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a b s t r a c t

This paper synthesizes recent advances in the econometrics of difference-in-differences
(DiD) and provides concrete recommendations for practitioners. We begin by articulating
a simple set of ‘‘canonical’’ assumptions under which the econometrics of DiD are
well-understood. We then argue that recent advances in DiD methods can be broadly
classified as relaxing some components of the canonical DiD setup, with a focus on (i)
multiple periods and variation in treatment timing, (ii) potential violations of parallel
trends, or (iii) alternative frameworks for inference. Our discussion highlights the
different ways that the DiD literature has advanced beyond the canonical model, and
helps to clarify when each of the papers will be relevant for empirical work. We conclude
by discussing some promising areas for future research.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Differences-in-differences (DiD) is one of the most popular methods in the social sciences for estimating causal effects
n non-experimental settings. The last few years have seen a dizzying array of new methodological papers on DiD and
elated designs, making it challenging for practitioners to keep up with rapidly evolving best practices. Furthermore, the
ecent literature has addressed a variety of different components of DiD analyses, which has made it difficult even for
xperts in the field to understand how all of the new developments fit together. In this paper, we attempt to synthesize
ome of the recent advances on DiD and related designs and to provide concrete recommendations for practitioners.
Our starting point in Section 2 is the ‘‘canonical’’ difference-in-differences model, where two time periods are available,

here is a treated population of units that receives a treatment of interest beginning in the second period, and a
omparison population that does not receive the treatment in either period. The key identifying assumption is that the
verage outcome among the treated and comparison populations would have followed ‘‘parallel trends’’ in the absence of
reatment. We also assume that the treatment has no causal effect before its implementation (no anticipation). Together,
hese assumptions allow us to identify the average treatment effect on the treated (ATT). If we observe a large number of
ndependent clusters from the treated and comparison populations, the ATT can be consistently estimated using a two-way
ixed effects (TWFE) regression specification, and clustered standard errors provide asymptotically valid inference.
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Scott Barkowski for suggesting the title.
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In practice, DiD applications typically do not meet all of the requirements of the canonical DiD setup. The recent wave
f DiD papers have each typically focused on relaxing one or two of the key assumptions in the canonical framework
hile preserving the others. We taxonomize the recent DiD literature by characterizing which of the key assumptions

n the canonical model are relaxed. We focus on recent advances that (i) allow for multiple periods and variation in
reatment timing (Section 3); (ii) consider potential violations of parallel trends (Section 4); or (iii) depart from the
ssumption of observing a sample of many independent clusters sampled from a super-population (Section 5). Section 6
riefly summarizes some other areas of innovation. In the remainder of the Introduction, we briefly describe each of these
trands of literature.
Multiple periods and variation in treatment timing: One strand of the DiD literature has focused on settings where

here are more than two time periods and units are treated at different point in times. Multiple authors have noted
hat the coefficients from standard TWFE models may not represent a straightforward weighted average of unit-level
reatment effects when treatment effects are allowed to be heterogeneous. In short, TWFE regressions make both ‘‘clean’’
omparisons between treated and not-yet-treated units as well as ‘‘forbidden’’ comparisons between units who are both
lready-treated. When treatment effects are heterogeneous, these ‘‘forbidden’’ comparisons potentially lead to severe
rawbacks such as TWFE coefficients having the opposite sign of all individual-level treatment effects due to ‘‘negative
eighting’’ problems. Even if all of the weights are positive, the weights ‘‘chosen’’ by TWFE regressions may not correspond
ith the most policy-relevant parameter.
We discuss a variety of straightforward-to-implement strategies that have been proposed to bypass the limitations

ssociated with TWFE regressions and estimate causal parameters of interest under rich sources of treatment effect
eterogeneity. These procedures rely on generalizations of the parallel trends assumption to the multi-period setting.
common theme is that these new estimators isolate ‘‘clean’’ comparisons between treated and not-yet-treated groups,
nd then aggregate them using user-specified weights to estimate a target parameter of economic interest. We discuss
ifferences between some of the recent proposals — such as the exact comparison group used and the generalization of the
arallel trends assumption needed for validity — and provide concrete recommendations for practitioners. We also briefly
iscuss extensions to more complicated settings such as when treatments turn on-and-off over time or are non-binary.
Non-parallel trends: A second strand of the DiD literature focuses on the possibility that the parallel trends assumption

ay be violated. One set of papers considers the setting where parallel trends holds only conditional on observed
ovariates, and proposes new estimators that are valid under a conditional parallel trends assumption. However, even
f one conditions on observable covariates, there are often concerns that the necessary parallel trends assumption may be
iolated due to time-varying unobserved confounding factors. It is therefore common practice to test for pre-treatment
ifferences in trends (‘‘pre-trends’’) as a test of the plausibility of the (conditional) parallel trends assumption. While
ntuitive, researchers have identified at least three issues with this pre-testing approach. First, the absence of a significant
re-trend does not necessarily imply that parallel trends holds; in fact, these tests often have low power. Second,
onditioning the analysis on the result of a pre-test can introduce additional statistical distortions from a selection effect
nown as pre-test bias. Third, if a significant difference in trends is detected, we may still wish to learn something about
he treatment effect of interest.

Several recent papers have therefore suggested alternative methods for settings where there is concern that parallel
rends may be violated. One class of solutions involves modifications to the common practice of pre-trends testing to
nsure that the power of pre-tests is high against relevant violations of parallel trends. A second class of solutions has
roposed methods that remain valid under certain types of violations of parallel trends, such as when the post-treatment
iolation of parallel trends is assumed to be no larger than the maximal pre-treatment violation of parallel trends, or
hen there are non-treated groups that are known to be more/less affected by the confounds as the treated group. These
pproaches allow for a variety of robustness and sensitivity analyses which are useful in a wide range of empirical settings,
nd we discuss them in detail.
Alternative sampling assumptions: A third strand of the DiD literature discusses alternatives to the classical

‘sampling-based’’ approach to inference with a large number of clusters. One topic of interest is inference procedures
n settings with a small number of treated clusters. Standard cluster-robust methods assume that there is a large number
f both treated and untreated clusters, and thus can perform poorly in this case. A variety of alternatives with better
roperties have been proposed for this case, including permutation and bootstrap procedures. These methods typically
ither model the dependence of errors across clusters, or alternatively place restrictions on the treatment assignment
echanism. We briefly highlight these approaches and discuss the different assumptions needed for them to perform
ell.
Another direction that has been explored relates to conducting ‘‘design-based’’ inference for DiD. Canonical approaches

o inference suppose that we have access to a sample of independently-drawn clusters from an infinite super-population.
owever, it is not always clear how to define the super-population, or to determine the appropriate level of clustering.
esign-based approaches address these issues by instead treating the source of randomness in the data as coming from
he stochastic assignment of treatment, rather than sampling from an infinite super-population. Although design-based
pproaches have typically been employed in the case of randomized experiments, recent work has extended this to
he case of ‘‘quasi-experimental’’ strategies like DiD. Luckily, the message of this literature is positive, in the sense that
ethods that are valid from the canonical sampling-based view are typically also valid from the design-based view as
ell. The design-based approach also yields the clear recommendation that it is appropriate to cluster standard errors at
he level at which treatment is independently assigned.
2219
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Table 1
A checklist for DiD practitioners.

- Is everyone treated at the same time?

If yes, and panel is balanced, estimation with TWFE specifications such as (5) or (7) yield easily interpretable estimates.

If no, consider using a ‘‘heterogeneity-robust’’ estimator for staggered treatment timing as described in Section 3. The
appropriate estimator will depend on whether treatment turns on/off and which parallel trends assumption you’re willing
to impose. Use TWFE only if you’re willing to restrict treatment effect heterogeneity.

- Are you sure about the validity of the parallel trends assumption?

If yes, explain why, including a justification for your choice of functional form. If the justification is (quasi-)random
treatment timing, consider using a more efficient estimator as discussed in Section 6.

If no, consider the following steps:

1. If parallel trends would be more plausible conditional on covariates, consider a method that conditions on covariates,
as described in Section 4.2.

2. Assess the plausibility of the parallel trends assumption by constructing an event-study plot. If there is a common
treatment date and you’re using an unconditional parallel trends assumption, plot the coefficients from a
specification like (16). If not, then see Section 4.3 for recommendations on event-plot construction.

3. Accompany the event-study plot with diagnostics of the power of the pre-test against relevant alternatives and/or
non-inferiority tests, as described in Section 4.4.1.

4. Report formal sensitivity analyses that describe the robustness of the conclusions to potential violations of parallel
trends, as described in Section 4.5.

- Do you have a large number of treated and untreated clusters sampled from a super-population?

If yes, then use cluster-robust methods at the cluster level. A good rule of thumb is to cluster at the level at which
treatment is independently assigned (e.g. at the state level when policy is determined at the state level); see Section 5.2.

If you have a small number of treated clusters, consider using one of the alternative inference methods described
in Section 5.1.

If you can’t imagine the super-population, consider a design-based justification for inference instead, as discussed
in Section 5.2.

Other topics. We conclude by briefly touching on some other areas of focus within the DiD literature, as well as highlight-
ing some areas for future research. Examples include using DiD to estimate distributional treatment effects; settings with
quasi-random treatment timing; spillover effects; estimating heterogeneous treatment effects; and connections between
DiD and other panel data methods.

Overall, the growing DiD econometrics literature emphasizes the importance of clarity and precision in a researcher’s
iscussion of his or her assumptions, comparison group and time frame selection, causal estimands, estimation methods,
nd robustness checks. When used in combination with context-specific information, these new methods can both
mprove the validity and interpretability of DiD results and more clearly delineate their limitations.

Given the vast literature on DiD, our goal is not to be comprehensive, but rather to give a clean presentation of some
f the most important directions the literature has gone. Wherever possible, we try to give clear practical guidance for
pplied researchers, concluding each section with practical recommendations for applied researchers. For reference, we
nclude Table 1, which contains a checklist for a practitioner implementing a DiD analysis, and Table 2, which lists R and
tata packages for implementing many of the methods described in this paper.

. The basic model

This section describes a simple two-period setting in which the econometrics of DiD are well-understood. Although
his ‘‘canonical’’ setting is arguably too simple for most applications, clearly articulating the assumptions in this setup
erves as a useful baseline for understanding recent innovations in the DiD literature.

.1. Treatment assignment and timing

Consider a model in which there are two time periods, t = 1, 2. Units indexed by i are drawn from one of two
opulations. Units from the treated population (Di = 1) receive a treatment of interest between period t = 1 and t = 2,

whereas units from the untreated (a.k.a. comparison or control) population (Di = 0) remain untreated in both time
periods. The econometrician observes an outcome Yi,t and treatment status Di for a panel of units, i = 1, . . . ,N and
t = 1, 2. For example Yi,t could be the fraction of people with insurance coverage in state i in year t , while Di could be an
indicator for whether the state expanded Medicaid in year 2. Although DiD methods also accommodate the case where
only repeated cross-sectional data is available, or where the panel is unbalanced, we focus on the simpler setup with
balanced panel data for ease of exposition.
2220
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Table 2
Statistical packages for recent DiD methods.
Heterogeneity Robust Estimators for Staggered Treatment Timing

Package Software Description
did, csdid R, Stata Implements Callaway and Sant’Anna (2021)
did2s R, Stata Implements Gardner (2021), Borusyak et al. (2021), Sun and Abraham (2021),

Callaway and Sant’Anna (2021), Roth and Sant’Anna (2021)
didimputation, did_imputation R, Stata Implements Borusyak et al. (2021)
DIDmultiplegt, did_multiplegt R, Stata Implements de Chaisemartin and D’Haultfoeuille (2020)
eventstudyinteract Stata Implements Sun and Abraham (2021)
flexpaneldid Stata Implements Dettmann (2020), based on Heckman et al. (1998)
fixest R Implements Sun and Abraham (2021)
stackedev Stata Implements stacking approach in Cengiz et al. (2019)
staggered R Implements Roth and Sant’Anna (2021), Callaway and Sant’Anna (2021),

and Sun and Abraham (2021)
xtevent Stata Implements Freyaldenhoven et al. (2019)

DiD with Covariates

Package Software Description
DRDID, drdid R, Stata Implements Sant’Anna and Zhao (2020)

Diagnostics for TWFE with Staggered Timing

Package Software Description
bacondecomp, ddtiming R, Stata Diagnostics from Goodman-Bacon (2021)
TwoWayFEWeights R, Stata Diagnostics from de Chaisemartin and D’Haultfoeuille (2020)

Diagnostic/ Sensitivity for Violations of Parallel Trends

Package Software Description
honestDiD R, Stata Implements Rambachan and Roth (2022b)
pretrends R Diagnostics from Roth (2022)

Note: This table lists R and Stata packages for recent DiD methods, and is based on Asjad Naqvi’s repository at https://asjadnaqvi.github.io/DiD/.
Several of the packages listed under ‘‘Heterogeneity Robust Estimators’’ also accommodate covariates.

2.2. Potential outcomes and target parameter

We adopt a potential outcomes framework for the observed outcome, as in, e.g., Rubin (1974) and Robins (1986). Let
i,t (0, 0) denote unit i’s potential outcome in period t if i remains untreated in both periods. Likewise, let Yi,t (0, 1) denote

unit i’s potential outcome in period t if i is untreated in the first period but exposed to treatment by the second period.
To simplify notation we will write Yi,t (0) = Yi,t (0, 0) and Yi,t (1) = Yi,t (0, 1), but it will be useful for our later discussion to
make clear that these potential outcomes in fact correspond with a path of treatments. As is usually the case, due to the
fundamental problem of causal inference (Holland, 1986), we only observe one of the two potential outcomes for each unit
i. That is, the observed outcome is given by Yi,t = DiYi,t (1)+ (1−Di)Yi,t (0). This potential outcomes framework implicitly
encodes the stable unit treatment value assumption (SUTVA) that unit i’s outcomes do not depend on the treatment status
of unit j ̸= i, which rules out spillover and general equilibrium effects.

The causal estimand of primary interest in the canonical DiD setup is the average treatment effect on the treated (ATT)
in period t = 2,

τ2 = E
[
Yi,2(1) − Yi,2(0) | Di = 1

]
.

It simply measures the average causal effect on treated units in the period that they are treated (t = 2). In our motivating
example, τ2 would be the average effect of Medicaid expansion on insurance coverage in period 2 for the states who
expanded Medicaid.

2.3. The parallel trends assumption and identification

The challenge in identifying τ2 is that the untreated potential outcomes, Yi,2(0), are never observed for the treated
group (Di = 1). Difference-in-differences methods overcome this identification challenge via assumptions that allow us
to impute the mean counterfactual untreated outcomes for the treated group by using (a) the change in outcomes for the
untreated group and (b) the baseline outcomes for the treated group. The key assumption for identifying τ2 is the parallel
trends assumption, which intuitively states that the average outcome for the treated and untreated populations would
have evolved in parallel if treatment had not occurred.

Assumption 1 (Parallel Trends).

E
[
Y (0) − Y (0) | D = 1

]
= E

[
Y (0) − Y (0) | D = 0

]
. (1)
i,2 i,1 i i,2 i,1 i

2221
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In our motivating example, the parallel trends assumption says that the average change in insurance coverage for
xpansion and non-expansion states would have been the same in the absence of the Medicaid expansion.
The parallel trends assumption can be rationalized by imposing a particular generative model for the untreated

otential outcomes. If Yi,t (0) = αi+φt +ϵi,t , where ϵi,t is mean-independent of Di, then Assumption 1 holds. Note that this
model allows treatment to be assigned non-randomly based on characteristics that affect the level of the outcome (αi),
but requires the treatment assignment to be mean-independent of variables that affect the trend in the outcome (ϵi,t ). In
other words, parallel trends allows for the presence of selection bias, but the bias from selecting into treatment must be
the same in period t = 1 as it is in period t = 2.

Another important and often hidden assumption required for identification of τ2 is the no-anticipation assumption,
which states that the treatment has no causal effect prior to its implementation. This is important for identification of
τ2, since otherwise the changes in the outcome for the treated group between period 1 and 2 could reflect not just the
causal effect in period t = 2 but also the anticipatory effect in period t = 1 (Abbring and van den Berg, 2003; Malani and
Reif, 2015).

Assumption 2 (No Anticipatory Effects). Yi,1(0) = Yi,1(1) for all i with Di = 1.

In our ongoing example, this implies that in years prior to Medicaid expansion, insurance coverage in states that
expanded Medicaid was not affected by the upcoming Medicaid expansion.

Under the parallel trends and no-anticipation assumptions, the ATT in period 2 (τ2) is identified. To see why this is
the case, observe that by re-arranging terms in the parallel trends assumption (see Eq. (1)), we obtain

E
[
Yi,2(0) | Di = 1

]
= E

[
Yi,1(0) | Di = 1

]
+ E

[
Yi,2(0) − Yi,1(0) | Di = 0

]
.

Further, by the no anticipation assumption, E
[
Yi,1(0) | Di = 1

]
= E

[
Yi,1(1) | Di = 1

]
.1 It follows that

E
[
Yi,2(0) | Di = 1

]
= E

[
Yi,1(1) | Di = 1

]
+ E

[
Yi,2(0) − Yi,1(0) | Di = 0

]
= E

[
Yi,1 | Di = 1

]
+ E

[
Yi,2 − Yi,1 | Di = 0

]
,

where the second equality uses the fact that we observe Y (1) for treated units and Y (0) for untreated units. The previous
display shows that we can infer the counterfactual average outcome for the treated group by taking its observed pre-
treatment mean and adding the change in mean for the untreated group. Since we observe Y (1) for the treated group
directly, it follows that τ2 = E

[
Yi,2(1) − Yi,2(0) | Di = 1

]
is identified as

τ2 = E
[
Yi,2 − Yi,1 | Di = 1

]  
Change for Di = 1

−E
[
Yi,2 − Yi,1 | Di = 0

]  
Change for Di = 0

, (2)

i.e. the ‘‘difference-in-differences’’ of population means!

2.4. Estimation and inference

Eq. (2) gives an expression for τ2 in terms of a ‘‘difference-in-differences’’ of population expectations. Therefore, a
natural way to estimate τ2 is to replace expectations with their sample analogs,

τ̂2 = (Y t=2,D=1 − Y t=1,D=1) − (Y t=2,D=0 − Y t=1,D=0),

here Y t=t ′,D=d is the sample mean of Y for treatment group d in period t ′.
Although these sample means could be computed ‘‘by hand’’, an analogous way of computing τ̂2, which facilitates the

omputation of standard errors, is to use the two-way fixed effects (TWFE) regression specification

Yi,t = αi + φt + (1[t = 2] · Di)β + ϵi,t , (3)

which regresses the outcome Yi,t on an individual fixed effect, a time fixed effect, and an interaction of a post-treatment
indicator with treatment status.2 In this canonical DiD setup, it is straightforward to show that the ordinary least squares
(OLS) coefficient β̂ is equivalent to τ̂2.

OLS estimates of β̂ from (3) provide consistent estimates and asymptotically valid confidence intervals of τ2 when
Assumptions 1 and 2 are combined with the assumption of independent sampling.

1 For the identification argument, it suffices to impose only that E
[
Yi,1(0) | Di = 1

]
= E

[
Yi,1(1) | Di = 1

]
directly, i.e. that there is no anticipation

n average, which is slightly weaker than Assumption 2. We focus on Assumption 2 for ease of exposition (especially when we extend it to the
taggered case below).
2 With a balanced panel, the OLS coefficient on β is also numerically identical to the coefficient from a regression that replaces the fixed effects

with a constant, a treatment indicator, a second-period indicator, and the treatment × second-period interaction,

Yi,t = α + Diθ + 1[t = 2]ζ + (1[t = 2] · Di)β + εi,t .

The latter regression generalizes to repeated cross-sectional data.
2222
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Assumption 3. Let Wi = (Yi,2, Yi,1,Di)′ denote the vector of outcomes and treatment status for unit i. We observe a
ample of N i.i.d. draws Wi ∼ F for some distribution F satisfying parallel trends.

Under Assumptions 1–3 and mild regularity conditions,
√
n(̂β − τ2) →d N

(
0, σ 2) ,

n the asymptotic as N → ∞ and T is fixed. The variance σ 2 is consistently estimable using standard clustering methods
that allow for arbitrary serial correlation at the unit level (Liang and Zeger, 1986; Arellano, 1987; Wooldridge, 2003;
Bertrand et al., 2004). The same logic easily extends to cases where the observations are individual units who are
members of independently-sampled clusters (e.g. states), and the standard errors are clustered at the appropriate level,
provided that the number of treated and untreated clusters both grow large. Constructing consistent point estimates and
asymptotically valid confidence intervals is thus straightforward via OLS.

Having introduced all of the components of the ‘‘canonical’’ DiD model, we now discuss the ways that different strands
of the recent DiD have relaxed each of these components.

3. Relaxing assumptions on treatment assignment and timing

Several recent papers have focused primarily on relaxing the baseline assumptions about treatment assignment and
timing discussed in Section 2. A topic of considerable attention has been settings where there are more than two periods,
and units adopt a treatment of interest at different points in time. For example, in practice different states expanded
Medicaid in different years. We provide an overview of some of the key developments in the literature, and refer the
reader to the review by de Chaisemartin and D’Haultfoeuille (2022b) for additional details.

3.1. Generalized model with staggered treatment adoption

Several recent papers have focused on relaxing the timing assumptions discussed in Section 2, while preserving the re-
maining structure of the stylized model (i.e., parallel trends, no anticipation, and independent sampling). Since most of the
recent literature considers a setup in which the treatment is binary and being treated is an absorbing state, we start with
that framework; in Section 3.4, we discuss extensions to the case where treatment can turn on and off or is non-binary.
We introduce the following assumptions and notation, which captures the primary setting studied in this literature.

Treatment timing. There are T periods indexed by t = 1, . . . , T , and units can receive a binary treatment of interest in any
of the periods t > 1. Treatment is an absorbing state, so that once a unit is treated they remain treated for the remainder
of the panel. We denote by Di,t an indicator for whether unit i receives treatment in period t , and Gi = min{t : Di,t = 1}
he earliest period at which unit i has received treatment. If i is never treated during the sample, then Gi = ∞. Treatment
s an absorbing state, so that Di,t = 1 for all t ≥ Gi. Thus, for example, a state that first expanded Medicaid in 2014 would
ave Gi = 2014, a state that first expanded Medicaid in 2015 would have Gi = 2015, and a state that has not expanded
edicaid by time t = T would have Gi = ∞.

otential outcomes. We extend the potential outcomes framework introduced above to the multi-period setting. Let 0s
nd 1s denote s-dimensional vectors of zeros and ones, respectively. We denote unit i’s potential outcome in period t
f they were first treated at time g by Yi,t (0g−1, 1T−g+1), and denote by Yi,t (0T ) their ‘‘never-treated’’ potential outcome.
This notation again makes explicit that potential outcomes can depend on the entire path of treatment assignments. Since
we have assumed that treatment ‘‘stays on’’ once it is turned on, the entire path of potential outcomes is summarized
by the first treatment date (g), and so to simplify notation we can index potential outcomes by treatment starting
time: Yi,t (g) = Yi,t (0g−1, 1T−g+1) and Yi,t (∞) = Yi,t (0T ).3 Thus, for example, Yi,2016(2014) would represent the insurance
coverage in state i in 2016 if they had first expanded Medicaid in 2014.

Parallel trends. There are several ways to extend the canonical parallel trends assumption to the staggered setting. The
simplest extension of the parallel trends assumption to the staggered case requires that the two-group, two-period version
of parallel trends holds for all combinations of periods and all combinations of ‘‘groups’’ treated at different times.

Assumption 4 (Parallel Trends for Staggered Setting). For all t ̸= t ′ and g ̸= g ′,

E
[
Yi,t (∞) − Yi,t ′ (∞) | Gi = g

]
= E

[
Yi,t (∞) − Yi,t ′ (∞) | Gi = g ′

]
. (4)

This assumption imposes that in the counterfactual where treatment had not occurred, the average outcomes for all
adoption groups would have evolved in parallel. Thus, for example, Assumption 4 would imply that — if there had been
no Medicaid expansions — insurance rates would have evolved in parallel on average for all groups of states that adopted
Medicaid expansion in different years, including those who never expanded Medicaid.

Several variants of Assumption 4 have been considered in the literature. For example, Callaway and Sant’Anna (2021)
consider a relaxation of Assumption 4 that imposes (4) only for years after some units are treated:

3 If one were to map this staggered potential outcome notation to the one used in canonical DiD setups, we would write Yi,t (2) and Yi,t (∞)
nstead of Yi,t (1) and Yi,t (0) as defined in Section 2.2, respectively. We use the Yi,t (0), Yi,t (1) notation in Section 2.2 because it is likely more familiar
o the reader, and widely used in the literature on the canonical model.
2223
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Assumption 4.a (Parallel Trends for Staggered Setting — Post-Treatment Only).

E
[
Yi,t (∞) − Yi,t ′ (∞) | Gi = g

]
= E

[
Yi,t (∞) − Yi,t ′ (∞) | Gi = g ′

]
.

for all t, t ′ ≥ gmin − 1, where gmin = min G is the first period where a unit is treated.

This would require, for example, that groups of states that expanded Medicaid at different times have parallel trends
in Yi,t (∞) after Medicaid expansion began, but does not necessarily impose parallel trends in the pre-treatment period.
Likewise, several papers, including Callaway and Sant’Anna (2021) and Sun and Abraham (2021), consider versions that
impose (4) only for groups that are eventually treated, and not for the never-treated group (i.e. excluding g = ∞). This
would impose, for example, parallel trends among states that eventually expanded Medicaid, but not between eventually-
adopting and never-adopting states. There are tradeoffs between the different forms of Assumption 4: imposing parallel
trends for all groups and all periods is a stronger assumption and thus may be less plausible; on the other hand, it may
allow one to obtain more precise estimates.4 We return to these tradeoffs in our discussion of different estimators for the
staggered case below.5

No anticipation. The no-anticipation assumption from the canonical model also extends in a straightforward way to the
staggered setting. Intuitively, it imposes that if a unit is untreated in period t , their outcome does not depend on what
time period they will be treated in the future — that is, units do not act on the knowledge of their future treatment date
before treatment starts.

Assumption 5 (Staggered No Anticipation Assumption). Yi,t (g) = Yi,t (∞) for all i and t < g .

3.2. Interpreting the estimand of two-way fixed effects models

Recall that in the simple two-period model, the estimand (population coefficient) of the two-way fixed effects
specification (3) corresponds with the ATT under the parallel trends and no anticipation assumptions. A substantial focus
of the recent literature has been whether the estimand of commonly-used generalizations of this TWFE model to the
multi-period, staggered timing case have a similar, intuitive causal interpretation. In short, the literature has shown that
the estimand of TWFE specifications in the staggered setting often does not correspond with an intuitive causal parameter
even under the natural extensions of the parallel trends and no-anticipation assumptions described above.

Static TWFE. We begin with a discussion of the ‘‘static’’ TWFE specification, which regresses the outcome on individual
and period fixed effects and an indicator for whether the unit i is treated in period t ,

Yi,t = αi + φt + Di,tβpost + ϵi,t . (5)

The static specification yields a sensible estimand when there is no heterogeneity in treatment effects across either time
or units. Formally, let τi,t (g) = Yi,t (g)− Yi,t (∞). Suppose that for all units i, τi,t (g) = τ whenever t ≥ g . This imposes that
(a) all units have the same treatment effect, and (b) the treatment has the same effect regardless of how long it has been
since treatment started. In our ongoing example, this would impose that the effect of Medicaid expansion on insurance
coverage is the same both across states and across time. Then, under a suitable generalization of the parallel trends
assumption (e.g. Assumption 4) and no anticipation assumption (Assumption 5), the population regression coefficient
βpost from (5) is equal to τ .

Issues arise with the static specification, however, when there is heterogeneity of treatment effects over time, as shown
in Borusyak and Jaravel (2018), de Chaisemartin and D’Haultfoeuille (2020), and Goodman-Bacon (2021), among others.
Suppose first that there is heterogeneity in time since treatment only. That is, τi,t (g) =

∑
s≥0 τs1[t − g = s], so all units

have treatment effect τs in the sth period after they receive treatment. In this case, βpost corresponds with a potentially
non-convex weighted average of the parameters τs, i.e. βpost =

∑
s ωsτs, where the weights ωs sum to 1 but may be

negative. The possibility of negative weights is concerning because, for instance, all of the τs could be positive and yet the
coefficient βpost may be negative! In particular, longer-run treatment effects will often receive negative weights. Thus, for
example, it is possible that the effect of Medicaid expansion on insurance coverage is positive and grows over time since
the expansion, and yet βpost in (5) will be negative. More generally, if treatment effects vary across both time and units,
then τi,t (g) may get negative weight in the TWFE estimand for some combinations of t and g .6

4 If all units are eventually treated, then imposing parallel trends only among treated units also limits the number of periods for which the ATT
is identified.
5 In this paper, we specify the parallel trends assumption based on groups defined by the treatment starting date. It is also possible to adopt

alternative definitions of parallel trends using groups that are more disaggregated than our G. For instance, one could impose parallel trends for all
airs of states, rather than for groups of states with the same treatment start date. Using a more disaggregated definition of a group strengthens
he parallel trends assumption, but could potentially enable more efficient estimators. We focus on the group-level version of parallel trends for
implicity.
6 We focus in this section on decompositions of the static TWFE model in a standard, sampling-based framework. Athey and Imbens (2022) study

he static specification in a finite-sample randomization-based framework.
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Goodman-Bacon (2021) provides some helpful intuition to understand this phenomenon. He shows that β̂post can be
ritten as a convex weighted average of differences-in-differences comparisons between pairs of units and time periods

n which one unit changed its treatment status and the other did not. Counterintuitively, however, this decomposition
ncludes difference-in-differences that use as a ‘‘control’’ group units who were treated in earlier periods. For example,
n 2016, a state that first expanded Medicaid in 2014 might be used as the ‘‘control group’’ for a state that first adopted
edicaid in 2016. Hence, an early-treated unit can get negative weights if it appears as a ‘‘control’’ for many later-treated
nits. This decomposition further highlights that βpost may not be a sensible estimand when treatment effects differ across
ither units or time, because of its inclusion of these ‘‘forbidden comparisons’’.7
We now give some more mathematical intuition for why weighting issues arise in the static specification with

eterogeneity. From the Frisch–Waugh–Lovell theorem, the coefficient βpost from (5) is equivalent to the coefficient from a
nivariate regression of Yi,t on Di,t −D̂i,t , where D̂i,t is the predicted value from a regression of Di,t on the other right-hand

side variables in (5), Di,t = α̃i+φ̃t+ui,t . However, a well-known issue with OLS with binary outcomes is that its predictions
may fall outside the unit interval. If the predicted value D̂i,t is greater than 1, then Di,t − D̂i,t will be negative even when
a unit is treated, and thus that unit’s outcome will get negative weight in β̂post . To see this more formally, we can apply
the formula for univariate OLS coefficients to obtain that

β̂post =

∑
i,t (Di,t − D̂i,t )Yi,t∑
i,t (Di,t − D̂i,t )2

. (6)

The denominator is positive, and so the weight that β̂post places on Yi,t is proportional to Di,t − D̂i,t . Thus, if Di,t = 1
and Di,t − D̂i,t < 0, then β̂post will be decreasing in Yi,t even though unit i is treated at period t . But because Yi,t =

Yi,t (∞) + τi,t (g), it follows that τi,t (g) gets negative weight in β̂post .
These negative weights will tend to arise for early-treated units in periods late in the sample. To see why this is the

case, we note that some algebra shows that D̂i,t = Di + Dt − D, where Di = T−1∑
t Di,t is the time average of D for unit

i, Dt = N−1∑
i Di,t is the cross-sectional average of D for period t , and D = (NT )−1∑

i,t Di,t is the average of D across
both periods and units. It follows that if we have a unit that has been treated for almost all periods (Di ≈ 1) and a period
n which almost all units have been treated (Dt ≈ 1), then D̂i,t ≈ 2 − D, which will be strictly greater than 1 if there is
a non-substantial fraction of non-treated units in some period (D < 1). We thus see that β̂post will tend to put negative
weight on τi,t for early-adopters in late periods within the sample. This decomposition makes clear that the static OLS
coefficient β̂post is not aggregating natural comparisons of units, and thus will not produce a sensible estimand when there
is arbitrary heterogeneity. When treatment effects are homogeneous — i.e. τi,t (g) ≡ τ — the negative weights on τ for
ome observations cancel out the positive weights for other observations, and thus βpost recovers the causal effect under
suitable generalization of parallel trends.

ynamic TWFE. Next, we turn our attention to the ‘‘dynamic specification’’ that regresses the outcome on individual and
eriod fixed effects, as well as dummies for time relative to treatment

Yi,t = αi + φt +

∑
r ̸=0

1[Ri,t = r]βr + ϵi,t , (7)

here Ri,t = t − Gi + 1 is the time relative to treatment (e.g. Ri,t = 1 in the first treated period for unit i), and the
ummation runs over all possible values of Rit except for 0.
Unlike the static specification, the dynamic specification yields a sensible causal estimand when there is heterogeneity

nly in time since treatment. In particular, the results in Borusyak and Jaravel (2018) and Sun and Abraham (2021) imply
hat if τi,t (g) =

∑
s≥0 τs1[t − g = s], so all units have treatment effect τs in the sth period after treatment, then βs = τs

nder suitable generalizations of the parallel trends and no anticipation assumptions, such as Assumptions 4 and 5.8
hus, specification (7) will yield sensible estimates for the dynamic effect of Medicaid expansion if the effect r years
fter Medicaid expansion is the same (on average) regardless of what year the state initially expanded coverage (for each
= 1, 2, . . .).
Sun and Abraham (2021) show, however, that when there are heterogeneous dynamic treatment effects across

doption cohorts, the coefficients from specification (7) become difficult to interpret. Thus, for example, problems may
rise if the average treatment effect in the first year after adoption is different for states that adopted Medicaid in 2014
s it is for states that adopted in 2015.9 There are two issues. First, as with the ‘‘static’’ regression specification above, the
oefficient βr may put negative weight on the treatment effect r periods after treatment for some units. Thus, for example,
he treatment effect for some states two years after Medicaid expansion may enter β2 negatively. Second, the coefficient

7 To the best of our knowledge, the phrase ‘‘forbidden comparisons’’ was introduced in Borusyak and Jaravel (2018).
8 We note that the homogeneity assumption can be relaxed so that all adoption cohorts have the same expected treatment effect,

i.e. E
[
τi,g+s(g) | G = g

]
≡ τs for all s and g . Additionally, these results assume that all possible relative time indicators are included. As discussed

in Sun and Abraham (2021), Baker et al. (2022), and Schmidheiny and Siegloch (2020), among others, problems may arise if one ‘‘bins’’ endpoints
(e.g. includes a dummy for 5+ years since treatment).
9 That is, if the effect in 2015 for the 2014 adoption cohort is different from the effect in 2016 for the 2015 adoption cohort.
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βr can put non-zero weight on treatment effects at lags r ′
̸= r , so there is cross-lag ‘‘contamination’’. Thus, for example,

he coefficient β2 may be influenced by the treatment effect for some states three periods after Medicaid expansion.
Like the static specification, the dynamic specification thus fails to yield sensible estimates of dynamic causal effects

nder heterogeneity across cohorts. The derivation of this result is mathematically more complex, and so we do not pursue
t here. The intuition is that, as in the static case, the dynamic OLS specification does not aggregate natural comparisons of
nits and includes ‘‘forbidden comparisons’’ between sets of units both of which have already been treated. An important
mplication of the results derived by Sun and Abraham (2021) is that if treatment effects are heterogeneous, the ‘‘treatment
ead’’ coefficients from (7) are not guaranteed to be zero even if parallel trends is satisfied in all periods (and vice versa),
nd thus evaluation of pre-trends based on these coefficients can be very misleading.

.2.1. Diagnostic approaches
Several recent papers introduce diagnostic approaches for understanding the extent of the aggregation issues under

taggered treatment timing, with a focus on the static specification (5). de Chaisemartin and D’Haultfoeuille (2020)
ropose reporting the number/fraction of group-time ATTs that receive negative weights, as well as the degree of
eterogeneity in treatment effects that would be necessary for the estimated treatment effect to have the ‘‘wrong
ign’’. Goodman-Bacon (2021) proposes reporting the weights that β̂post places on the different 2-group, 2-period
ifference-in-differences, which allows one to evaluate how much weight is being placed on ‘‘forbidden’’ comparisons of
lready-treated units and how removing the comparisons would change the estimate. Jakiela (2021) proposes evaluating
oth whether TWFE places negative weights on some treated units and whether the data rejects the constant treatment
ffects assumption.

.3. New estimators for staggered timing

Several recent papers have proposed alternative estimators that more sensibly aggregate heterogeneous treatment
ffects in settings with staggered treatment timing. The derivation of each of these estimators follows a similar logic to
he derivation of the DiD estimator in the motivating example in Section 2. We begin by specifying a causal parameter of
nterest (analogous to the ATT τ2). With the help of the (generalized) parallel trends and no-anticipation assumptions, we
an infer the counterfactual outcomes for treated units using trends in outcomes for an appropriately chosen ‘‘clean’’
ontrol group of untreated units. This allows us to express the target parameter in terms of identified expectations,
nalogous to Eq. (2). Finally, we replace population expectations with sample averages to form an estimator of the target
arameter.

he Callaway and Sant’Anna estimator. We first describe in detail the approach taken by Callaway and Sant’Anna (2021),
nd then discuss the connections to other approaches. They consider as a building block the group-time average treatment
ffect on the treated, ATT (g, t) = E

[
Yi,t (g) − Yi,t (∞) | Gi = g

]
, which gives the average treatment effect at time t for the

ohort first treated in time g . For example ATT (2014, 2016) would be the average treatment effect in 2016 for states who
irst expanded Medicaid in 2014. They then consider identification and estimation under generalizations of the parallel
rends assumption to the staggered setting.10 Intuitively, under the staggered versions of the parallel trends and no
nticipation assumptions, we can identify ATT (g, t) by comparing the expected change in outcome for cohort g between
eriods g − 1 and t to that for a control group not-yet treated at period t . Formally, under Assumption 4.a,

ATT (g, t) = E
[
Yi,t − Yi,g−1 | Gi = g

]
− E

[
Yi,t − Yi,g−1 | Gi = g ′

]
, for any g ′ > t

which can be viewed as the multi-period analog of the identification result in Eq. (2). Since this holds for any comparison
group g ′ > t , it also holds if we average over some set of comparisons Gcomp such that g ′ > t for all g ′

∈ Gcomp,

ATT (g, t) = E
[
Yi,t − Yi,g−1 | Gi = g

]
− E

[
Yi,t − Yi,g−1 | Gi ∈ Gcomp

]
.

We can then estimate ATT (g, t) by replacing expectations with their sample analogs,

ÂTT (g, t) =
1
Ng

∑
i :Gi=g

[Yi,t − Yi,g−1] −
1

NGcomp

∑
i :Gi∈Gcomp

[Yi,t − Yi,g−1]. (8)

Specifically, Callaway and Sant’Anna (2021) consider two options for Gcomp. The first uses only never-treated units
(Gcomp = {∞}) and the second uses all not-yet-treated units (Gcomp = {g ′

: g ′ > t}).11 When there are a relatively
small number of periods and treatment cohorts, reporting ÂTT (g, t) for all relevant (g, t) may be reasonable.

When there are many treated periods and/or cohorts, however, reporting all the ÂTT (g, t) may be cumbersome, and
each one may be imprecisely estimated. Thankfully, the method described above extends easily to estimating any weighted

10 Callaway and Sant’Anna (2021) also consider generalizations where the parallel trends assumption holds only conditional on covariates. We
discuss this extension in Section 4.2 below, but focus for now on the case without covariates.
11 We note that if the never-treated units are not included in the comparison group (i.e. ∞ ̸∈ Gcomp), then one can rely on a weaker version of
Assumption 4.a that excludes the never-treated group.
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average of the ATT (g, t). For instance, we may be interested in an ‘‘event-study’’ parameter that gives the (weighted)
average of the treatment effect l periods after adoption across different adoption cohorts,

ATTw
l =

∑
g

wgATT (g, g + l). (9)

The weights wg could be chosen to weight different cohorts equally, or in terms of their relative frequencies in the treated
population. It is straightforward to form estimates for ATTw

l by averaging the estimates ÂTT (g, t) discussed above. We
refer the reader to Callaway and Sant’Anna (2021) for a discussion of a variety of other weighted averages that may be
economically relevant. Inference is straightforward using either the delta method or a bootstrap, as described in Callaway
and Sant’Anna (2021).

This alternative approach to estimation has two primary advantages over standard static or dynamic TWFE regressions.
The first is that it provides sensible estimands even under arbitrary heterogeneity of treatment effects. By sensible we
mean both that the approach avoids negative weighting, but also that the weighting of effects across cohorts is specified
by the researcher (e.g. proportional to cohort size) rather than determined by OLS (i.e. proportional to the variance of the
treatment indicator). The second advantage is that it makes transparent exactly which units are being used as a control
group to infer the unobserved potential outcomes. This contrasts with standard TWFE models, which we have seen make
unintuitive comparisons under staggered timing.

Imputation estimators. Borusyak et al. (2021) introduce a related approach which they refer to as an imputation estimator
(see, also, Gardner, 2021, Liu et al., 2022 and Wooldridge, 2021 for similar proposals). Specifically, they fit a TWFE
regression, Yi,t (∞) = αi +λt + ϵi,t , using observations only for units and time periods that are not-yet-treated. They then
infer the never-treated potential outcome for each treated unit using the predicted value from this regression, Ŷi,t (∞).
This provides an estimate of the treatment effect for each treated unit, Yi,t − Ŷi,t (∞), and these individual-level estimates
can be aggregated to form estimates of summary parameters like the ATT (g, t) described above. These approaches yield
valid estimates when parallel trends holds for all groups and time periods and there is no anticipation (Assumptions 4
and 5).

Comparison of CS and BJS approaches. How does the approach proposed by Callaway and Sant’Anna (2021, CS) compare
to that proposed by Borusyak et al. (2021, BJS)? For simplicity, it is instructive to consider a simple non-staggered setting
where there are three periods (t = 1, 2, 3) and units are either treated in period 3 or never-treated (G = {3, ∞}). In this
case, the CS estimator for the treated group in period 3 (i.e. ATT (3, 3)) is simply a DiD comparing the treated/untreated
units between periods 2 and 3,

ÂTT (3, 3) = (Ȳ3,3 − Ȳ3,∞)  
Diff at t = 3

− (Ȳ2,3 − Ȳ2,∞)  
Diff at t = 2

,

where Ȳt,g is the average outcome in period t for units with Gi = g . By contrast, the BJS estimator runs a similar DiD,
except instead of using period 2 as the baseline, the BJS estimator uses the average outcome prior to treatment (across
periods 1 and 2),

ÂTT BJS(3, 3) = (Ȳ3,3 − Ȳ3,∞)  
Diff at t = 3

− (Ȳpre,3 − Ȳpre,∞)  
Avg Diff in Pre-Periods

,

where Ȳpre,g =
1
2 (Ȳ1,g + Ȳ2,g ) is the average outcome for cohort g across the two pre-treatment periods. Thus, we see that

the key difference between the CS and BJS estimators is that CS makes all comparisons relative to the last pre-treatment
period, whereas BJS makes comparisons relative to the average of the pre-treatment periods. This primary difference in
how the two approaches use pre-treatment periods extends beyond this simple case to settings with staggered timing,
although the math becomes substantially more complicated in the staggered case (and thus we do not pursue it).

What are the pros and cons of using the last pre-treatment period versus the average of the pre-treatment periods?
In general, there will be tradeoffs between efficiency and the strength of the identifying assumption. On the one hand,
averaging over multiple pre-treatment periods can increase precision. Indeed, BJS prove that when Assumption 4 holds,
their estimator is efficient under homoskedasticity and serially uncorrelated errors; see also Wooldridge (2021). Although
these ideal conditions are unlikely to be satisfied exactly, it does suggest that their estimator will tend to be more efficient
than CS when the outcome is not too heteroskedastic or serially correlated.12 On the other hand, the two approaches
require different identifying assumptions: in the simple example above, CS only relies on parallel trends between periods
2 and 3, whereas BJS relies on parallel trends for all three periods.13 More generally, the BJS approach imposes parallel
rends for all groups and time periods (Assumption 4), whereas the CS approach only relies on post-treatment parallel

12 By contrast, note that if Yi,t (0) follows a random walk, then Yi,3(0) is independent of Yi,1(0) conditional on Yi,2(0), and thus it is efficient to
ignore the earlier pre-treatment periods as CS does.
13 Or more precisely, between the average outcome in periods 1 and 2, and period 3. See also Marcus and Sant’Anna (2021) for a discussion about
different parallel trends assumptions.
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trends (Assumption 4.a). Relying on parallel trends over a longer time horizon may lead to larger biases if the parallel
trends assumption holds only approximately: for example, if the average untreated potential outcome is increasing faster
among treated units than untreated units over time, then the violation of parallel trends is larger when we compare
periods farther apart, and thus the BJS estimator using periods 1 and 2 as the comparison will have larger bias than
the CS estimator using only period 2; see Roth (2018) and de Chaisemartin and D’Haultfoeuille (2022b) for additional
discussion. Thus, the BJS estimator may be preferable in settings where the outcome is not too serially correlated and the
researcher is confident in parallel trends across all periods; whereas the CS estimator may be preferred in settings where
serial correlation is high or the researcher is concerned about the validity of parallel trends over longer time horizons.14

ther related approaches. Several other recent papers propose similar estimation strategies to those described above
although with some subtle differences in how they construct the control group and the weights they place on

ifferent cohorts/time periods. de Chaisemartin and D’Haultfoeuille (2020) propose an estimator that can be applied when
reatment turns on and off (see Section 3.4 below), but in the context of the staggered setting here corresponds with the
allaway and Sant’Anna estimator for ATTw

0 and a particular choice of weights. Sun and Abraham (2021) propose an
estimator that takes the form (8) but uses either the never-treated units (if they exist) or the last-to-be-treated units as
the comparison (Gcomp = {maxi Gi}), rather than the not-yet-treated. Marcus and Sant’Anna (2021) propose a recursive
estimator that more efficiently exploits the identifying assumptions in Callaway and Sant’Anna (2021). See, also, Imai
and Kim (2021) and Strezhnev (2018) for closely related ideas. Another related approach is to run a stacked regression
where each treated unit is matched to ‘clean’ (i.e. not-yet-treated) controls and there are separate fixed effects for each
set of treated units and its control, as in Cengiz et al. (2019) among others. Gardner (2021) shows that this approach
estimates a convex weighted average of the ATT (g, t) under parallel trends and no anticipation, although the weights are
etermined by the number of treated units and variance of treatment within each stacked event, rather than by economic
onsiderations.

.4. Further extensions to treatment timing/assignment

Our discussion so far has focused on the case where there is a binary treatment that is adopted at a particular
ate and remains on afterwards. Several recent papers have studied settings with more complicated forms of treatment
ssignment. We briefly highlight a few of the recent contributions, and refer the reader to the review in de Chaisemartin
nd D’Haultfoeuille (2022b) for more details.
de Chaisemartin and D’Haultfoeuille (2020) and Imai and Kim (2021) consider settings where units are treated at

ifferent times, but do not necessarily require that treatment is an absorbing state. Their estimators intuitively compare
hanges in outcomes for units whose treatment status changed to other units whose treatment status remained constant
ver the same periods. This approach yields an interpretable causal effect under generalizations of the parallel trends
ssumption and an additional ‘‘no carryover’’ assumption that imposes that the potential outcomes depend only on current
reatment status and not on the full treatment history. We note that, as described in Bojinov et al. (2021), the no carryover
ssumption may be restrictive in many settings — for example, if the treatment is a raise in the minimum wage and the
utcome is employment, then the no carryover assumption requires that employment in period t depends only on whether
he minimum wage was raised in period t and not on the history of minimum wage changes. Recent work has begun
o relax the no carryover assumption: one example is de Chaisemartin and D’Haultfoeuille (2022a), who allow potential
utcomes to depend on the full path of treatments, and instead impose a stronger parallel trends assumption that requires
arallel trends in untreated potential outcomes regardless of a unit’s path of treatment.
Other work has considered DiD settings with non-binary treatments. de Chaisemartin and D’Haultfoeuille (2018) study

‘fuzzy’’ DiD settings in which all groups are treated in both time periods, but the proportion of units exposed to treatment
ncreases in one group but not in the other. Finally, de Chaisemartin and D’Haultfoeuille (2021) and Callaway et al. (2021)
tudy settings with multi-valued or continuous treatments.

.5. Recommendations

The results discussed above show that while conventional TWFE specifications make sensible comparisons of treated
nd untreated units in the canonical two-period DiD setting, in the staggered case they typically make ‘‘forbidden
omparisons’’ between already-treated units. As a result, treatment effects for some units and time periods receive
egative weights in the TWFE estimand. In extreme cases, this can lead the TWFE estimand to have the ‘‘wrong sign’’
e.g., the estimand may be negative even if all the treatment effects are positive. Even if the weights are not so extreme

s to create sign reversals, it may nevertheless be difficult to interpret which comparisons the TWFE estimator is making,
s the ‘‘control group’’ is not transparent, and the weights it chooses are unlikely to be those most relevant for economic
olicy.
In our view, if the researcher is not willing to impose assumptions on treatment effect heterogeneity, the most direct

emedy for this problem is to use the methods discussed in Section 3.3 that explicitly specify the comparisons to be

14 We also note that the BJS and CS estimators incorporate covariates differently. BJS adjust linearly for covariates, where CS consider more general
adjustments as described in Section 4.2.
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made between treatment and control groups, as well as the desired weights in the target parameter. These methods
allow one to estimate a well-defined causal parameter (under parallel trends), with transparent weights and transparent
comparison groups (e.g. not-yet-treated or never-treated units). This approach, in our view, provides a more complete
solution to the problem than the diagnostic approaches discussed in Section 3.2.1. Although it is certainly valuable to
have a sense of the extent to which conventional TWFE specifications are making bad comparisons, eliminating these
undesirable comparisons seems to us a better approach than diagnosing the extent of the issue. Using a TWFE specification
may be justified for efficiency reasons if one is confident that treatment effects are homogeneous, but researchers are often
unwilling to restrict treatment effect heterogeneity.

The question of which of the many heterogeneity-robust DiD methods discussed in Section 3.3 to use is trickier. As
escribed above, the estimators differ in who they use as the comparison group (e.g. not-yet-treated versus never-treated)
s well as the pre-treatment time periods used in the comparisons (e.g. the whole pre-treatment period versus the final
ntreated period). This leads to some tradeoffs between efficiency and the strength of the parallel trends assumption
eeded for identification, as highlighted in the comparison of BJS and CS above. The best estimator to use will therefore
epend on the context — particularly, on which group is the most sensible comparison, and how confident the researcher
s in parallel trends for all periods. Nevertheless, it is our practical experience that the various heterogeneity-robust
iD estimators typically (although not always) produce similar answers. The first-order consideration is therefore to
se an approach that makes clear what the target parameter is and which groups are being compared for identification.
hankfully, there are now statistical packages that make implementing (and comparing) the results from these estimators
traightforward in practice (see Table 2).
We acknowledge that these new methods may initially appear complicated to researchers accustomed to analyzing

eemingly simple regression specifications such as (5) or (7). However, while traditional TWFE regressions are easy to
pecify, as discussed above they are actually quite difficult to interpret, since they make complicated and unintuitive
omparisons across groups. By contrast, the methods that we recommend have a simple interpretation using a coherent
omparison group. And while more complex to express in regression format, they can be viewed as simple aggregations
f comparisons of group means. We suspect that once researchers gain experience using the newer heterogeneity-robust
iD methods, they will not seem so scary after all!

. Relaxing or allowing the parallel trends assumption to be violated

A second strand of the literature has focused on the possibility that the canonical parallel trends assumption may
ot hold exactly. Approaches to this problem include relaxing the parallel trends assumption to hold only conditional on
ovariates, testing for pre-treatment violations of the parallel trends assumption, and various tools for robust inference
nd sensitivity analysis that explore the possibility that parallel trends may be violated in certain ways.

.1. Why might parallel trends be violated?

The canonical parallel trends assumption requires that the mean outcome for the treated group would have evolved in
arallel with the mean outcome for the untreated group if the treatment had not occurred. As discussed in Section 2, this
llows for confounding factors that affect treatment status, but these must have a constant additive effect on the mean
utcome.
In practice, however, we will often be unsure of the validity of the parallel trends assumption for several reasons. First,

here will often be concern about time-varying confounding factors. For example, Democratic-leaning states were more
likely to adopt Medicaid expansions but also might be subject to different time-varying macro-economic shocks. A second
concern relates to the potential sensitivity of the parallel trends assumption to the chosen function form of the outcome.
If parallel trends holds using the outcome measured in levels, Yi,t (0), then it will generally not be the case that it holds for
the outcomes measured in logs log(Yi,t (0)) (or vice versa). Indeed, Roth and Sant’Anna (2023) show that parallel trends can
hold for all monotonic transformations of the outcome g(Yi,t (0)) essentially only if the population can be divided into two
groups, where the first group is as good as randomly assigned between treatment and control, and the second group has
the same potential outcome distribution in both periods. Although there are some cases where these conditions may be
(approximately) met — the most prominent of which is random assignment of treatment — they are likely not to hold in
most settings where DiD is used, and thus parallel trends will be sensitive to functional form. It will often not be obvious
that parallel trends should hold for the particular functional form chosen for our analysis — e.g. should we use insurance
rates, or log insurance rates? — and thus we may be skeptical of its validity.

4.2. Parallel trends conditional on covariates

One way to increase the credibility of the parallel trends assumption is to require that it holds only conditional on
covariates. Indeed, if we condition on a rich enough set of covariates Xi, we may be willing to believe that treatment is
nearly randomly assigned conditional on Xi. Imposing only parallel trends conditional on Xi gives us an extra degree of

robustness, since conditional random assignment can fail so long as the remaining unobservables have a time-invariant
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additive effect on the outcome. In the Medicaid expansion example, for instance, we may want to condition on a state’s
partisan lean.

In the canonical model discussed in Section 2, the parallel trends assumption can be naturally extended to incorporate
ovariates as follows.

ssumption 6 (Conditional Parallel Trends).

E
[
Yi,2(0) − Yi,1(0) | Di = 1, Xi

]
= E

[
Yi,2(0) − Yi,1(0) | Di = 0, Xi

]
(almost surely) , (10)

for Xi a pre-treatment vector of observable covariates.

For simplicity, we will focus first on the conditional parallel trends assumption in the canonical two-period model,
although several papers have also extended this idea to the case of staggered treatment timing, as we will discuss towards
the end of this subsection. We furthermore focus our discussion on covariates that are measured prior to treatment and
that are time-invariant (although they may have a time-varying impact on the outcome); relevant extensions to this are
also discussed below.

In addition to the conditional parallel trends assumption, we will also impose an overlap condition (a.k.a. positivity
condition), which guarantees that for each treated unit with covariates Xi, there are at least some untreated units in
the population with the same value of Xi. This overlap assumption is particularly important for using standard inference
procedures (Khan and Tamer, 2010).

Assumption 7 (Strong Overlap). The conditional probability of belonging to the treatment group, given observed charac-
teristics, is uniformly bounded away from one, and the proportion of treated units is bounded away from zero. That is,
for some ϵ > 0, P(Di = 1|Xi) < 1 − ϵ, almost surely, and E [D] > 0.

Given the conditional parallel trends assumption, no anticipation assumption, and overlap condition, the ATT condi-
tional on Xi = x,

τ2(x) = E
[
Yi,2(1) − Yi,2(0)|Di = 1, Xi = x

]
,

is identified for all x with P(Di = 1|Xi = x) > 0. In particular,

τ2(x) = E
[
Yi,2 − Yi,1 | Di = 1, Xi = x

]  
Change for Di = 1, Xi = x

−E
[
Yi,2 − Yi,1 | Di = 0, Xi = x

]  
Change for Di = 0, Xi = x

. (11)

ote that Eq. (11) is analogous to (2) in the canonical model, except it conditions on Xi = x. Intuitively, among the sub-
opulation with Xi = x, we have parallel trends, and so we can take the same steps as in Section 2 to infer the conditional
TT for that sub-population. The unconditional ATT can then be identified by averaging τ2(x) over the distribution of Xi
n the treated population. Using the law of iterated expectations, we have

τ2 = E
[
Yi,2(1) − Yi,2(0)|Di = 1

]
= E

⎡⎢⎣E [Yi,2(1) − Yi,2(0)|Di = 1, Xi
]  

τ2(Xi)

|Di = 1

⎤⎥⎦ .

When Xi is discrete and takes a small number of values — for example, if Xi is an indicator for whether someone has a
college degree — then estimation is straightforward. We can just run an unconditional DiD for each value of Xi, and then
aggregate the estimates to form an estimate for the overall ATT, using the delta method or bootstrap for the standard
errors. When Xi is either continuously distributed or discrete with a very large number of support points, estimation
becomes more complicated, because we will typically not have a large enough sample to do an unconditional DiD within
each possible value of Xi. Thankfully, there are several available econometric approaches to semi-/non-parametrically
estimate the ATT even with continuous covariates. We first discuss the limitations of using TWFE regressions in this
setting, and then discuss several alternative approaches.

Standard linear regression. Given that the TWFE specification (3) yielded consistent estimates of the ATT under As-
sumptions 1–3 in the canonical DiD model, it may be tempting to augment this specification with controls for a
time-by-covariate interaction,

Yi,t = αi + φt + (1[t = 2] · Di)β + (Xi · 1[t = 2])γ + εi,t , (12)

for estimation under conditional parallel trends. Unfortunately, this augmented specification need not yield consistent
estimates of the ATT under conditional parallel trends without additional homogeneity assumptions. The intuition is
that Eq. (12) implicitly models the conditional expectation function (CEF) of Yi,2 −Yi,1 as depending on Xi with a constant
slope of γ , regardless of i’s treatment status. If there are heterogeneous treatment effects that depend on Xi — e.g., the
ATT varies by age of participants — the derivative of the CEF with respect to Xi may depend on treatment status Di as well.
Under such heterogeneity, estimates of β can be biased for the ATT; see Meyer (1995) and Abadie (2005) for additional
discussion. Fortunately, there are several semi-/non-parametric methods available that allow for consistent estimation of
the ATT under conditional parallel trends under weaker homogeneity assumptions.
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Regression adjustment. An alternative approach to allow for covariate-specific trends in DiD settings is the regression
djustment procedure proposed by Heckman et al. (1997) and Heckman et al. (1998). Their main idea exploits the fact
hat under conditional parallel trends, strong overlap, and no anticipation we can write the ATT as

τ2 = E
[
E
[
Yi,2 − Yi,1 | Di = 1, Xi

]
− E

[
Yi,2 − Yi,1 | Di = 0, Xi

] ⏐⏐ Di = 1
]
,

= E
[
Yi,2 − Yi,1 | Di = 1

]
− E

[
E
[
Yi,2 − Yi,1 | Di = 0, Xi

] ⏐⏐ Di = 1
]
,

where the second equality follows from the law of iterated expectations. Thus, to estimate the ATT under conditional
parallel trends, one simply needs to estimate the conditional expectation of the outcome among untreated units, and
then average these ‘‘predictions’’ using the empirical distribution of Xi among treated units. That is, we estimate τ2 with

τ̂2 =
1
N1

∑
i:Di=1

(
(Yi,2 − Yi,1) − Ê[Yi,2 − Yi,1|Di = 0, Xi]

)
, (13)

here Ê[Yi,2 − Yi,1|Di = 0, Xi] is the estimated conditional expectation function fitted on the control units (but evaluated
t Xi for a treated unit). We note that if one uses a linear model for Ê[Yi,2 − Yi,1|Di = 0, Xi], then this would be similar

to a modification of (12) that interacts Xi with both treatment group and time dummies, although the two are not quite
identical because the outcome regression approach re-weights using the distribution of Xi among units with Di = 1. The
researcher need not restrict themselves to linear models for the CEF, however, and can use more flexible semi-/non-
parametric methods instead. One popular approach in empirical practice is to match each treated unit to a ‘‘nearest
neighbor’’ untreated unit with similar (or identical) covariate values, and then estimate Ê[Yi,2 − Yi,1|Di = 0, Xi] using
Yl(i)2 − Yl(i)1, where l(i) is the untreated unit matched to i, in which case τ̂2 reduces to the simple DiD estimator between
treated units and the matched comparison group.

The outcome regression approach will generally be consistent for the ATT when the outcome model used to estimate
E[Yi,2 − Yi,1|Di = 0, Xi] is correctly specified. Inference can be done using the delta-method for parametric models, and
there are also several methods available for semi-/non-parametric models (under some additional regularity conditions),
including the bootstrap, as described in Heckman et al. (1998). Inference is more complicated, however, when one models
the outcome evolution of untreated units using a nearest-neighbor approach with a fixed number of matches: the resulting
estimator is no longer asymptotically linear and thus standard bootstrap procedures are not asymptotically valid (e.g.,
Abadie and Imbens, 2006, 2008, 2011, 2012). Ignoring the matching step can also cause problems, and one therefore
needs to use inference procedures that accommodate matching as described in the aforementioned papers.15

Inverse probability weighting. An alternative to modeling the conditional expectation function is to instead model the
propensity score, i.e. the conditional probability of belonging to the treated group given covariates, p(Xi) = P(Di = 1|Xi).
Indeed, as shown by Abadie (2005), under Assumptions 2, 6 and 7, the ATT is identified using the following inverse
probability weighting (IPW) formula:

τ2 =

E
[(

Di −
(1 − Di)p(Xi)
1 − p(Xi)

) (
Yi,2 − Yi,1

)]
E [Di]

. (14)

As in the regression adjustment approach, researchers can use the ‘‘plug-in principle’’ to estimate the ATT by plugging in
an estimate of the propensity score to the equation above. The propensity score model can be estimated using parametric
models or semi-/non-parametric models (under suitable regularity conditions). The IPW approach will generally be
consistent if the model for the propensity scores is correctly specified. Inference can be conducted using standard tools;
see, e.g., Abadie (2005).

Doubly-robust estimators. The outcome regression and IPW approaches described above can also be combined to form
‘‘doubly-robust’’ (DR) methods that are valid if either the outcome model or the propensity score model is correctly
specified. Specifically, Sant’Anna and Zhao (2020) show that under Assumptions 2, 6 and 7, the ATT is identified as:

τ2 = E

⎡⎢⎢⎣
⎛⎜⎜⎝ Di

E [Di]
−

(1 − Di)p(Xi)
1 − p(Xi)

E
[
(1 − Di)p(Xi)
1 − p(Xi)

]
⎞⎟⎟⎠(Yi,2 − Yi,1 − E

[
Yi,2 − Yi,1 | Di = 0, Xi

])⎤⎥⎥⎦ . (15)

As before, one can then estimate the ATT by plugging in estimates of both the propensity score and the CEF. The
outcome equation and the propensity score can be modeled with either parametric or semi-/non-parametric methods,
and DR methods will generally be consistent if either of these models is correctly specified. In addition, Chang (2020)

15 Although these nearest-neighbor procedures have been formally justified for cross-sectional data, they are easily adjustable to the canonical
2 × 2 DiD setup with balanced panel data. We are not aware of formal extensions that allows for unbalanced panel data, repeated cross-sectional
data, or more general DiD designs. Abadie and Spiess (2022) show that, in some cases, clustering at the match level is sufficient when matching is
done without replacement.
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shows that data-adaptive/machine-learning methods can also be used with DR methods. Standard inference tools can be
used as well; see, e.g., Sant’Anna and Zhao (2020). Finally, under some regularity conditions, the DR estimator achieves the
semi-parametric efficiency bound when both the outcome and propensity score models are correctly specified (Sant’Anna
and Zhao, 2020).

Extensions to staggered treatment timing. Although the discussion above focused on DiD setups with two groups and
two periods, these different procedures have been extended to staggered DiD setups when treatments are binary
and non-reversible. More precisely, Callaway and Sant’Anna (2021) extend the regression adjustment, IPW, and DR
procedures above to estimate the family of ATT (g, t)’s discussed in Section 3.3. They then aggregate these estimators
to form different treatment effect summary measures. Wooldridge (2021) proposes an alternative regression adjustment
procedure that is suitable for staggered setups. His proposed estimator differs from the Callaway and Sant’Anna (2021)
regression adjustment estimator as he exploits additional information from pre-treatment periods, which, in turn, can
lead to improvements in precision. On the other hand, if these additional assumptions are violated, Wooldridge (2021)’s
estimator may be more biased than Callaway and Sant’Anna (2021)’s. de Chaisemartin and D’Haultfoeuille (2020, 2022a)
and Borusyak et al. (2021) consider estimators which include covariates in a linear manner.

Caveats. Throughout, we assume that the covariates Xi were measured prior to the introduction of the intervention
and are, therefore, unaffected by it. If Xi can in fact be affected by treatment, then conditioning on it induces a ‘‘bad
control’’ problem that can induce bias; see Zeldow and Hatfield (2021) for additional discussion. Similar issues arise if
one conditions on time-varying covariates Xi,t that can be affected by the treatment. If one is willing to assume that a
certain time-varying covariate Wi,t is not affected by the treatment, then in principle the entire time-path of the covariate
Wi = (Wi,1, . . . ,Wi,T )′ can be included in the conditioning variable Xi, and thus exogenous time-varying covariates can be
incorporated similarly to any pre-treatment covariate. See Caetano et al. (2022) for additional discussion of time-varying
covariates.

Another important question relates to whether researchers should condition on pre-treatment outcomes. Proponents
of including pre-treatment outcomes argue that controlling for lagged outcomes can reduce bias from unobserved
confounders (Ryan, 2018). It is worth noting when lagged outcomes are included in Xi, the conditional parallel trends
assumption actually reduces to a conditional mean independence assumption for the untreated potential outcome, since
the Yi,1(0) terms on both sides of (10) cancel out, and thus we are left with

E
[
Yi,2(0) | Di = 1, Xi

]
= E

[
Yi,2(0) | Di = 0, Xi

]
(almost surely) .

Including the lagged outcome in the conditioning variable thus makes sense if one is confident in the conditional
unconfoundedness assumption: i.e., if treatment is as good as randomly assigned conditional on the lagged outcome and
other elements of Xi. This may be sensible in settings where treatment takeup decisions are made on the basis of lagged
outcomes. However, it is also important to note that conditioning on lagged outcomes need not necessarily reduce bias,
and can in fact exacerbate it in certain contexts. For example, Daw and Hatfield (2018) show that when the treated and
comparison groups have different outcome distributions but the same trends, matching the treated and control groups on
lagged outcomes selects control units with a particularly large ‘‘shock’’ in the pre-treatment period. This can then induce
bias owing to a mean-reversion effect, when in fact not conditioning on lagged outcomes would have produced parallel
trends. Thus, whether one should include lagged outcomes or not depends on whether the researcher prefers the non-
nested assumptions of conditional unconfoundedness (given the lagged outcome) versus parallel trends. See Chabé-Ferret
(2015), Angrist and Pischke (2009, Chapter 5.4), and Ding and Li (2019) for related discussion.

4.3. Testing for pre-existing trends

Although conditioning on pre-existing covariates can help increase the plausibility of the parallel trends assumption,
researchers typically still worry that there remain unobserved time-varying confounders. An appealing feature of the DiD
design is that it allows for a natural plausibility check on the identifying assumptions: did outcomes for the treated and
comparison groups (possibly conditional on covariates) move in parallel prior to the time of treatment? It has therefore
become common practice to check, both visually and using statistical tests, whether there exist pre-existing differences
in trends (‘‘pre-trends’’) as a test of the plausibility of the parallel trends assumption.

To fix ideas, consider a simple extension of the canonical non-staggered DiD model in Section 2 in which we observe
outcomes for an additional period t = 0 during which no units were treated. (These ideas will extend to the case of
staggered treatment or conditional parallel trends.) By the no-anticipation assumption, Yi,t = Yi,t (0) for all units in periods
t = 0 and t = 1. We can thus check whether the analog to the parallel trends assumption held between periods 0 and 1
— that is, is

E
[
Yi,1 − Yi,0 | Di = 1

]  
Pre-treatment change for Di = 1

− E
[
Yi,1 − Yi,0 | Di = 0

]  
Pre-treatment change for Di = 0

= 0?

or example, did average insurance rates evolve in parallel for expansion and non-expansion states before either of them
xpanded Medicaid? In the non-staggered setting, this hypothesis can be conveniently tested using a TWFE specification
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that includes leads and lags of treatment,

Yi,t = αi + φt +

∑
r ̸=0

1[Ri,t = r]βr + ϵi,t , (16)

here the coefficient on the lead of treatment β̂−1 is given by

β̂−1 =
1
N1

∑
i:Di=1

Yi,0 − Yi,1 −
1
N0

∑
i:Di=0

Yi,0 − Yi,1.

Testing for pre-treatment trends thus is equivalent to testing the null hypothesis that β−1 = 0. This approach is convenient
to implement and extends easily to the case with additional pre-treatment periods and non-staggered treatment adoption.
When there are multiple pre-treatment periods, it is common to plot the β̂r in what is called as an ‘‘event-study’’ plot.
If all of the pre-treatment coefficients (i.e., β̂r for r < 0) are insignificant, this is usually interpreted as a sign in favor of
the validity of the design, since we cannot reject the null that parallel trends was satisfied in the pre-treatment period.

This pre-testing approach extends easily to settings with staggered adoption and/or conditional parallel trends
assumptions. For example, the Callaway and Sant’Anna (2021) estimator can be used to construct ‘‘placebo’’ estimates
of ATTw

l for l < 0, i.e. the ATT l periods before treatment. The estimates ÂTT
w

l can be plotted for different values of l
(corresponding to different lengths of time before/after treatment) to form an event-study plot analogous to that for the
non-staggered case. This illustrates that the idea of testing for pre-trends extends easily to the settings with staggered
treatment adoption or conditional parallel trends, since the Callaway and Sant’Anna (2021) can be applied for both of
these settings. These results are by no means specific to the Callaway and Sant’Anna (2021) estimator, though, and event-
study plots can be created in a similar fashion using other estimators for either staggered or conditional DiD settings. We
caution, however, against using dynamic TWFE specifications like (16) in settings with staggered adoption, since as noted
by Sun and Abraham (2021), the coefficients βr may be contaminated by treatment effects at relative time r ′ > 0, so with
heterogeneous treatment effects the pre-trends test may reject even if parallel trends holds in the pre-treatment period
(or vice versa).

4.4. Issues with testing for pre-trends

Although tests of pre-existing trends are a natural and intuitive plausibility check of the parallel trends assumption,
recent research has highlighted that they also have several limitations. First, even if pre-trends are exactly parallel, this
need not guarantee that the post-treatment parallel trends assumption is satisfied. Kahn-Lang and Lang (2020) give an
intuitive example: the average height of boys and girls evolves in parallel until about age 13 and then diverges, but we
should not conclude from this that there is a causal effect of bar mitzvahs (which occur for boys at age 13) on children’s
height!

A second issue is that even if there are pre-existing differences in trends, the tests described above may fail to reject
owing to low power (Bilinski and Hatfield, 2018; Freyaldenhoven et al., 2019; Kahn-Lang and Lang, 2020; Roth, 2022). That
is, even if there is a pre-existing trend, it may not be significant in the data if our pre-treatment estimates are imprecise.

To develop some intuition for why power may be low, suppose that there is no true treatment effect but there is
a pre-existing linear difference in trends between the treatment and comparison groups. Then in the simple example
from above, the pre-treatment and post-treatment event-study coefficients will have the same magnitude, |β−1| = |β1|.
If the two estimated coefficients β̂−1 and β̂1 also have the same sampling variance, then by symmetry the probability
that the pre-treatment coefficient β̂−1 is significant will be the same as the probability that the post-treatment coefficient
β̂1 is significant. But this means that a linear violation of parallel trends that would be detected only half the time by
a pre-trends test will also lead us to spuriously find a significant treatment effect half the time16 — that is, 10 times
more often than we expect to find a spurious effect using a nominal 95% confidence interval! Another intuition for this
phenomenon, given by Bilinski and Hatfield (2018), is that pre-trends tests reverse the traditional roles of type I and type
II error: they set the assumption of parallel trends (or no placebo pre-intervention effect) as the null hypothesis and only
‘‘reject’’ the assumption if there is strong evidence against it. This controls the probability of finding a violation when
parallel trends holds at 5% (or another chosen α-level), but the probability of failing to identify a violation can be much
higher, corresponding to type II error of the test.

In addition to being concerning from a theoretical point of view, the possibility of low power appears to be relevant in
practice: in simulations calibrated to papers published in three leading economics journals, Roth (2022) found that linear
violations of parallel trends that conventional tests would detect only 50% of the time often produce biases as large as
(or larger than) the estimated treatment effect.

A third issue with pre-trends testing is that conditioning the analysis on ‘‘passing’’ a pre-trends test induces a selection
bias known as pre-test bias (Roth, 2022). Intuitively, if there is a pre-existing difference in trends in population, the draws

16 This is the unconditional probability that β̂1 is significant (not conditioning on the result of the pre-test). However, if β̂1 and β̂−1 are independent,
then this is also the probability of finding a significant effect conditional on passing the pre-test.
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from the DGP in which we fail to detect a significant pre-trend are a selected sample from the true DGP. Roth (2022) shows
that in many cases, this additional selection bias can exacerbate the bias from a violation of parallel trends.

A final issue with the current practice of pre-trends testing relates to what happens if we do detect a significant
re-trend. In this case, the pre-trends test suggests that parallel trends is likely not to hold exactly, but researchers may
till wish to learn something about the treatment effect of interest. Indeed, it seems likely that with enough precision,
e will nearly always reject that the parallel trends assumption holds exactly in the pre-treatment period. Nevertheless,
e may still wish to learn something about the treatment effect, especially if the violation of parallel trends is ‘‘small’’ in
agnitude. However, the conventional approach does not make clear how to proceed in this case.

.4.1. Improved diagnostic tools
A few papers have proposed alternative tools for detecting pre-treatment violations of parallel trends that take into

ccount some of the limitations discussed above. Roth (2022) developed tools to conduct power analyses and calculate
he likely distortions from pre-testing under researcher-hypothesized violations of parallel trends. These tools allow the
esearcher to assess whether the limitations described above are likely to be severe for potential violations of parallel
rends deemed economically relevant.

Bilinski and Hatfield (2018) and Dette and Schumann (2020) propose ‘‘non-inferiority’’ approaches to pre-testing that
elp address the issue of low power by reversing the roles of the null and alternative hypotheses. That is, rather than test
he null that pre-treatment trends are zero, they test the null that the pre-treatment trend is large, and reject only if the
ata provides strong evidence that the pre-treatment trend is small. For example, Dette and Schumann (2020) consider
ull hypotheses of the form H0 : maxr<0 |βr | ≥ c , where βr are the (population) pre-treatment coefficients from regression
16). This ensures that the test ‘‘detects’’ a pre-trend with probability at least 1 − α when in fact the pre-trend is large
(i.e. has magnitude at least c).

These non-inferiority approaches are an improvement over standard pre-testing methods, since they guarantee by
design that the pre-test is powered against large pre-treatment violations of parallel trends. However, using these
approaches does not provide any formal guarantees that ensure the validity of confidence intervals for the treatment
effect, the main object of interest. They also do not avoid statistical issues related to pre-testing (Roth, 2022), and do not
provide clear guidance on what to do when the test fails to reject the null of a large pre-trend. This has motivated more
formal robust inference and sensitivity analysis approaches that consider inference on the ATT when parallel trends may
be violated, which we discuss next.

4.5. Robust inference and sensitivity analysis

Bounds using pre-trends. Rambachan and Roth (2022b) propose an approach for robust inference and sensitivity analysis
when parallel trends may be violated, building on earlier work by Manski and Pepper (2018). Their approach attempts
to formalize the intuition motivating pre-trends testing: that the counterfactual post-treatment trends cannot be ‘‘too
different’’ from the pre-trends. To fix ideas, consider the non-staggered treatment adoption setting described in Section 4.4.
Denote by δ1 the violation of parallel trends in the first post-treatment period:

δ1 = E
[
Yi,2(0) − Yi,1(0)|Di = 1

]
− E

[
Yi,2(0) − Yi,1(0)|Di = 0

]
.

This, for example, could be the counterfactual difference in trends in insurance coverage between Medicaid expansion and
non-expansion states if the expansions had not occurred. The bias δ1 is unfortunately not directly identified, since we do
not observe the untreated potential outcomes, Yi,2(0), for the treated group. However, by the no anticipation assumption,
we can identify the pre-treatment analog to δ1,

δ−1 = E
[
Yi,0(0) − Yi,1(0)|Di = 1

]
− E

[
Yi,0(0) − Yi,1(0)|Di = 0

]
,

which looks at pre-treatment differences in trends between the groups, with δ−1 = E
[̂
β−1

]
from the event study regres-

sion (16). For example, δ−1 corresponds to the pre-treatment difference in trends between expansion and non-expansion
states.

Rambachan and Roth (2022b) then consider robust inference under assumptions that restrict the possible values of
δ1 given the value of δ−1 — or more generally, given δ−1, . . . , δ−K if there are K pre-treatment coefficients. For example,
one type of restriction they consider states that the magnitude of the post-treatment violation of parallel trends can be
no larger than a constant M̄ times the maximal pre-treatment violation, i.e. |δ1| ≤ M̄ maxr<0 |δr |. If M̄ = 1, for example,
then this would impose that post-treatment violations of parallel trends are no larger than the largest pre-treatment
violation. They also consider restrictions that bound the extent that δ1 can deviate from a linear extrapolation of the
pre-treatment differences in trends. Rambachan and Roth (2022b) use tools from the partial identification and sensitivity
analysis literature (Armstrong and Kolesár, 2018; Andrews et al., 2023) to construct confidence sets for the ATT that are
uniformly valid under the imposed restrictions. These confidence sets take into account the fact that we do not observe
the true pre-treatment difference in trends δ−1, only an estimate β̂−1. The Rambachan and Roth (2022b) confidence sets
thus tend to be larger when there is more uncertainty about the pre-treatment difference in trends (i.e. when the standard
error on δ̂−1 is large). This contrasts with conventional pre-trends tests, which have the untuitive feature that they are
less likely to reject when the pre-treatment coefficients are more imprecise.
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o

This approach enables a natural form of sensitivity analysis. For example, a researcher might report that the conclusion
f a positive treatment effect is robust up to the value M̄ = 2. This indicates that to invalidate the conclusion of a positive

effect, we would need to allow for a post-treatment violation of parallel trends two times larger than the maximal pre-
treatment violation. For example, we could potentially say that Medicaid expansion has a significant effect on insurance
rates unless we are willing to allow for post-expansion differences in trends that were up to twice as large as the largest
difference in trends prior to the expansion. Doing so makes precise exactly what needs to be assumed about possible
violations of parallel trends to reach a particular conclusion.

It is worth highlighting that although we have described these tools in the context of non-staggered treatment timing
and an unconditional parallel trends assumption, they extend easily to the case of staggered treatment timing and
conditional parallel trends as well. Indeed, under mild regularity conditions, these tools can be used anytime the researcher
has a treatment effect estimate β̂post and a placebo estimate β̂pre, so long as she is willing to bound the possible bias
f β̂post given the expected value of β̂pre. For example, in the staggered setting, β̂post could be an estimate of ATTw

l for
l > 0 using one of the estimators described in Section 3.3, and β̂pre could be placebo estimates of ATTw

−1, . . . , ATT
w
−k. See

https://github.com/pedrohcgs/CS_RR for examples on how these sensitivity analyses can be combined with the Callaway
and Sant’Anna (2021) estimator in R.

Bounds using bracketing. Ye et al. (2021) consider an alternative partial identification approach where there are two
control groups whose trends are assumed to ‘‘bracket’’ that of the treatment group. Consider the canonical model from
Section 2, and suppose the untreated units can be divided into two control groups, denoted Ci = a and Ci = b. For ease
of notation, let Ci = trt denote the treated group, i.e. units with Di = 1. Let ∆(c) = E

[
Yi,2(0) − Yi,1(0)|Ci = c

]
. Instead of

the parallel trends assumption, Ye et al. (2021) impose that

min{∆(a), ∆(b)} ≤ ∆(trt) ≤ max{∆(a), ∆(b)}, (17)

so that the trend in Y (0) for the treated group is bounded above and below (‘‘bracketed’’) by the minimum and maximum
trend in groups a and b. An intuitive example where we may have such bracketing is if each of the groups corresponds
with a set of industries, and one of the control groups (say group a) is more cyclical than the treated group while the
other (say group b) is less cyclical. If the economy was improving between periods t = 1 and t = 2, then we would expect
group a to have the largest change in the outcome and group b to have the smallest change; whereas if the economy was
getting worse, we would expect the opposite. Under Eq. (17) and the no anticipation assumption, the ATT is bounded,

E
[
Yi,2 − Yi,1|Di = 1

]
− max{∆(a), ∆(b)} ≤ τ2 ≤ E

[
Yi,2 − Yi,1|Di = 1

]
− min{∆(a), ∆(b)}.

This reflects that if we knew the true counterfactual trend for the treated group we could learn the ATT exactly, and
therefore that bounding this trend means we can obtain bounds on the ATT. Ye et al. (2021) further show how one can
construct confidence intervals for the ATT, and extend this logic to settings with multiple periods (but non-staggered
treatment timing). See, also, Hasegawa et al. (2019) for a related, earlier approach.

4.5.1. Other approaches
Keele et al. (2019) propose a sensitivity analysis in the canonical two-period DiD model that summarizes the strength

of confounding factors that would be needed to induce a particular bias. Freyaldenhoven et al. (2021) propose a visual
sensitivity analysis in which one plots the ‘‘smoothest’’ trend though an event-study plot that could rationalize the data
under the null of no effect. Finally, Freyaldenhoven et al. (2019) propose a GMM-based estimation strategy that allows for
parallel trends to be violated when there exists a covariate assumed to be affected by the same confounds as the outcome
but not by the treatment itself.

4.6. Recommendations

We suspect that in most practical applications of DiD, researchers will not be confident ex ante that the parallel
trends assumption holds exactly, owing to concerns about time-varying confounds and sensitivity to functional form. The
methods discussed in this setting for relaxing the parallel trends assumption and/or assessing sensitivity to violations of
the parallel trends assumption will therefore be highly relevant in most contexts where DiD is applied.

A natural starting point for these robustness checks is to consider whether the results change meaningfully when
imposing parallel trends only conditional on covariates. Among the different estimation procedures we discussed, we
view doubly-robust procedures as a natural default, since they are valid if either the outcome model or propensity score
is well-specified and have desirable efficiency properties. A potential exception to this recommendation arises in settings
with limited overlap, i.e., when the estimated propensity score is close to 0 or 1, in which case regression adjustment
estimators may be preferred.

Whether one includes covariates into the DiD analysis or not, we encourage researchers to continue to plot ‘‘event-
study plots’’ that allow for a visual evaluation of pre-existing trends. These plots convey useful information for the reader
to assess whether there appears to have been a break in the outcome for the treatment group around the time of
treatment. In contexts with a common treatment date, such plots can be created using TWFE specifications like (16);
in contexts with staggered timing, we recommend plotting estimates of ATTw for different values of l using one of the
l
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estimators for the staggered setting described in Section 3.3 to avoid negative weighting issues with TWFE. See Section 4.3
for additional discussion. We also refer the reader to Freyaldenhoven et al. (2021) regarding best-practices for creating
such plots, such as displaying simultaneous (rather than pointwise) confidence bands for the path of the event-study
coefficients (Olea and Plagborg-Mller, 2019; Callaway and Sant’Anna, 2021).

While event-study plots play an important role in evaluating the plausibility of the parallel trends assumption, we
hink it is important to appreciate that tests of pre-trends may be underpowered to detect relevant violations of parallel
rends, as discussed in Section 4.4. The lack of a significant pre-trend does not necessarily imply the validity of the parallel
rends assumption. At minimum, we recommend that researchers assess the power of pre-trends tests against economically
elevant violations of parallel trends, as described in Section 4.4.1.

We also think it should become standard practice for researchers to formally assess the extent to which their
onclusions are sensitive to violations of parallel trends. A natural statistic to report in many contexts is the ‘‘breakdown’’
alue of M̄ using the sensitivity analysis in Rambachan and Roth (2022b) — i.e. how big would the post-treatment violation
f parallel trends have to be relative to the largest pre-treatment violation to invalidate a particular conclusion? We
ncourage researchers to routinely report the results of the sensitivity analyses described in Section 4.5 alongside their
vent-study plots.
We also encourage researchers to accompany the formal sensitivity tools with a discussion of possible violations of

arallel trends informed by context-specific knowledge. The parallel trends assumption is much more plausible in settings
here we expect the trends for the two groups to be similar ex-ante (before seeing the pre-trends). Whenever possible,
esearchers should therefore provide a justification for why we might expect the two groups to have similar trends. It is
lso useful to provide context-specific knowledge about the types of confounds that might potentially lead to violations of
he parallel trends assumption — what time-varying factors may have differentially affected the outcome for the treated
roup? Such discussion can often be very useful for interpreting the results of the formal sensitivity analyses described in
ection 4.5. For example, suppose that a particular conclusion is robust to allowing for violations of parallel trends twice
s large the maximum in the pre-treatment period. In contexts where other factors were quite stable around the time
f the treatment, this might be interpreted as a very robust finding; on the other hand, if the treatment occurred at the
eginning of a recession much larger than anything seen in the pre-treatment period, then a violation of parallel trends of
hat magnitude may indeed be plausible, so that the results are less robust than we might like. Thus, economic knowledge
ill be very important in understanding the robustness of a particular result. In our view, the most scientific approach to
ealing with possible violations of parallel trends therefore involves a combination of state-of-the-art econometric tools
nd context-specific knowledge about the types of plausible confounding factors.

. Relaxing sampling assumptions

We now discuss a third strand of the DiD literature, which considers inference under deviations from the canonical
ssumption that we have sampled a large number of independent clusters from an infinite super-population.

.1. Inference procedures with few clusters

As described in Section 2, standard DiD inference procedures rely on researchers having access to data on a large
umber of treated and untreated clusters. Confidence intervals are then based on the central limit theorem, which states
hat with independently-sampled clusters, the DiD estimator has an asymptotically normal distribution as the number of
reated and untreated clusters grows large. In many practical DiD settings, however, the number of independent clusters
and, in particular, treated clusters) may be small, so that the central limit theorem based on a growing number of clusters
ay provide a poor approximation. For example, many DiD applications using state-level policy changes may only have
handful of treated states. The central limit theorem may provide a poor approximation with few clusters, even if the
umber of units within each cluster is large. This is because the standard sampling-based view of clustering allows for
rbitrary correlations of the outcome within each cluster, and thus there may be common components at the cluster level
a.k.a. cluster-level ‘‘shocks’’) that do not wash out when averaging over many units within the same cluster. Since we only
bserve a few observations of the cluster-specific shocks, the average of these shocks will generally not be approximately
ormally distributed.

odel-based approaches. Several papers have made progress on the difficult problem of conducting inference with a small
umber of clusters by modeling the dependence within clusters. These papers typically place some restrictions on the
ommon cluster-level shocks, although the exact restrictions differ across papers. The starting point for these papers is
ypically a structural equation of the form

Yijt = αj + φt + Djtβ + (νjt + ϵijt ), (18)

here Yijt is the (realized) outcome of unit i in cluster j at time t , αj and φt are cluster and time fixed effects, Djt is an
ndicator for whether cluster j is treated in period t , νjt is a common cluster-by-time error term, and ϵijt is an idiosyncratic
nit-level error term. Here, the ‘‘cluster-level’’ error term, νjt , induces correlation among units within the same cluster. It
s often assumed that ϵ are iid mean-zero across i and j (and sometimes t); see, e.g., Donald and Lang (2007), Conley and
ijt
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Taber (2011), and Ferman and Pinto (2019). Letting Yjt = n−1
j
∑

i:j(i)=j Yijt be the average outcome among units in cluster
j, where nj is the number of units in cluster j, we can take averages to obtain

Yjt = αj + φt + Djtβ + ηjt , (19)

here ηjt = νjt + n−1
j
∑nj

i=1 ϵijt . Assuming the canonical set-up with two periods where no clusters are treated in period
= 1 and some clusters are treated in period t = 2, the canonical DiD estimator at the cluster level is equivalent to the
stimated OLS coefficient β̂ from (19), and is given by

β̂ = β +
1
J1

∑
j:Dj=1

∆ηj −
1
J0

∑
j:Dj=0

∆ηj

= β +
1
J1

∑
j:Dj=1

(
∆νj + n−1

j

nj∑
i=1

∆ϵij

)
−

1
J0

∑
j:Dj=0

(
∆νj + n−1

j

nj∑
i=1

∆ϵij

)
, (20)

here Jd corresponds with the number of clusters with treatment d, and ∆ηj = ηj2 − ηj1 (and likewise for the other
ariables). The equation in the previous display highlights the challenge in this setup: with few clusters, the averages of
he cluster level shocks ∆νj among treated and untreated clusters will tend not to be approximately normally distributed,
nd their variance may be difficult to estimate.
It is worth highlighting that the model described above starts from the structural Eq. (18) rather than a model where

he primitives are potential outcomes as in Section 2. We think that connecting the assumptions on the errors in the
tructural model (18) to restrictions on the potential outcomes is an interesting open topic for future work. Although
general treatment is beyond the scope of this paper, in Appendix we show that the errors in the structural model

18) map to primitives based on potential outcomes in the canonical model from Section 2. For the remainder of the
ub-section, however, we focus primarily on the restrictions placed on νjt and ϵijt directly — rather than the implications
f these assumptions for the potential outcomes — since this simplifies exposition and matches how these assumptions
re stated in the literature.
Donald and Lang (2007) made an important early contribution to the literature on inference with few clusters. Their

pproach assumes that the cluster level-shocks νjt are mean-zero Gaussian, homoskedastic with respect to cluster and
reatment status, and independent of other unit-and-time specific shocks. They also assume the number of units per
luster is large (nj → ∞ for all j). They then show that one can obtain valid inference by using critical values from a
-distribution with J − 2 degrees of freedom, where J is the total number of clusters. A nice feature of this approach is
hat it allows for valid inference when both the number of treated and untreated clusters is small. The disadvantage is
he strong parametric assumption of homoskedastic Gaussian errors, which will often be hard to justify in practice.

Conley and Taber (2011) introduce an alternative approach for inference that is able to relax the strong assumption of
aussian errors in settings where there are many control clusters (J0 large) but few treated clusters (J1 small). This may
e reasonable if the author has data from, say, 3 treated states and 47 untreated states. The key idea in Conley and Taber
2011) is that if we assume that the errors in treated states come from the same distribution as in control states, then
e can learn the distribution of errors from the large number of control states and use that to construct standard errors.
key advantage of this approach is that the distribution of errors is not assumed to be Gaussian, but rather is learned

rom the data. Nevertheless, the assumption that all treated groups have the same distribution of errors is still strong,
nd will often be violated if either there is heterogeneity in treatment effects or in cluster sizes. Ferman and Pinto (2019)
xtend the approach of Conley and Taber (2011) to allow for heteroskedasticity caused by heterogeneity in group sizes or
ther observable characteristics, but must still restrict heterogeneity based on unobserved characteristics (e.g. unobserved
reatment effect heterogeneity).

Hagemann (2020) provides an alternative permutation-based approach that avoids the need to directly estimate the
eteroskedasticity. The key insight of Hagemann (2020) is that if we place a bound on the maximal relative heterogeneity
cross clusters, then we can bound the probability of type I error from a permutation approach. He also shows how one
an use this measure of relative heterogeneity to do sensitivity analysis. Like the other proposals above, though, Hagemann
2020)’s approach must also place some strong restrictions on certain types of heterogeneity. In particular, his approach
ssentially requires that, as cluster size grows large, any single untreated cluster could be used to infer the counterfactual
rend for the treated group, and thus his approach rules out cluster-specific heterogeneity in trends in untreated potential
utcomes.
Another popular solution with few clusters is the cluster wild bootstrap. In an influential paper, Cameron et al.

2008) presented simulation evidence that the cluster wild bootstrap procedure can work well in settings with as few
s five clusters. More recently, however, Canay et al. (2021) provided a formal analysis about the conditions under
hich the cluster wild bootstrap is asymptotically valid in settings with a few large clusters. Importantly, Canay et al.
2021) show that the reliability of these bootstrap procedures depends on imposing certain homogeneity conditions on
reatment effects, as well as the type of bootstrap weights one uses and the estimation method adopted (e.g., restricted
s. unrestricted OLS). These restrictions are commonly violated when one uses TWFE regressions with cluster-specific and
ime fixed effects like (19) or when treatment effects are allowed to be heterogeneous across clusters — see Examples
and 3 in Canay et al. (2021). Simulations have likewise shown that the cluster wild bootstrap may perform poorly in
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DiD settings with a small number of treated clusters (MacKinnon and Webb, 2018). Thus, while the wild bootstrap may
perform well in certain scenarios with a small number of clusters, it too requires strong homogeneity assumptions.

Finally, in settings with a large number of time periods, it may be feasible to conduct reliable inference with less
tringent homogeneity assumptions about treatment effects. For instance, Canay et al. (2017), Ibragimov and Müller
2016), Hagemann (2021), and Chernozhukov et al. (2021) respectively propose permutation-based, t-test based, adjusted
ermutation-based, and conformal inference-based procedures that allow one to relax distributional assumptions about
ommon shocks and accommodate richer forms of heterogeneity. The key restriction is that one is comfortable limiting
he time-series dependence of the cluster-specific-shocks, and strengthening the parallel trends assumption to hold in
any pre- and post-treatment time periods. These methods have been shown to be valid under asymptotics where the
umber of periods grows large. When in fact the number of time periods is small, as frequently occurs in DiD applications,
ne can still use some of these methods, but the underlying assumptions are stronger — see, e.g., Remark 4.5 and Section
.2 of Canay et al. (2017).

lternative approaches. We now briefly discuss two alternative approaches in settings with a small number of clusters.
irst, while all of the ‘‘model-based’’ papers above treat νjt as random, an alternative perspective would be to condition
n the values of νjt and view the remaining uncertainty as coming only from the sampling of the individual units within
lusters, constructing standard errors by clustering only at the unit level. This will generally produce a violation of parallel
rends, but the violation may be relatively small if the cluster-specific shocks are small relative to the idiosyncratic
ariation. The violation of parallel trends could then be accounted for using the methods described in Section 4. To make
his concrete, consider the setting of Card and Krueger (1994) that compares employment in NJ and PA after NJ raised
ts minimum wage. The aforementioned papers would consider NJ and PA as drawn from a super-population of treated
nd untreated states, where the state-level shocks are mean-zero, whereas the alternative approach would treat the two
tates as fixed and view any state-level shocks between NJ and PA as a violation of the parallel trends assumption. One
ould then explore the sensitivity of one’s conclusions to the magnitude of this violation, potentially benchmarking it
elative to the magnitude of the pre-treatment violations as discussed in Section 4.5.

A second possibility is Fisher Randomization Tests (FRTs), otherwise known as permutation tests. The basic idea is
o calculate some statistic of the data (e.g. the t-statistic of the DiD estimator), and then recompute this statistic under
many permutations of the treatment assignment (at the cluster level). We then reject the null hypothesis of no effect if
the test statistic using the original data is larger than 95% of the draws of the test statistics under the permuted treatment
assignment. Such tests have a long history in statistics, dating to Fisher (1935). If treatment is randomly assigned, then
FRTs have exact finite-sample validity under the sharp null of no treatment effects for all units. The advantage of these
tests is that they place no restrictions on the potential outcomes, and thus allow arbitrary heterogeneity in potential
outcomes across clusters. On the other hand, the assumption of random treatment assignment may often be questionable
in DiD settings. Moreover, the ‘‘sharp’’ null of no effects for all units may not be as economically interesting as the ‘‘weak’’
null of no average effects. Nevertheless, permutation tests may be a useful benchmark: if one cannot reject the null of no
treatment effects even if treatment had been randomly assigned, this suggests that there is not strong evidence of an effect
n the data without other strong assumptions. In settings with staggered treatment timing, it may be more plausible to
ssume that the timing of when a unit gets treated is as good as random; see Roth and Sant’Anna (2021) for efficient
stimators and FRTs for this setting.

ecommendations. In sum, recent research has made progress on the problem of conducting inference with relatively
ew clusters, but all of the available approaches require the researcher to impose some potentially strong additional
ssumptions. Most of the literature has focused on model-based approaches, which require the researcher to impose some
omogeneity assumptions across clusters. Different homogeneity assumptions may be more reasonable in different con-
exts, and so we encourage researchers using these approaches to choose a method relying on a dimension of homogeneity
hat is most likely to hold (approximately) in their context. We also note that allowing for more heterogeneity may often
ome at the expense of obtaining tests with lower power. When none of these homogeneity assumptions is palatable,
onditioning the inference on the cluster-level shocks and treating them as violations of parallel trends, accompanied
y appropriate sensitivity analyses, may be an attractive alternative. Permutation-based methods also offer an intriguing
lternative which requires no assumptions about homogeneity in potential outcomes, but requires stronger assumptions
n the assignment of treatment and tests a potentially less interesting null hypothesis when the number of clusters is
mall.

.2. Design-based inference and the appropriate level of clustering

The canonical approach to inference in DiD assumes that we have a large number of independently-drawn clusters
ampled from an infinite super-population. In practice, however, there are two related conceptual difficulties with this
ramework. First, in many settings, it is unclear what the super-population of clusters is — if the clusters in my sample
re the 50 US states, should I view these as having been drawn from a super-population of possible states? Second, in
any settings it is hard to determine what the appropriate level of clustering is — if my data is on individuals who live

n counties, which are themselves subsets of states, which is the appropriate level of clustering?
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f

To address these difficulties, it is often easier to consider a design-based framework that views the units in the data as

ixed (not necessarily sampled from a super-population) and the treatment assignment as stochastic. This helps to address
the difficulties described above, since we do not need to conceptualize the super-population, and the appropriate level of
clustering is determined by the way that treatment is assigned. Design-based frameworks have a long history in statistics
dating to Neyman (1923), and have received recent attention in econometrics (e.g. Abadie et al., 2020, 2023). However,
until recently, most of the results in the design-based literature has focused on settings where treatment probabilities are
known or depend only on observable characteristics, and thus were not directly applicable to DiD.

Recent work by Rambachan and Roth (2022a) has extended this design-based view to settings like DiD, where
treatment probabilities may differ in unknown ways across units. Rambachan and Roth (2022a) consider a setting similar
to the canonical two-period model in Section 2. However, following the design-based paradigm, they treat the units in the
population (and their potential outcomes) as fixed rather than drawn from an infinite super-population. In this set-up,
they show that the usual DiD estimator is unbiased for a finite-population analog to the ATT under a finite-population
analog to the parallel trends assumption. In particular, let πi denote the probability that Di = 1, and suppose that

N∑
i=1

(
πi −

N1

N

)
(Yi,2(0) − Yi,1(0)) = 0,

so that treatment probabilities are uncorrelated with trends in Y (0) (a finite-population version of parallel trends). Then
ED [̂τ2] = τ Fin

2 , where τ Fin
2 = ED[ 1

N1

∑
i:Di=1(Yi,2(1) − Yi,2(0))] is a finite-population analog to the ATT, i.e. the expected

average treatment effect on the treated, and the expectation is taken over the stochastic distribution of which units are
treated.

Rambachan and Roth (2022a) show that from the design-based perspective, cluster-robust standard errors are valid
(but potentially conservative) if the clustering is done at the level at which treatment is independently determined.
Thus, for example, if the treatment is assigned independently at the unit-level,17 then we should cluster at the unit-
level; by contrast, if treatment is determined independently across states, then we should cluster at the state level. This
clear recommendation on the appropriate level of clustering contrasts with the more traditional model-based view that
clustering should be done at the level at which the errors are correlated, which often makes it challenging to choose the
appropriate level (MacKinnon et al., 2023). These results also suggest that it may not actually be a problem if it is difficult
to conceptualize a super-population from which our clusters are drawn; rather, the ‘‘usual’’ approach remains valid if
there is no super-population and the uncertainty comes from stochastic assignment of treatment.18

Recommendations. If it is difficult to conceptualize a super-population, fear not! Your DiD analysis can likely still be
sensible from a finite-population perspective where we think of the treatment assignment as stochastic. Furthermore, if
you are unsure about the appropriate level of clustering, a good rule of thumb (at least from the design-based perspective)
is to cluster at the level at which treatment is independently assigned.

6. Other topics and areas for future research

In this section, we briefly touch on some other areas of interest in the DiD literature, and highlight some open areas
for future research.

Distributional treatment effects. The DiD literature typically focuses on estimation of the ATT, but researchers may often
be interested in the effect of a treatment on the entire distribution of an outcome. Athey and Imbens (2006) propose the
Changes-in-Changes model, which allows one to infer the full counterfactual distribution of Y (0) for the treated group in
DiD setups. The key assumption is that the mapping between quantiles of Y (0) for the treated and comparison groups
remains stable over time — e.g., if the 30th percentile of the outcome for the treated group was the 70th percentile for the
comparison group prior to treatment, this relationship would have been preserved in the second period if treatment had
not occurred. Bonhomme and Sauder (2011) propose an alternative distributional DiD model based on a parallel trends
assumption for the (log of the) characteristic function, which is motivated by a model of test scores. Callaway and Li (2019)
propose a distributional DiD model based on a copula stability assumption. Finally, Roth and Sant’Anna (2023) show that
parallel trends holds for all functional forms under a ‘‘parallel trends’’-type assumption for the cumulative distribution of
Y (0), and this assumption also allows one to infer the full counterfactual distribution for the treated group.

17 Formally, if units are assigned independently before we condition on the number of treated units, N1 .
18 In some settings, the uncertainty may arise both from sampling and the stochastic assignment of treatment. Abadie et al. (2023) study a model
in which both treatment is stochastic and units are sampled from a larger population, and suggest that one should cluster among units if either
their treatment assignments are correlated or the event that they are included in the sample is correlated. Although the Abadie et al. (2023) results
do not directly apply to DiD, we suspect that a similar heuristic would apply in DiD as well in light of the results in Rambachan and Roth (2022a)
for the case where only treatment is viewed as stochastic. Formalizing this intuition strikes us as an interesting area for future research.
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Quasi-random treatment timing. In settings with staggered treatment timing, the generalized parallel trends assumption is
often justified by arguing that the timing of treatment is random or quasi-random. Roth and Sant’Anna (2021) show that
if one is willing to assume treatment timing is as good as random, one can obtain more efficient estimates than using
the staggered DiD methods discussed in Section 3.3. This builds on earlier work by McKenzie (2012), who highlighted
that DiD is typically inefficient in an RCT where lagged outcomes are observed, as well as a large literature in statistics on
efficient covariate adjustment in randomized experiments (e.g., Lin, 2013). Shaikh and Toulis (2021) propose a method for
observational settings where treatment timing is random conditional on fixed observable characteristics. We think that
developing methods for observational settings where treatment timing is approximately random, possibly conditional on
covariates and lagged outcomes, is an interesting area for further study in the years ahead.

Sequential ignorability. As discussed in Section 3.4, an exciting new literature in DiD has begun to focus on settings where
reatment can turn on and off and potential outcomes depend on the full path of treatments. A similar setting has been
tudied extensively in biostatistics, beginning with the pioneering work of Robins (1986). The key difference is that the
iostatistics literature has focused on sequential random ignorability assumptions that impose that treatment in each
eriod is random conditional on the path of covariates and realized outcomes, rather than parallel trends. We suspect
hat there may be economic settings where sequential ignorability may be preferable to parallel trends, e.g. when there is
eedback between lagged outcomes and future treatment choices. Integrating these two literatures — e.g., understanding
n which economic settings is parallel trends preferable to sequential ignorability and vice versa — is an interesting area
or future research. An interesting step towards incorporating sequential ignorability in economic analyses is Viviano and
radic (2021).

pillover effects. The vast majority of the DiD literature imposes the SUTVA assumption, which rules out spillover effects.
owever, spillover effects may be important in many economic applications, such as when policy in one area affects
eighboring areas, or when individuals are connected in a network. Butts (2021) provides some initial work in this
irection by extending the framework of Callaway and Sant’Anna (2021) to allow for local spatial spillovers. Huber and
teinmayr (2021) also consider extensions to allow for spillover effects. We suspect that in the coming years, we will see
ore work on DiD with spillovers.

onditional treatment effects. The DiD literature has placed a lot of emphasis on learning about the ATT’s of different
roups. However, in many situations, it may also be desirable to better understand how these ATT’s vary between
ubpopulations defined by covariate values. For instance, how does the average treatment effect of a training program
n earnings vary according to the age of its participants? Abadie (2005) provides re-weighting methods to tackle these
ypes of questions using linear approximations. However, recent research has shown that data-adaptive/machine-learning
rocedures can be used to more flexibly estimate treatment effect heterogeneity in the context of RCTs or cross-sectional
bservational studies with unconfoundedness (e.g., Lee et al., 2017; Wager and Athey, 2018; Chernozhukov et al., 2020).
hether such tools can be adapted to estimate treatment effect heterogeneity in DiD setups is a promising area for future

esearch.

riple differences. A common variant on DiD is triple-differences (DDD), which compares the DiD estimate for a demo-
raphic group expected to be affected by the treatment to a DiD for a second demographic group expected not to be
ffected (or effected less). For example, Gruber (1994) studies the impacts of mandated maternity leave policies using
DDD design that compares the evolution of wages between treated/untreated states, before/after the law passed, and
etween married women age 20–40 (who are expected to be affected) and other workers. DDD has received much less
ttention in the recent literature than standard DiD. We note, however, that DDD can often be cast as a DiD with a
ransformed outcome. For example, if we defined the state-level outcome Ỹ as the difference in wages between women
age 20–40 and other workers, then Gruber (1994)’s DDD analysis would be equivalent to a DiD analysis using Ỹ as the
outcome instead of wages. Nevertheless, we think that providing a more formal analysis of DDD along with practical
recommendations for applied researchers would be a useful direction for future research.

Connections to other panel data methods. DiD is of course one of many possible panel data methods. One of the most
prominent alternatives is the synthetic control (SC) method, pioneered by Abadie et al. (2010). Much of the DiD and SC
literatures have evolved separately, using different data-generating processes as the baseline (Abadie, 2021). Recent work
has begun to try to combine insights from the two literatures (e.g., Arkhangelsky et al., 2021; Ben-Michael et al., 2021,
2022; Doudchenko and Imbens, 2016). We think that exploring further connections between the literatures — and in
particular, providing clear guidance for practitioners on when one we should expect one method to perform better than
the other, or whether one should consider a hybrid of the two — is an interesting direction for future research.

7. Conclusion

This paper synthesizes the recent literature on DiD. Some key themes are that researchers should be clear about the
comparison group used for identification, match the estimation and inference methods to the identifying assumptions,
and explore robustness to possible violations of those assumptions. We emphasize that context-specific knowledge will
often be needed to choose the right identifying assumptions and accompanying methods. We are hopeful that these recent
developments will help to make DiD analyses more transparent and credible in the years to come.
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Appendix. Connecting model-based assumptions to potential outcomes

This section formalizes connections between the model-based assumptions in Section 5.1 and the potential outcomes
ramework. We derive how the errors in the structural model (18) map to primitives based on potential outcomes in the
anonical model from Section 2. Specifically, we show that under the set-up of Section 2, Assumptions 1 and 2 imply that
he canonical DiD estimator takes the form given in (20), where β = τ2 is the ATT at the cluster level, νjt = νjt,0 + Djνjt,1
and ϵijt = ϵijt,0 + Djϵijt,1, where19

ϵijt,0 = Yijt (0) − E
[
Yijt (0)|j(i) = j

]
ϵijt,1 = Yijt (1) − Yijt (0) − E

[
Yijt (1) − Yijt (0)|j(i) = j

]
νjt,0 = E

[
Yijt (0)|j(i) = j

]
− E

[
Yijt (0)|Dj

]
νjt,1 = E

[
Yijt (1) − Yijt (0)|j(i) = j

]
− τt ,

and j(i) is the cluster of unit i. Thus, in the canonical set-up, restrictions on νjt and ϵijt can be viewed as restrictions on
primitives that are functions of the potential outcomes.

Adopt the notation and set-up in Section 2, except now each unit i belongs to a cluster j and treatment is assigned at
the cluster level Dj. We assume clusters are drawn iid from a superpopulation of clusters and then units are drawn iid
within the sampled cluster. We write Jd to denote the number of clusters with treatment d, and nj the number of units in
cluster j. As in the main text, let Yjt = nj

−1∑
i:j(i)=j Yijt be the sample mean within cluster j. The canonical DiD estimator

at the cluster level can then be written as:

τ̂ =
1
J1

∑
j:Dj=1

(Yj2 − Yj1) −
1
J0

∑
i:Dj=0

(Yj2 − Yj1)

=
1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2 − Yij1) −
1
J0

∑
i:Dj=0

1
nj

∑
i:j(i)=j

(Yij2 − Yij1).

Since the observed outcome is Y (1) for treated units and Y (0) for control units, under the no anticipation assumption it
follows that

τ̂ =
1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2(1) − Yij1(0)) −
1
J0

∑
j:Dj=0

1
nj

∑
i:j(i)=j

(Yij2(0) − Yij1(0)),

or equivalently,

τ̂ =
1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2(1) − Yij2(0))+

1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2(0) − Yij1(0))−

1
J0

∑
j:Dj=0

1
nj

∑
i:j(i)=j

(Yij2(0) − Yij1(0)).

Adding and subtracting terms of the form E
[
Yijt (d)|j(i) = j

]
, we obtain

τ̂ =τ2 +
1
J1

∑
j:Dj=1

(E
[
Yij2(1) − Yij2(0)|j(i) = j

]
− τ2)+

1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2(1) − Yij2(0) − E
[
Yij2(1) − Yij2(0)|j(i) = j

]
)+

1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2(0) − Yij1(0) − E
[
Yij2(0) − Yij1(0)|j(i) = j

]
)−

1
J0

∑
j:Dj=0

1
nj

∑
i:j(i)=j

(Yij2(0) − Yij1(0) − E
[
Yij2(0) − Yij1(0)|j(i) = j

]
)+

1
J1

∑
j:Dj=1

E
[
Yij2(0) − Yij1(0)|j(i) = j

]
−

1
J0

∑
j:Dj=0

E
[
Yij2(0) − Yij1(0)|j(i) = j

]
,

19 In what follows, we write E
[
Yijt (0)|Dj = d

]
to denote the expectation where one first draws cluster j from the population of clusters with

D = d and then draws Y (0) from that cluster.
j ijt
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where τ2 = E
[
J1−1∑

j:Dj=1 E
[
Yij2(1) − Yij2(0)|j(i) = j

]]
= E

[
Yij2(1) − Yij2(0)|Dj = 1

]
is the ATT among treated clusters

(weighting all clusters equally).
Now, we assume parallel trends at the cluster level, so that

E
[
Yij2(0) − Yij1(0)|Dj = 1

]
− E

[
Yij2(0) − Yij1(0)|Dj = 0

]
= 0,

which implies that

τ̂ =τ2 +
1
J1

∑
j:Dj=1

(E
[
Yij2(1) − Yij2(0)|j(i) = j

]
− τ2)  

=∆νj,1

+

1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2(1) − Yij2(0) − E
[
Yij2(1) − Yij2(0)|j(i) = j

]
)  

=∆ϵij,1

+

1
J1

∑
j:Dj=1

1
nj

∑
i:j(i)=j

(Yij2(0) − Yij1(0) − E
[
Yij2(0) − Yij1(0)|j(i) = j

]
)  

=∆ϵij,0

−

1
J0

∑
i:Dj=0

1
nj

∑
i:j(i)=j

(Yij2(0) − Yij1(0) − E
[
Yij2(0) − Yij1(0)|j(i) = j

]
)  

=∆ϵij,0

+

1
J1

∑
j:Dj=1

(E
[
Yij2(0) − Yij1(0)|j(i) = j

]
− E

[
Yij2(0) − Yij1(0)|Dj

]
)  

∆νj,0

−

1
J0

∑
j:Dj=0

(E
[
Yij2(0) − Yij1(0)|j(i) = j

]
− E

[
Yij2(0) − Yij1(0)|Dj

]
)  

∆νj,0

.

etting ∆νj = ∆νj,0 + Dj∆νj,1 and ∆ϵij = ∆ϵij,0 + Dj∆ϵij,1, it follows that τ̂ takes the form (20) with β = τ2.
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