervals can be constructed
by bootstrapping steps 1–4.

In observational studies, the pure imputation estimator
(eqq. [5]–[6]) and the imputation-based weighting esti-
mator (eqq. [7]–[8]) do not coincide. The pure imputation
estimator can be implemented as follows:

1. Fit an outcome model conditional on the treatment
A and the pretreatment confounders X. Estimate
E[Y(0)] and E[Y(1)] by averaging the predicted
values Ê½Y jX;A p 0� and Ê½Y jX;A p 1� among all
units, respectively.

2. Fit an outcomemodel conditional on the treatmentA,
the mediatorsM1 andM2, and the pretreatment con-
founders X. For the untreated units, impute their
counterfactual outcome Y(1, M1(0), M2(0, M1(0))) by
settingA p 1 (while using their observed values ofX,
M1, and M2).

3. Fit a model of the imputed counterfactual
Ŷ(1;M1(0);M2(0;M1(0))) conditional on X among
the untreated units, and obtain model-based pre-
dictions for all units. The average of these predic-
tions constitutes an estimate of the counterfactual
mean E[Y(1, M1(0), M2(0, M1(0)))].

4. Fit an outcomemodel conditional on the treatmentA,
the mediatorM1, and the pretreatment confounders
X. For the untreated units, impute their counter-
factual outcome Y(1,M1(0),M2(1,M1(0))) by setting
A p 1 (while using their observed values of X and
M1).
5. Fit a model of the imputed counterfactual
Ŷ(1;M1(0);M2(1;M1(0))) conditional on X among
the untreated units, and obtain model-based predic-
tions for all units. The average of these predictions
constitutes an estimate of the counterfactual mean
E[Y(1, M1(0), M2(1, M1(0)))].

6. Calculate the PSEs as defined in equation (1).

The imputation-based weighting estimator requires an esti-
mate of the probability ratioPr½A p 0�=Pr½A p 0jX�. To that
end, we can first estimate the numerator Pr½A p 0� using its
sample analog and the denominator Pr½A p 0jX� using a
propensity score model for the treatment. Then, repeat the
above procedure while replacing steps 3 and 5 with the fol-
lowing steps, each of which utilizes an inverse-probability
weighted average instead of model-based predictions:

3*. Estimate E[Y(1, M1(0), M2(0, M1(0)))] using a
weighted average of the imputed counterfactuals
Ŷ(1;M1(0);M2(0;M1(0))) among the untreated
units, with weight P̂r½A p 0�=P̂r½A p 0jX�.

5*. Estimate E[Y(1, M1(0), M2(1, M1(0)))] using a
weighted average of the imputed counterfactuals
Ŷ(1;M1(0);M2(1;M1(0))) among the untreated
units, with weight P̂r½A p 0�=P̂r½A p 0jX�.

To reduce model dependence, data-adaptive/machine learn-
ing methods can be used to fit the outcome models, and, for
the imputation-basedweighting estimator, also the propensity
score model. Approximate standard errors and confidence
intervals can be constructed by bootstrapping steps 1–6.

Alternative estimation methods
In statistics and epidemiology, several alternative methods
have been proposed to estimate PSEs. VanderWeele et al.
(2014) proposed a weighting estimator that involves esti-
mating the conditional densities/probabilities of the media-
tors M1 and M2 given their antecedent variables. This esti-
mator, however, is difficult to use when either or both of the
mediators is multivariate or continuous, in which case esti-
mates of the conditional density/probability functions f (m2jx;
a;m1) and f (m1jx; a) tend to be unstable and highly sensitive
to model misspecification (Kang and Schafer 2007). More-
over, even if models for these conditional densities/probabil-
ities are correctly specified, weighting estimators are often in-
efficient and susceptible to large finite sample biases (Cole and
Hernán 2008; Zhou and Wodtke 2020). Miles et al. (2017)
proposed a maximum likelihood estimator that is generally
more efficient than the weighting estimator. However, like the
weighting estimator, the maximum likelihood estimator also



258 / Tracing Causal Paths Xiang Zhou and Teppei Yamamoto
involves estimating the conditional densities/probabilities of
the mediators, making it difficult to use in the presence of
multivariate/continuous mediators.

For a specific PSE in the two-mediator setting, Miles et al.
(2020) developed a semiparametric estimator based on the
efficient influence function of the estimand. Compared with
the weighting, imputation, and maximum likelihood estima-
tors, this semiparametric estimator is more robust to model
misspecification in that it remains consistent even if some
of the treatment/mediator/outcome models on which it de-
pends are misspecified. Moreover, when data-adaptive meth-
ods, combinedwith sample splitting, are used tofit the nuisance
functions, theoretically valid standard errors can be con-
structed from the sample variance of the estimated influence
function (Chernozhukov et al. 2018; Zheng and van der Laan
2011). In related work, we have extended this approach for
more general PSEs in settings with more than two mediators
(Zhou 2022).

GENERALIZATION TO K(≥1) CAUSALLY
ORDERED MEDIATORS
So far, we have assumed that two mediators lie on the causal
paths from A to Y. The definition, identification, and esti-
mation of PSEs can be generalized to the setting where the
treatment effect operates through K causally ordered (sets of)
mediators. In what follows, we denote these mediators as M1,
M2, ...MK and assume that for any i ! j,Mi precedesMj, such
that no component of Mj can causally affect any component
of Mi. In addition, let us denote M0 p ∅, Mk p fM1;

M2; :::Mkg, and Mk(a) p fM1(a);M2(a); :::Mk(a)g, where
Mk(a) p Mk(a;M1(a);M2(a;M1(a)); :::) by definition.

The ATE of A on Y can now be decomposed as

E½Y(1)2 Y(0)� p E½Y(1;MK(0))2 Y(0)�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A→Y

1 o
K

kp1
E½Y(1;Mk21(0))2 Y(1;Mk(0))�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A→Mk⇝Y

p tA→Y 1 o
K

kp1
tA→Mk⇝Y :

ð9Þ
We assume that the variables A,M1, . . .MK, Y follow a DAG
that encodes a nonparametric structural equation model with
mutually independent errors, such that no unobserved con-
founding exists for any of the treatment-mediator, treatment-
outcome, and mediator-outcome relationships.

To identify the components of equation (9), it suffices
to identify the counterfactual expectations E[Y(0)], E[Y(1)],
and E½Y(1;Mk(0))� for all k ∈ f1; :::Kg. Similar to the two-
mediator setting, these counterfactual expectations can be
expressed as functions of observed variables:

E½Y(1;Mk(0))� p E½E½E½Y jX;A p 1;Mk�jX;A p 0�� ð10Þ

p E½E½Y jX;A p 1;Mk� Pr½A p 0�
Pr½A p 0jX� jA p 0�: ð11Þ

Equations (10) and (11) suggest a pure imputation estimator
and an imputation-based weighting estimator, respectively, for
the PSEs defined in equation (9). The algorithms for im-
plementing these estimators are detailed in appendix C. In
the ”Empirical Illustrations” section, we illustrate the case of
three causally ordered mediators (K p 3) with an empirical
example on the legacy of political violence.

SENSITIVITY ANALYSIS FOR
UNOBSERVED CONFOUNDING
The identification of PSEs is premised on a nonparametric
structural equation model in which no unobserved confound-
ing exists for any of the treatment-outcome, treatment-
mediator, and mediator-outcome relationships. In observa-
tional studies where treatment is not randomly assigned, all of
these assumptions must be scrutinized. If any are violated,
estimates of PSEs will likely be biased. In experimental studies
where treatment is randomly assigned, the assumptions of no
unobserved treatment-outcome and treatment-mediator con-
founding are met by design, but it remains possible that some
of the mediator-outcome relationships are confounded by un-
observed factors. To address this concern, we develop a bias
factor approach to sensitivity analysis that allows us to assess
the degree to which estimates of PSEs are robust to unob-
served confounding of the mediator-outcome relationships.
This approach can be seen as an extension of the bias formulas
developed by VanderWeele (2010) to the setting of multiple
causally dependentmediators. For ease of exposition, we focus
on the case of two causally ordered mediators in this section
and discuss the general case of K(≥ 1) causally ordered me-
diators in appendix D.

Suppose there exists an unobserved confounder that af-
fects both themediators (M1,M2) and the outcome Y, but not
the treatment. Figure 2 shows a causal diagram reflecting the
relationships between these variables, where the baseline co-
variates X are kept implicit. In this case, because no unob-
served confounding exists for the treatment-outcome rela-
tionship, the ATE is still identified, and their estimates are not
subject to confounding bias. We now assess the biases for the
PSEs via M1 and via M2. Following VanderWeele (2010), we
make three simplifying assumptions: (a) U is binary; (b) the
average “effect” of U on Y, conditional on baseline covariates
X, the treatment A, and the mediator setMk p fM1; :::Mkg



3. In app. E, we conduct a simulation study to investigate the per-
formance of this approximation under plausible scenarios. The results
suggest that the approximation is excellent under these scenarios.
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(where k ∈ f1; 2g) is constant, which we denote by gk; and
(c) the difference in the prevalence of U between treated and
untreated units, conditional on baseline covariates X and the
mediator set Mk (where k ∈ f1; 2g), is constant, which we
denote by hk. Then, as shown in appendix D, estimates of the
direct and path-specific effects without adjusting for U are
subject to the following biases:

Bias½tA→Y � p g2h2; ð12Þ
Bias½tA→M1⇝Y � p 2g1h1; ð13Þ
Bias½tA→M2→Y � p g1h1 2 g2h2: ð14Þ

These formulas (12)–(14) allow us to construct a range of
bias-adjusted estimates for tA→Y , tA→M1⇝Y , and tA→M2→Y

across potential values of (g1, g2), and (h1, h2). In practice, we
may focus on estimands that are of particular relevance to the
research question. For example, if we are primarily interested
in the robustness of the estimated PSE viaM1, that is, t̂A→M1⇝Y ,
we can identify the values of g1 and h1 that would suffice to
reduce it to zero. Alternatively, if we are primarily interested in
the robustness of the estimated direct effect, we can identify the
values of g2 and h2 that would suffice to reduce t̂A→Y to zero. In
applications, we can also use observed covariates to suggest
plausible values for the sensitivity parameters. For example, if
we have an observed binary confounder Z ∈ X, we can fit a
linear model of Y onX, A, andMk, whose coefficient on Zwill
provide a plausible value of gk. In the meantime, we can fit a
linearmodel ofZ onA,Mk, and other components ofX, whose
coefficient on A will provide a plausible value of hk. By com-
bining these plausible values of gk and hk, we can assess the
amount of bias that would result if an unobserved variable
“worked exactly like”Z in confounding themediator-outcome
relationships. In the next section, we illustrate these tech-
niques with two empirical examples.

Although the bias formulas (12)–(14) are derived under
the assumption that U affects both M1 and M2, they are still
applicable in the special case where U does not affectM1. In
this case, it can be shown that h1 p 0 (see app. D), leading to
a simplification of equations (13)–(14): Bias½tA→M1⇝Y � p 0
and Bias½tA→M2→Y � p 2g2h2. The former result is expected
because when U does not affect M1, no unobserved con-
founding exists for the M1-Y relationship, leading to unbi-
ased estimates of the PSE tA→M1⇝Y .

A common limitation to sensitivity analysis methods for
unobserved confounding is the reliance on simplifying as-
sumptions about the exact form of confounding, which are
required for the sake of interpretability (e.g., Imbens 2003).
Our proposed method is no exception. First, the unobserved
confounderU is assumed to be a pretreatment variable. Thus
the bias formulas cannot be used to assess the sensitivity of
estimated PSEs to unobserved posttreatment confounders
or, for that matter, to mismeasured mediators. For example,
in the issue-framing study, the bias formulas cannot be used
to assess bias due to measurement error when the measured
belief and importance variables are noisy indicators of some
true but latent values of beliefs and importance. Second, U is
assumed to be binary. Thus the bias formulas do not directly
apply to cases where unobserved confounders are known to
be continuous or multivariate. Finally, by assuming that both
gk and hk are constant, we stipulate that the conditional ex-
pectation E½Y jX;A;Mk;U� depends on (X, A, Mk), and U
additively, and that the conditional probability Pr½U p 1j
X;A;Mk� depends on (X, Mk), and A additively. Given the
stringency of these assumptions, the bias formulas (12)–(14)
should best be viewed as an approximation of the true biases
that would result from unobserved confounding.3

EMPIRICAL ILLUSTRATIONS
We illustrate the proposed methods for estimation and sen-
sitivity analysis by first reanalyzing Slothuus’s (2008) data on
Figure 2. Causal relationships with two causally ordered mediators where unobserved confounding exists for the relationship between mediators {M1, M2} and

outcome Y; A denotes the treatment, Y denotes the outcome, Mj denotes mediator j. Baseline covariates X are kept implicit.
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issue-framing effects. We then revisit an observational study
on the multigenerational effects of political violence (Lupu
and Peisakhin 2017). In appendix G, we demonstrate the
utility of our framework with an experimental study by Tomz
and Weeks (2013), where the authors have attempted to iso-
late the mediating effect of morality in the democratic peace.

Issue-framing effects
Using a survey experiment on a sample of Danish students,
Slothuus (2008) found that individuals are substantially
more supportive of a proposed welfare reform if they are
exposed to a newspaper article that highlights its positive
effect on job creation (the job frame) rather than one em-
phasizing its negative effect on the poor (the poor frame). To
analyze the causal mechanisms underlying this effect, the
author used a series of 5-point-scale questions to tap (a) the
respondents’ beliefs about why some people receive welfare
benefits (the belief mediator) and (b) their perceived im-
portance of five competing considerations directly related to
welfare policy (the importance mediator). The author then
conducted a mediation analysis under the assumption that
the belief mediator and the importance mediator are causally
independent. However, as noted previously, respondents’
beliefs about welfare recipients likely influence their per-
ceived importance of competing issue-related considerations.
In the following analysis, we allow the two mediators to be
causally dependent. Following the literature (Imai and Yama-
moto 2013; Miller 2007), we treat respondents’ beliefs about
the issue as causally prior to their perceived importance of
competing considerations. Under this assumption, the path-
ways that transmit the framing effect can be represented by a
DAG akin to the top panel of figure 1.

In this DAG, the outcome, Y, is a measure of support for
the proposed welfare reform on a 7-point scale; treatment,
A, denotes whether the respondent receives the job frame
rather than the poor frame; the mediator M1 includes mea-
sures of the respondent’s beliefs about why some people re-
ceive welfare benefits, or who is responsible for those people’s
situation; the mediator M2 includes the respondent’s ratings
on the importance of five competing considerations related to
welfare policy; finally, the pretreatment covariates X include
measures of gender, education, political interest, ideology, po-
litical knowledge, and extremity of political values.4We control
for a set of pretreatment covariates because, although treat-
ment is randomly assigned, the mediator-outcome relation-
ships may still be confounded by the respondent’s baseline
characteristics.
4. Detailed definitions of these variables are given in Slothuus (2008).
Because treatment is randomly assigned in this study, we
first estimate E[Y(0)] and E[Y(1)] using simple averages
of the observed outcome within the control and treatment
groups. We find that the average support for the proposed
welfare reform (measured on a 7-point scale) is 4.3 among
respondents exposed to the job frame and 3.16 among those
exposed to the poor frame. The total effect of treatment,
therefore, is about 1.14.

We estimate the PSEs for the paths A → Y , A → M1⇝Y ,
and A → M2 → Y using the imputation approach described
earlier. To allow for nonlinear and interaction effects, we use
BART to fit the outcome models conditional on treatment,
the pretreatment covariates, and varying sets of mediators
(namely, {M1,M2} and {M1}). The results are shown in table 2.
The estimated PSE via the belief mediator (A → M1⇝Y) is
0.24 (95% CI: [20.02, 0.52]), suggesting that the respondent’s
beliefs about the causes of the situation of welfare recipients
have a relatively minor and statistically insignificant mediat-
ing effect. The estimated PSE via the importance mediator
(A → M2 → Y) is 0.18 (95% CI: [0.01, 0.36]), suggesting that
the perceived importance of competing considerations plays
an independent, albeit small, role in transmitting the effect of
issue framing on policy support. Finally, we find that over half
of the total effect appears to be “direct,” that is, operating
neither through the belief mediator nor through the impor-
tance mediator.

We now conduct a sensitivity analysis for the direct effect
of issue framing on policy support. Suppose there exists a
binary unobserved confounder U that affects respondents’
beliefs about the issue, perceived importance of issue-
related considerations, as well as their support for welfare
reform. Equation (12) indicates that in this scenario, the
estimated direct effect is subject to a bias of g2h2, where g2

denotes the average effect of U on policy support (Y ) con-
ditional on treatment (A), the belief and importance
mediators (M1 andM2), and the baseline covariates (X), and
h2 denotes the difference in the prevalence of U between
Table 2. Estimates of Total and Path-Specific Effects
of Issue Framing on Policy Support
Estimate
Average total effect (ATE)
 1.15 [.61, 1.65]

Through the belief mediator (A → M1 ⇝ Y )
 .24 [2.02, .52]

Through the importance mediator

(A → M2 → Y )
 .18 [.01, .36]

Direct effect (A → Y )
 .72 [.32, 1.08]
Note. Numbers in brackets represent 95% bootstrapped confidence intervals

(1,000 iterations).



Volume 85 Number 1 January 2023 / 261
treated and untreated units conditional on the belief and im-
portance mediators (M1 and M2) and the baseline covariates
(X).

To obtain some intuition as to the signs of g2 and h2, let us
consider U as a dummy variable indicating middle- or upper-
class background, which might lead to stronger support for
the proposed welfare reform, that is, g2 1 0. Since treatment is
randomly assigned in this study, the prevalence ofU should be
similar between treated and untreated units. However, be-
cause both middle-/upper-class background (U ) and the job
frame (A) are supposed to affect beliefs about the issue (M1)
and perceived importance of competing considerations (M2),
the conditional association between A and U given M1,
M2, andX can deviate from zero. Specifically, becauseM1 and
M2 are both colliders of A and U, the conditional associa-
tion between A and U might be negative—especially if the
effects of U and A on the mediators are in the same direction.
In this scenario, the bias g2h2 would be negative, implying an
underestimate of the direct effect. From this perspective, our
finding that most of the framing effect does not operate
through the belief mediator or the importance mediator ap-
pears robust.

We can also use observed binary covariates to obtain a
range of plausible values for the sensitivity parameters g2 and
h2. Here, we consider three such variables—gender, right-
wing ideology, and limited political knowledge, where right-
wing ideology and limited political knowledge are dummy
variables obtained by dichotomizing the original measures
of ideology and political knowledge at their medians. We
then use the procedures described in the preceding section to
compute the values of g2 and h2 that would result if the
unobserved variable U “worked exactly like” each of these
covariates in its confounding effect. Figure 3 shows the con-
tours of bias-adjusted estimates of the direct effect at different
values of g2 and h2, as well as those corresponding to an un-
observed variable that mimics gender, right-wing ideology,
and limited political knowledge in its confounding effect. We
can see that the original estimate (0.72) can be explained away
by unobserved confounding only when both g2 and h2 are
positive andmuch larger than their plausible values suggested
by these observed covariates.

The legacy of political violence
We now illustrate the imputation approach for tracing
causal paths from observational data. We reanalyze Lupu
and Peisakhin’s (2017) data to examine the intergenera-
tional pathways through which exposure to political vio-
lence shapes descendants’ political attitudes. In 2014, these
authors conducted a multigenerational survey of Crimean
Tatars, a minority Muslim population living in Crimea, to
study the legacy of political violence that occurred during
the deportation of Crimean Tatars from their homeland
to Central Asia in 1944. Due to starvation and infectious
diseases, a sizable portion of the deportees died during or
shortly after the deportation. Yet, “although all Crimean
Tatars suffered the violence of deportation, some lost more
family members along the way” (Lupu and Peisakhin 2017,
837). Leveraging this variation in violent victimization, the
Figure 3. Bias-adjusted estimates of the direct effect of issue framing on policy support. The contours represent the bias-adjusted estimates of the direct

effect (tA→Y) plotted as a function of g2 and h2. The gray area shows the values of g2 and h2 that would reverse the sign of the estimated tA→Y . The annotated

points represent the g2 and h2 values that would result if the unobserved variable U “worked exactly like” one of the observed covariates in its confounding

effect on the mediator-outcome relationships.
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authors found that the grandchildren of individuals who
suffered more deaths of family members support more
strongly the Crimean Tatar political leadership, hold more
hostile attitudes toward Russia, and participate more in
politics.

To investigate the intergenerational pathways that trans-
mit the legacy of political violence, the authors conducted an
“implicit mediation analysis” by adding measures of the de-
scendant’s political identity into theirmain regressionmodels
and assessing the changes in the coefficients of ancestor vic-
timization. This approach is potentially problematic, how-
ever, because descendants’ political identities are likely shaped
by the political identities of their parents and grandparents,
which might also have a direct effect on descendant political
attitudes and behavior. In other words, the identities of first-
and second-generation respondents are posttreatment con-
founders of the mediator-outcome relationship, that is, the
relationship between descendants’ identities and their politi-
cal attitudes and behavior, implying that the ACME via de-
scendants’ political identities cannot be nonparametrically
identified.

In contrast to the authors’ mediation analyses that fo-
cused on the political identity of the descendant as the only
mediator, we treat the political identities of first-, second-,
and third-generation respondents as three causally ordered
mediators, and focus on the effect of ancestor victimization
on the respondent’s attitude toward Russia’s annexation of
Crimea. Our analytical framework can be represented by the
DAG in figure 4. In this DAG, ancestor victimization (i.e.,
the treatment) denotes whether any family member of the
first-generation respondent died during or shortly after the
deportation due to poor conditions; the political identities of
first-, second-, and third-generation respondents (i.e., the
mediators) are measured by the intensity of their attachment
to the Crimean Tatars as a social group, their association of
that group with victimhood, and their perception of the
threat posed by Russia; regime support (i.e., the outcome)
denotes whether the third-generation respondent supported
Russia’s annexation of Crimea; finally, the pretreatment
covariates include measures of the first generation respon-
dent’s family wealth, religiosity, attitudes toward the Soviet
Union, and experience with persecution by state authorities
prior to deportation. These covariates are used to control for
potential confounding of the treatment-mediator, treatment-
outcome, and mediator-outcome relationships.

We then estimate the PSEs as defined by equation (9), us-
ing both the pure imputation estimator and the imputation-
based weighting estimator. For the pure imputation estimator,
we use BART to estimate all outcome models (including the
models for the imputed counterfactuals). For the imputation-
based weighting estimator, we estimate all outcome models
using BART and estimate the propensity score model using
gradient boosting machines (GBM) that are calibrated to maxi-
mize covariate balance (McCaffrey, Ridgeway, andMorral 2004;
Ridgeway et al. 2017). The results, as shown in table 3, are
similar between the two estimators. Consistent with the orig-
inal study, we find that ancestor victimization significantly
reduces the descendant’s support for Russia’s annexation of
Crimea—by 0.2 (from 0.64 to 0.44) on the probability scale.
By the pure imputation estimator, the direct effect is only
about 20.05, meaning that most of the total effect operates
through the political identities of first-, second-, and third-
generation respondents. Thebulkof the indirect effect appears
to be transmitted through the political identities of grand-
parents (“via G1 identity”), rather than through the political
identities of second- and third-generation respondents di-
rectly (“via G2 identity” and “via G3 identity”). This finding
suggests that exposure to political violence affects the identi-
ties of first-generation respondents and that they transmit
these through the family line to shape the political attitudes of
their descendants. This is a key theoretical hypothesis of Lupu
and Peisakhin (2017). However, it was not tested in the authors’
Figure 4. Causal pathways from ancestor victimization to descendants’ regime support
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implicit mediation analysis, which considered only the role of
the descendant’s political identity (G3 identity).

To assess the robustness of the above finding to unob-
served confounding of the mediator-outcome relationships,
we apply the bias formulas introduced in the preceding sec-
tion for the PSE via G1 identity (tA→M1⇝Y). Suppose there
exists a binary unobserved confounder U (e.g., presence of
some personality trait in the first-generation respondent)
that affects both the political identities of first-, second-, and
third-generation respondents and regime support among
the grandchildren. Equation (13) indicates that in this sce-
nario, the estimated PSE via G1 identity suffers a bias of
2g1h1, where g1 denotes the effect of U on regime support
(Y) conditional on ancestor victimization (A), G1 identity
(M1), and the baseline covariates (X), and h1 denotes the
difference in the prevalence of U between treated and un-
treated units conditional on G1 identity (M1) and the base-
line covariates (X). To be more concrete, let us consider U as
a personality trait of the G1 respondent that facilitates in-
group solidarity, which would suggest a negative effect of U
on regime support, that is, g1 ! 0. The sign of h1 is less clear.
If both violent victimization (A) and the unobserved per-
sonality trait (U) had had a positive effect on G1 identity
(M1), the association between A and U conditional on M1, a
collider between A and U, might be negative. In this case,
2g1h1 will be negative, suggesting an overestimate of the
(negative) PSE via G1 identity.

Figure 5 shows the contours of bias-adjusted estimates of
the PSE via G1 identity at different values of g1 and h1. In
addition, it shows the values of the g1 and h1 that would result
if the unobserved variable U “worked exactly like” one of
three observed binary covariates: whether the G1 respondent
had close relatives subject to dekulakization (dekulakiza-
tion), whether the G1 respondent’s close relatives privately
opposed Soviet authorities (private opposition), whether the
G1 respondent’s family considered it very important to
Table 3. Estimates of Total and Path-Specific Effects of Ancestor Victimization on Support
for Russia’s Annexation of Crimea
Pure Imputation Estimator
 Imputation-Based Weighting Estimator
Average total effect (ATE)
 2.20 [2.30, 2.11]
 2.20 [2.30, 2.11]

Through G1 identity (A → M1 ⇝ Y )
 2.10 [2.15, 2.06]
 2.12 [2.18, 2.07]

Through G2 identity (A → M2 ⇝ Y )
 2.02 [2.06, .02]
 2.02 [2.06, .03]

Through G3 identity (A → M3 → Y )
 2.03 [2.07, .00]
 2.03 [2.07, .01]

Direct effect (A → Y )
 2.05 [2.12, .03]
 2.04 [2.12, .05]
Note. Numbers in brackets represent 95% bootstrapped confidence intervals (1,000 iterations).
Figure 5. Bias-adjusted estimates of the path-specific effect of ancestor victimization on regime support via G1 identity. The contours represent the bias-

adjusted estimates of the PSE via G1 identity (tA→M1⇝Y) plotted as a function of g1 and h1 (with the unadjusted estimate computed from the pure imputation

estimator). See the caption for figure 3 for the interpretation of other elements of the graph.
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follow Islamic customs and traditions while in deportation
(religiosity). We can see that the original estimate (20.1) is
quite robust, as it can be attributed entirely to unobserved
confounding only when both g1 and h1 are sizable (e.g., when
g1 p h1 p 20.32) and far from their plausible values sug-
gested by these observed covariates.

CONCLUDING REMARKS
Despite a growing interest in the study of causal mechanisms
in political science, conventional methods for causal media-
tion analysis are difficult to use when the causal effect of in-
terest operates through multiple causally dependent media-
tors. In particular, the ACME cannot be nonparametrically
identified if themediator-outcome relationship is confounded
by posttreatment variables, even if these variables are ob-
served. In this article, we introduced a general framework for
tracing causal paths with multiple mediators. In this frame-
work, the total effect of a treatment on an outcome is de-
composed into a set of path-specific effects (PSEs). These
PSEs, unlike the ACMEs of individual mediators, are non-
parametrically identified under a set of unconfoundedness
assumptions.

We then described an imputation approach for estimat-
ing these PSEs from experimental and observational data. In
contrast to conventional methods for analyzing causal me-
diation, this approach does not require modeling the con-
ditional distributions of themediators given their antecedent
variables. All we need is to model the conditional means of
the outcome given treatment, pretreatment confounders, and
varying sets of mediators. These conditional means, unlike
the conditional distributions of the mediators, can be flexibly
estimated using data-adaptive methods such as GBM and
BART. Therefore, minimal modeling assumptions are needed
to implement this approach, and different models of the ex-
pected outcome can be used to check the robustness of results.
In appendix F, we illustrate this point by showing that for our
two empirical examples, estimates of the PSEs are similar
whether we use GLM, GBM, or BART to fit the outcome
models.

The identification of PSEs is premised on a set of po-
tentially strong assumptions, which require that all relevant
confounders of the treatment-outcome, treatment-mediator,
and mediator-outcome relationships have been observed and
adjusted for. Although standard in studies of causal media-
tion, these assumptions must be scrutinized against the re-
search design and subject matter knowledge in each empirical
application. In experimental studies where treatment is ran-
domly assigned, the assumptions of no unobserved treatment-
outcome or treatment-mediator confounding are met by
design, but the mediator-outcome relationships can still be
confounded by unobserved factors. As we have shown, in
cases where some of these assumptions are questionable, a set
of general-purpose bias formulas can be used to assess the
robustness of conclusions. To facilitate implementation, we
offer an open-source R package, paths, for implementing the
proposed methods for estimation and sensitivity analysis,
which is available from Github and CRAN. In addition, in
appendix H, we provide R code illustrating the use of paths
with our empirical examples.
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